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ABSTRACT

BACKGROUND/OBJECTIVES: Hizikia fusiformis (HF) is a class of brown seaweeds whose 
active ingredients exert central nervous system protective effects, such as neuroprotection; 
however, the underlying mechanisms remain unknown. Given that dopamine (DA) and 
serotonin (5HT) are two major neurotransmitters involved in various psychiatric disorders 
and neuronal growth in early neurodevelopmental processes, we investigated whether HF 
extract could modulate the molecular expression associated with DA and 5HT transmission 
as well as the structural formation of neurons.
MATERIALS/METHODS: In vitro cell cultures were prepared from cerebral cortical neurons 
obtained from CD-1 mice on embryonic day 14. Cultured cells were treated with 0.1, 1.0, or 10.0 
μg/mL of HT extract for 24 h, followed by fluorescence immunostaining for DA and 5HT-related 
receptors and transporters and some neuronal structural formation-associated molecules.
RESULTS: HF extract dose-dependently upregulated the expression levels of selective DA 
and 5HT receptors, and downregulated the levels of DA and 5HT transporters. Moreover, HF 
extract increased the neurofilament light chain expression.
CONCLUSION: These results suggest that HF may modulate DA and 5HT transmission, 
thereby affecting neurodevelopment.
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INTRODUCTION

Dopamine (DA) and serotonin (5HT) are representative neurotransmitters associated with 
various psychiatric disorders, such as schizophrenia, addiction, anxiety, and attention-
deficit/hyperactivity disorder [1-4]. DA neurons in the ventral tegmental area and 5HT 
neurons in the raphe nucleus innervate mesocorticolimbic areas, including the prefrontal 
cortex [5]. These neurotransmitters affect the function of target brain structures via cognitive 
and affective control [6-8]; hence, novel agents that modulate DA and 5HT transmission 
can be used as potential therapeutics for psychiatric disorders. Imbalance of DA and 5HT 

Received: Sep 29, 2022
Revised: Nov 23, 2022
Accepted: Jan 5, 2023
Published online: Jan 18, 2023

§Corresponding Author:
Young-A Lee
Department of Food Science and Nutrition, 
Daegu Catholic University, 13-13 Hayang-ro, 
Hayang-eup, Gyeongsan 38430, Korea.
Tel. +82-53-850-3524
Email. youngalee@cu.ac.kr

*Jae-Won Jung and Ye-Jin Kim contributed 
equally to this study.

©2023 The Korean Nutrition Society and the 
Korean Society of Community Nutrition
This is an Open Access article distributed 
under the terms of the Creative Commons 
Attribution Non-Commercial License (https://
creativecommons.org/licenses/by-nc/4.0/) 
which permits unrestricted non-commercial 
use, distribution, and reproduction in any 
medium, provided the original work is properly 
cited.

ORCID iDs
Jae-Won Jung 
https://orcid.org/0000-0001-5042-722X
Ye-Jin Kim 
https://orcid.org/0000-0001-9228-6381
Jae Sue Choi 
https://orcid.org/0000-0001-9034-8868
Yukiori Goto 
https://orcid.org/0000-0003-0756-6392

Jae-Won Jung  1*, Ye-Jin Kim  1*, Jae Sue Choi  2, Yukiori Goto  3, and 
Young-A Lee  1§

1Department of Food Science and Nutrition, Daegu Catholic University, Gyeongsan 38430, Korea
2Department of Food and Life Sciences, Pukyoung National University, Busan 48513, Korea
3�Department of Artificial Intelligence and Technology, Graduate School of Informatics, Kyoto University, 
Kyoto 606-8501, Japan

Dopamine and serotonin alterations 
by Hizikia fusiformis extracts under 
in vitro cortical primary neuronal cell 
cultures

