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Abstract

The human genome contains repetitive regions, such as segmental duplications, known to

be prone to copy number variation. Segmental duplications are highly identical and homolo-

gous sequences, posing a specific challenge for most mutation detection methods. The

giant nebulin gene is expressed in skeletal muscle. It harbors a large segmental duplication

region composed of eight exons repeated three times, the so-called triplicate region. Muta-

tions in nebulin are known to cause nemaline myopathy and other congenital myopathies.

Using our custom targeted Comparative Genomic Hybridization arrays, we have previously

shown that copy number variations in the nebulin triplicate region are pathogenic when the

copy number of the segmental duplication block deviates two or more copies from the nor-

mal number, which is three per allele. To complement our Comparative Genomic Hybridiza-

tion arrays, we have established a custom Droplet Digital PCR method for the detection of

copy number variations within the nebulin triplicate region. The custom Droplet Digital PCR

assays allow sensitive, rapid, high-throughput, and cost-effective detection of copy number

variations within this region and is ready for implementation a screening method for dis-

ease-causing copy number variations of the nebulin triplicate region. We suggest that Drop-

let Digital PCR may also be used in the study and diagnostics of other segmental duplication

regions of the genome.

1. Introduction

Approximately 5% of the human genome is composed of segmental duplications (SD)—

sequences of 10–300kb in size, repeated at least two times in the genome. Repetitive regions of

the genome are particularly prone to copy number variations (CNVs) [1–4].

The giant sarcomeric gene nebulin (NEB, MIM ID �161650) is located in the chromosomal

region 2q23.3. It spans over 249 kb of genomic region and has 183 exons. Mutations in NEB
are known to cause nemaline myopathy (NM; MIM IDs: NEM2 #256030) and other congenital
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myopathies. NEB-caused NM is inherited mainly in an autosomal recessive fashion, but lately,

rare dominant mutations in the form of large deletions have also been described [5, 6]

In its mid-region, NEB harbors a 30 kb SD where eight exons are repeated three times

(exons 82–89, 90–97, 98–105). Each 8-exon-block spans 10 kb of genomic region, and the

repeats are highly similar between themselves [7]. The ratio of the 8-exon-block compared

with the diploid genome is thus 3:1, and the block has been named the NEB TRI region. This

region has been shown to harbor normal as well as pathogenic copy number variation. It has

been shown that a single allele tolerates the gain or loss of one but not several repeated blocks

[8].

Array Comparative Genomic Hybridization (aCGH) still constitutes the gold standard

method for CNV analysis, although massively parallel sequencing-based methods are continu-

ously being developed and are rapidly improving in both accuracy and reliability [9]. In CNV

detection, SD regions remain a challenge for both aCGH and sequencing-based methods

because of their repetitive nature. When composing arrays, it is usually impossible to design

unique probes to target these regions, which are often left without probes. Furthermore, their

repetitive nature tests both amplification steps and alignment in sequencing-based methods.

In an attempt to investigate both the NEB TRI region and a similar, yet shorter, repetitive

region in another sarcomeric giant, titin (TTN, MIM ID �188840), we have previously

designed and published validated custom tiling array designs for the detection of CNVs in

nemaline myopathy and other neuromuscular disorders. These include the SD regions also

(the NM- and NMD-CGH-arrays) [10, 11]. To date, running more than 300 DNA samples

from families with persons affected by neuromuscular disorders on the NM- and NMD-arrays,

we have identified CNVs in the NEB TRI region in altogether 13%. In a third of these, the

CNVs have been interpreted as being pathogenic.

Although the custom arrays yield a high sensitivity in SD CNV detection, very high copy

numbers (CN) of the NEB TRI region are difficult to determine precisely due to the log2-based

mathematical model commonly used in aCGH data analysis [12]. This situation may be com-

pared with attempting to estimate the grade of mosaicism of a CNV in a sample. The aCGH

method has indeed been used in such studies, even though this is not its original intended use

[6, 13, 14].

Furthermore, the custom arrays come at a relatively high cost per sample and a turn-around

time of roughly three days. The optimal DNA requirements are high: 1,000 ng of good-quality

genomic DNA at a concentration of more than 55 ng/μl is needed per sample per run. Espe-

cially in cases where one myopathy-causing mutation in NEB has been identified, and a CNV

in the NEB TRI region is suspected to be the other causative mutation, running a custom

CGH-array is excessively expensive and time-consuming. Most importantly, setting up a cus-

tom ddPCR assay is reasonably straightforward, especially if the required apparatus is already

available—which is more likely, as ddPCR is more versatile a method than array-CGH.

Droplet Digital PCR (ddPCR) allows for the precise quantification of specific amplified

nucleic acid molecules. Each reaction is partitioned into a theoretical optimum of