Original Research

https://e-nrp.org

http://crossmark.crossref.org/dialog/?doi=10.4162/nrp.2023.17.3.408&domain=pdf&date_stamp=2023-01-18
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://orcid.org/0000-0001-5042-722X
https://orcid.org/0000-0001-5042-722X
https://orcid.org/0000-0001-9228-6381
https://orcid.org/0000-0001-9228-6381
https://orcid.org/0000-0001-9034-8868
https://orcid.org/0000-0001-9034-8868
https://orcid.org/0000-0003-0756-6392
https://orcid.org/0000-0003-0756-6392
https://orcid.org/0000-0001-5042-722X
https://orcid.org/0000-0001-9228-6381
https://orcid.org/0000-0001-9034-8868
https://orcid.org/0000-0003-0756-6392
https://orcid.org/0000-0002-2963-1311


Young-A Lee 
https://orcid.org/0000-0002-2963-1311

Funding
This work was supported by research grants 
from Daegu Catholic University in 20201200.

Conflict of Interest
The authors declare no potential conflicts of 
interests.

Author Contributions
Conceptualization: Lee YA; Formal analysis: 
Lee YA, Jung JW, Kim YJ; Funding acquisition: 
Lee YA; Investigation: Lee YA, Jung JW, Kim YJ; 
Methodology: Lee YA, Jung JW, Kim YJ, Choi 
JS; Supervision: Lee YA; Writing - original draft: 
Lee YA, Jung JW, Kim YJ; Writing - review & 
editing: Goto Y.

transmission due to altered expression and reuptake mechanisms via dopamine transporter 
(DAT) and serotonin transporter (SERT) has been implicated in various psychiatric disorders, 
such as the attention-deficit/hyperactivity disorder, autism spectrum disorder (ASD), major 
depressive disorder (MDD), substance use disorder, and schizophrenia [9,10].

Several species of brown seaweed exert various biological effects, such as antioxidative, memory-
improving, and antidepressant effects, that are suggested to be useful for the treatment of 
neurological and psychiatric disorders [11-13]. Brown seaweeds induce these effects by altering 
the formation of reactive species using mitogen-activated protein kinase, nuclear factor-kappa 
B, and phosphatidylinositol 3-kinase [11]. Ishige foliacea, a brown seaweed species, improves 
scopolamine-induced memory impairment via the upregulation of phosphorylated extracellular 
signal-regulated kinase and cyclic AMP-response element-binding protein expression levels [12]. 
Brown seaweed also contains substantial amounts of bioactive compounds, such as fucosterol, 
fucoidan, fucoxanthin, phlorotannins, and alginic acids [14]. Treatment with phlorotannins 
prevents hydrogen peroxide-induced increase in intracellular reactive oxygen species (ROS) 
levels, lipid peroxidation, and calcium release, which cause cell death in murine hippocampal 
HT22 cells [15]. Moreover, treatment with 6-hydroxydopamine causes cell apoptosis with 
accumulation of intracellular ROS and decrease in mitochondrial membrane potential in PC12 
cells; fucoxanthin improves cell damage via the interaction between Kelch-like ECH-associated 
protein 1 and nuclear factor erythroid-2-related factor 2 [16].

Hizikia fusiformis (HF) is another brown seaweed species that is cultivated and used as a 
traditional cuisine and medicine, mainly in East Asian countries, such as South China and 
South Korea. HF exerts antioxidant, anticancer, and anti-inflammatory effects [17]. HF also 
induces neuroprotective effects by inhibiting inducible nitric oxide synthase expression and 
nitric oxide formation in BV2 microglial cell line derived from C57BL/6 mice [17]. Previous 
studies suggest that HF and its active compounds significantly affect the neuronal functions. 
However, it is unclear whether HF active compounds affect the DA and 5HT systems and their 
associated neural functions, which are the major targets in psychiatric disorders. Therefore, 
in this study, we investigated the effects of HF on the expression levels of molecules 
associated with DA and 5HT transmission in primary neuronal cell cultures from rodent 
cortex, including the prefrontal cortical region.

MATERIALS AND METHODS

Primary neuronal cell culture
All animal experiments were performed in accordance with the Research Ethics Policy of the 
Korean Association of Laboratory Animal Science and approved by the Institutional Animal 
Care and Use Committee of Daegu Catholic University (IACUC-2020-047). This study was 
performed using a minimal number of animals. Cerebral cortical neurons were obtained 
from CD-1 mice on embryonic day 14 (Orient-Bio, Inc., Seongnam, Korea) and cultured. After 
decapitation, the brains were removed from the skull and cortical neurons were dissected. 
Eight-well chamber slides were coated with 5.0 μg/mL poly-D-lysine (Sigma-Aldrich, St. 
Louis, MD, USA) for 24 h prior to harvesting cells. Cortical neurons (1.5 × 105 cells/well) 
were cultured on the coated slides with a neurobasal medium (Gibco, Rockville, MD, USA), 
consisting of 12% horse serum (Gibco), 0.6% glucose, and 2 mM L-glutamine in an incubator 
controlled at 37°C with 10% CO2. One day after incubation, the medium was replaced with a 
fresh neurobasal medium supplemented with 2% B-27 (Gibco).
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Extract preparation and treatment
HF extract was prepared with 70% ethanol (EtOH) and the total filtrate was concentrated to 
dryness in vacuo at 70°C to obtain the EtOH extract [18]. HF extract at various concentrations 
(0.1, 1.0, and 10.0 μg/mL) was added to the culture cells in neurobasal medium with 0.2% 
dimethyl sulfoxide (DMSO) for 24 h before fluorescence immunostaining assays. In control 
preparations, vehicle (VEH) treatment (only neurobasal medium with 0.2% DMSO) was 
administered for the same duration.

Fluorescence immunostaining
In this study, we used primary antibodies for DA transmission: mouse monoclonal anti-
tyrosine hydroxylase (TH; Abcam; catalog #ab129991), rabbit polyclonal anti-DAT (Santa 
Cruz; catalog #sc-14002), rabbit polyclonal anti-dopamine receptor D1 (DRD1; Santa Cruz; 
catalog #sc-14001), mouse monoclonal anti-DRD2 (Santa Cruz; catalog #sc-5303), mouse 
monoclonal anti-DRD3 (Santa Cruz; catalog #sc-136170), rabbit polyclonal anti-DRD4 
(Elabscience; catalog #E-AB-31153), and rabbit polyclonal anti-DRD5 (Mybiosource; catalog 
#MBS2516950) antibodies; those for 5-HT transmission: rabbit polyclonal anti-5HT1A 
(Elabscience; catalog #E-AB-32950), rabbit polyclonal anti-5HT1B (Abcam; catalog #ab13896), 
anti-tryptophan hydroxylase (TPH; catalog #E-AB-16937), and mouse monoclonal anti-
SERT (Santa Cruz; catalog #sc-33724) antibodies; and those for neuronal structures: mouse 
monoclonal anti-synaptophysin (SYP; Sigma-Aldrich; catalog #S5768), mouse monoclonal 
anti-microtubule-associated protein 2 (MAP2; Santa Cruz; catalog #sc-32791), and mouse 
monoclonal neurofilament-light chain (NF-L; Santa Cruz; catalog #sc-20012) antibodies.

The 24 h after HF extract treatment, the cells were fixed with 4% paraformaldehyde for 2 h and 
washed thrice with phosphate-buffered saline. Primary antibodies were prepared according to 
the manuals and used to treat cells for 24 h at 4°C. The 24 h after treatment, cells were incubated 
with Alexa Fluor 488 goat anti-mouse IgG (Life Technologies; catalog #A-11001) and Alexa Fluor 
594 goat anti-rabbit (Life Technologies; catalog #A-11012) secondary antibodies and 1 µg/mL of 
4′,6-diamidino-2-phenylindole (DAPI; Sigma-Aldrich; catalog #10236270001) for counterstaining 
of the nuclei for 2 h at room temperature. The cultured cells were then mounted on glass slides 
with aqua-poly mounts (Polysciences Inc., Warrington, PA, USA). Staining images were captured 
using a fluorescence microscope (Leica DM2500; Leica Microsystems, Wetzlar, Germany).

Co-expression of DAPI and neuron-specific markers, such as MAP2 (dendritic marker [19]), 
SYP (synaptic marker [20]), and NF-L (axonal marker [21]), ensured that the cells analyzed 
for immunostaining were purified neurons (Supplementary Fig. 1).

Data and statistical analyses
Nine (or 18 for TH and TPH) images of approximately 72,230 μm2 (310 × 233 μm) area per 
image were captured at random culture sites for each treatment condition. Quantification of 
fluorescent signals in the images was conducted offline using the ImageJ software (version 
1.52a; Schneider, CA, USA). Fluorescence intensity was calculated as the number of cells with 
fluorescent signals divided by the total number of cells stained with DAPI in each image.

Statistical analysis was conducted using JASP (version 0.16.3; JASP Team, The Netherlands). 
The effects of HF treatment were assessed via Bayesian analysis of variance (ANOVA) followed 
by a post-hoc pairwise Bayesian t-test. Bayes factor (BF10) between 1.0 and 3.0 indicates weak 
(anecdotal) evidence, BF10 between 3.0 and 10.0 indicates moderate evidence, and BF10 
greater than 10.0 indicates strong evidence for a group difference.
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RESULTS

Effects on the expression levels of molecules associated with DA transmission
We first examined the effects of HF extract on the expression levels of DA receptors (DRD1–5), 
DAT, and TH (Figs. 1 and 2).

HF extract affected the expression levels of DRD1 (Bayesian ANOVA, BF10 = 19.987, error% = 
0.003; Fig. 2A and B) but not those of other DA receptors (DRD2, BF10 = 0.200, error% = 5.68e-
4; DRD3, BF10 = 0.907, error% = 3.16e-5; DRD4, BF10 = 2.356, error% = 9.74e-7; DRD5, BF10 = 
2.295, error% = 1.18e-6; Fig. 2C-F). Post-hoc pair-wise Bayesian Student’s t-test revealed that the 
effects of HF extract on DRD1 expression were dose-dependent, with DRD1 expression being 
higher at 1.0 μg/mL (BF10 = 5.668, error% = 2.68e-5; Fig. 2A; Table 1), but not at 0.1 or 10.0 μg/
mL, than that with VEH treatment (BF10 = 1.024, error% = 0.003 at 0.1 μg/mL; BF10 = 0.461, 
error% = 0.001 at 10.0 μg/mL; Fig. 2A and B; Table 1). In addition, DAT expression was also 
found to be lower in cells treated with HF extract at 10.0 μg/mL, but not other doses, compared 
to those in cells treated with VEH (BF10 = 3.704, error% = 5.20e-7; pair-wise comparisons, BF10 
= 0.444, error% = 0.001 at 0.1 μg/mL; BF10 = 0.906, error% = 0.003 at 1.0 μg/mL; BF10 = 3.168, 
error% = 0.009 at 10.0 μg/mL; Fig. 2G and H; Table 1). No difference was observed in TH 
expression levels between the HF extract and VEH treatment groups (Fig. 2I).
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Fig. 1. Representative images of immunofluorescence staining. (A) Images of stained cells for DRD2 (green) and DRD1 (red). Blue color in the images represents 
fluorescence staining for cell nuclei with DAPI. (B-G) Similar images for (B) DRD3 (green) and DRD5 (red), (C) NF-L (green) and DRD4 (red), (D) SERT (green) and 
DAT (red), (E) TH (green) and TPH (red), (F) SYP (green) and 5HT1B (red), and (G) MAP2 (green) and 5HT1A (red). 
HF, Hizikia fusiformis extract treatment; VEH, vehicle treatment (control); DRD1-5, dopamine D1–5 receptors; DAT, dopamine transporter; DAPI, 4′,6-diamidino-
2-phenylindole; NF-L, neurofilament light chain; SERT, serotonin transporter; TH, tyrosine hydroxylase; TPH, tryptophan hydroxylase; SYP, synaptophysin; 5HT1A 
and 1B, serotonin 1A and 1B receptors; MAP2, microtubule-associated protein 2. (continued to the next page)



These results suggest that HF extract may selectively upregulate D1 receptor expression, 
along with the potential downregulation of DAT expression.

Effects on the expression levels of molecules associated with 5HT transmission
To determine whether the effects of the HF extract were limited to the DA system, we further 
investigated the effects of HF extract on the expression levels of molecules associated with 
5HT transmission, such as 5HT1A and 5HT1B receptors, SERT, and TPH (Figs. 1 and 3).

Interestingly, 5HT1B expression appeared to be higher in cells treated with HF at 1.0 μg/mL, but 
not other doses, compared to those in cells treated with VEH (BF10 = 6.538, error% = 0.008; pair-
wise comparisons, BF10 = 0.549, error% = 0.002 at 0.1 μg/mL; BF10 = 8.108, error% = 3.00e-5 at 
1.0 μg/mL; BF10 = 0.827, error% = 0.003 at 10.0 μg/mL; Fig. 3A and B; Table 1). Strong evidence 
of group differences was also found for SERT expression (BF10 = 15.758, error% = 0.003; Fig. 3C 
and D). However, pair-wise comparisons yielded only anecdotal evidence of differences between 
HF extract and VEH treatments at any dose (BF10 = 1.076, error% = 0.003 at 0.1 μg/mL; BF10 = 
0.498, error% = 0.001 at 1.0 μg/mL; BF10 = 1.441, error% = 0.004 at 10 μg/mL; Fig. 3C and D; 
Table 1), suggesting that the source of group difference was primarily nested between different 
doses of HF extract treatments. No differences were observed in TPH and 5HT1A receptor 
expression levels between the HF extract and VEH treatment groups (Fig. 3E and F).
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Fig. 1. (Continued) Representative images of immunofluorescence staining. (A) Images of stained cells for DRD2 (green) and DRD1 (red). Blue color in the images 
represents fluorescence staining for cell nuclei with DAPI. (B-G) Similar images for (B) DRD3 (green) and DRD5 (red), (C) NF-L (green) and DRD4 (red), (D) SERT 
(green) and DAT (red), (E) TH (green) and TPH (red), (F) SYP (green) and 5HT1B (red), and (G) MAP2 (green) and 5HT1A (red). 
HF, Hizikia fusiformis extract treatment; VEH, vehicle treatment (control); DRD1-5, dopamine D1–5 receptors; DAT, dopamine transporter; DAPI, 4′,6-diamidino-
2-phenylindole; NF-L, neurofilament light chain; SERT, serotonin transporter; TH, tyrosine hydroxylase; TPH, tryptophan hydroxylase; SYP, synaptophysin; 5HT1A 
and 1B, serotonin 1A and 1B receptors; MAP2, microtubule-associated protein 2.



These results suggest that the HF extract may selectively upregulate 5HT1B receptor 
expression, which may be associated with altered SERT expression.
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Table 1. A summary of BF10 with post-hoc pair wise comparisons
Pair of comparison BF10 (error%)

DRD1 DAT 5HT1B SERT NF-L
VEH

0.1 1.024 (0.003) 0.444 (0.001) 0.549 (0.002) 1.076 (0.003) 1.992 (0.005)
1.0 5.668 (2.68e-5) 0.906 (0.003) 8.108 (3.00e-5) 0.498 (0.001) 35.986 (2.12e-4)
10.0 0.461 (0.001) 3.168 (0.009) 0.827 (0.003) 1.441 (0.004) 3.136 (0.009)

0.1
1.0 0.906 (0.003) 1.281 (0.004) 2.060 (0.005) 0.634 (0.002) 1.643 (0.004)
10.0 2.470 (0.006) 32.467 (2.14e-4) 0.421 (0.001) 541.369 (2.87e-6) 0.595 (0.002)

1.0
10.0 15.101 (7.52e-5) 1.569 (0.004) 2.650 (0.006) 18.562 (1.67e-5) 0.483 (0.001)

BF10, Bayes factors; DRD1, dopamine receptor D1; DAT, dopamine transporter; 5HT1B, serotonin 1B receptors; SERT, serotonin transporter; NF-L, neurofilament-
light chain.

Effect size

VEH

HF 0.1 µg/mL

HF 1.0 µg/mL

HF 10.0 µg/mL

DRD1 posterior density

−0.1 0 0.1

(B)

0

20

40

60

D
en

si
ty

 
DR

D4

0.3

0.2

0.1

0

(E)

HF (µg/mL) 

0 0.1 1.0 10.0

Effect size

D
en

si
ty

 

DAT posterior density

−0.05 0 0.05
0

20

40

60

80

VEH

HF 0.1 µg/mL

HF 1.0 µg/mL

HF 10.0 µg/mL

(H)

HF (µg/mL) 

DR
D1

(A)
0.3

0.2

0.1

0
0 0.1 1.0 10.0

DR
D3

0.3

0.2

0.1

0

(D)

HF (µg/mL) 

0 0.1 1.0 10.0

DA
T 

0.3

0.2

0.1

0

(G)

HF (µg/mL) 

0 0.1 1.0 10.0

DR
D2

(C)
0.3

0.2

0.1

0

HF (µg/mL) 

0 0.1 1.0 10.0

DR
D5

0.3

0.2

0.1

0

(F)

HF (µg/mL) 

0 0.1 1.0 10.0

(I)

TH

−0.2

0.6

0.8

0.4

0.2

0

HF (µg/mL) 

0 0.1 1.0 10.0

Fig. 2. Effects of HF extract on the expression levels of molecules associated with DA transmission. (A, B) Raincloud plot illustrating DRD1 expression levels with 
different doses of HF extract (A) and a graph showing averaged posterior probability distributions (effect size) and 95% confidence intervals (bars on the tops) 
of it (B). (C-F) Raincloud plots similar to (A), but showing DRD2 (C), DRD3 (D), DRD4 (E), and DRD5 (F) receptor expression levels. (G, H) Raincloud and averaged 
posterior probability distribution graph similar to (A) and (B), but showing DAT expression. (I) Raincloud plot showing TH expression. 
DRD1–5, dopamine D1–5 receptors; HF, Hizikia fusiformis extract treatment; VEH, vehicle treatment (control); DAT, dopamine transporter; TH, tyrosine hydroxylase.



Effects on the expression levels of molecules associated with neuronal 
structures
Both DA and 5HT play important roles in neuronal growth during embryonic development 
[22]. Thus, we investigated the expression levels of molecules associated with neuronal 
structure formation, such as NF-L, SYP, and MAP2 (Figs. 1 and 4).

HF extract at 1.0 μg/mL, but not other doses, resulted in higher expression of NF-L in cells 
than VEH (BF10 = 6.053, error% = 0.009; post-hoc comparison, BF10 = 1.992, error% = 0.005 at 
0.1 μg/mL; BF10 = 35.986, error% = 2.12E-4 at 1.0 μg/mL; BF10 = 3.136, error% = 0.009 at 10 μg/
mL; Fig. 4A and B; Table 1). No differences were observed in SYP and MAP2 expression levels 
between HF extract and VEH treatment groups (Fig. 4C and D).
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These results suggest that the HF extract may affect neuronal structure formation to a 
limited extent.

DISCUSSION

In this study, we found that the HF extract could affect the expression levels of molecules 
associated with DA and 5HT transmission and neuronal structural formation in cortical 
neurons, at least in vtiro, although the effects appear to be relatively limited to specific aspects. 
In particular, DRD1 and 5HT1B expression levels were upregulated by the HF extract at a 
moderate dose (1.0 μg/mL), but not at low (0.1 μg/mL) and high (10.0 μg/mL) doses, resulting 
in inverted U-shape dose-response curves. In contrast, DAT and SERT expression levels were 
downregulated by the HF extract only at the highest dose. These results can be reconciled by 
a compensatory mechanism. Therefore, a moderate dose of the HF extract can upregulate 
D1 and 5HT1B receptor expression levels under a relatively normal range of DA and 5HT 
release. However, when the dose of HF extract is increased, DAT and SERT expression levels 
are downregulated, increasing the release of DA and 5HT that downregulate D1 and 5HT1B 
receptor expression levels, respectively. Consequently, D1 and 5HT1B receptor expression 
levels return to the normal range after treatment with a high dose of the HF extract.

HF contains various active compounds, including fucosterol, fucoidan, fucoxanthin, 
phlorotannins, and alginic acids, which exhibit considerable anti-diabetic and anti-
inflammatory effects [17,18,23]. Fucosterol [24,25], fucoidan [26], and fucoxanthin and its 
metabolites, fucoxanthinol and amarouciaxanthin [27], have been reported to permeate the 
blood–brain barrier, thereby affecting the central nervous system. These compounds can be 
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Fig. 4. Effects of HF extract on the expression levels of molecules associated with neural structure formation. (A, B) Raincloud plot showing NF-L expression 
levels with different doses of HF extract (A) and a graph showing averaged posterior probability distributions (effect size) and 95% confidence intervals (bars on 
the tops) of it (B). (C, D) Raincloud plots similar to (A), but showing SYP (C) and MAP2 (D) expression levels. 
NF-L, neurofilament light chain; HF, Hizikia fusiformis extract treatment; VEH, vehicle treatment (control); SYP, synaptophysin; MAP2, microtubule-associated protein 2.



metabolized in the body; in vivo effects of fucosterol in attenuating immobility in the forced 
swim test have been demonstrated in rodents [28], suggesting that at least in the metabolism 
of murine species, sufficient amounts of these bioactive compounds can reach the brain to 
affect its function.

Fucoidan has been shown to prevent the loss of TH-positive DA neurons [29]. Fucoxanthin 
can function as a selective DA D3/D4 receptor agonist by interacting with H-bonds at 
Ser196 and Thr115 sites of the D3 receptor as well as at Ser196 and Asp115 sites of the D4 
receptor [30]. In contrast, fucosterol increases 5-HT release and the levels of its metabolite, 
5-hydroxyindoleacetic acid, in the rat brain [28]. Fucoidan has also been demonstrated to 
yield in vivo effects similar to those of ondansetron, a serotonin 5HT3 receptor antagonist 
[31]. Moreover, phlorotannins have recently been identified as monoamine oxidase inhibitors 
and DA receptor agonists [32]. Collectively, the effects of HF extract on DA and 5HT systems 
in the current study are not surprising, as HF includes several active compounds that can 
potently modulate DA and 5HT transmission. However, our study has a major limitation. As 
the HF extract contains various active compounds, the specific compounds contributing to 
the observed effects as well as the mechanisms underlying these effects remain unknown. 
We aim to address this limitation in our future study and examine the in vivo effects of the HF 
extract on DA and 5HT systems.

Many psychiatric disorders have been reported to show DA and 5HT deficits, with alterations 
in DA and 5HT reuptake via DAT and SERT, respectively [9,10]. Positron emission 
tomography imaging studies in subjects have reported higher limbic and striatal DAT 
availability in subjects with schizophrenia [33] and cortical DAT availability in subjects with 
ASD [34], but lower striatal DAT availability in subjects with MDD [35]. Given that the HF 
extract downregulates DAT expression, it may be used as a therapeutic agent for psychiatric 
conditions, such as schizophrenia and ASD, but not MDD. Low SERT availability has been 
reported in patients with MDD [10]. Moreover, 5HT1B agonists have been suggested to have 
antidepressant effects [37]; therefore, the HF extract may exert effects antagonistic to those 
of antidepressants.

Our study has demonstrated that the HF extract upregulates the expression of NF-L, which 
contributes to the structural stability of neurons and is used as an axonal marker of neuronal 
damage [38], which suggests that the HF extract can impact neuronal growth during 
neurodevelopment. HF extract effects on molecular expression associated with neuronal 
structure formation may be achieved directly or indirectly via alterations in DA and 5HT 
transmission, as DA and 5HT are associated with neuronal development, including neurite 
outgrowth. For instance, D1 agonists promote the transition of cerebral cortical neurons 
under development from the G1 to S phase via the downregulation of cyclin D and P27 levels 
and upregulation of Raf-1 phosphorylation levels in cerebral cortical neurons [38]. Moreover, 
D1 receptor stimulation in cerebral cortical neurons induces MAP2 phosphorylation via 
protein kinase A activation [39]. Similarly, 5HT1B receptor agonist also induce the elongation 
of neurites in thalamic neurons [40].

Accumulating evidence suggests that neurofilaments interact with various receptor subunits 
to regulate the surface expression of receptors. Short hairpin RNAs targeting DRD1 induce 
axon degeneration by decreasing NF-L expression in the corpus callosum [41]. A direct 
interaction occurs between NF-L and the NMDA receptor subunit, NR1 [42], and NF-M, but 
not NF-L, appears to regulate the surface expression of DRD1 [43]. A recent study reported 
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that the cerebrospinal fluid NF-L levels were positively correlated with striatal DAT expression 
levels [44]. These findings are somewhat inconsistent with the current findings that the 
DRD1 and NF-L levels are upregulated and DAT levels are downregulated after HF extract 
treatment, suggesting that the effects of the HF extract on DA and NF-L expression levels may 
be mediated via independent molecular processes.

Our study also revealed the upregulation of 5HT1B receptor expression levels and 
downregulation of SERT expression levels. Notably, 5HT1B receptors are abundant on 
presynaptic terminals [45] and work as autoreceptors to reduce 5HT synthesis and release upon 
stimulation [46]. Given that SERT also plays a critical role in the regulation of 5HT release via 
re-uptake of 5HT molecules, there may be an inverse relationship between autoreceptor and 
reuptake mechanisms to maintain 5HT release. In contrast, one study has demonstrated that 
genetic manipulations to increase or decrease 5HT1B receptor expression levels enhance or 
attenuate SERT functions, respectively [47]. Upregulation of the 5HT1B receptor expression 
levels and downregulation of SERT expression levels with HF extract treatment in this study 
are also somewhat inconsistent with the previous report; therefore, further investigations are 
necessary to determine the specific effects of the HF extract on the 5HT system.

In conclusion, HF extract selectively upregulated DA and 5HT receptor expression levels and 
downregulated DAT and SERT expression levels in cerebral cortical neurons. HF extract also 
affected some aspects of neuronal growth, either directly or indirectly, through the modulation 
of DA and 5HT transmission. These results suggest that HF is a potential modulator of DA and 
5HT systems that can be applied for the therapeutic treatment of psychiatric disorders, such 
as drug addiction [48] and MDD [36,49], which have been suggested to be associated with the 
altered expression levels of D1 and 5HT1B receptors, DAT, and SERT.

SUPPLEMENTARY MATERIAL

Supplementary Fig. 1
Images illustrating merges of DAPI and each of MAP2, SYP, and NF-L in primary cortical 
neurons. The upper panels show immunoreactivities of MAP2 (a), SYP (b) and NF-L (c), 
respectively, and the middle panels show those of DAPI. The lower panels show merged images.

Click here to view
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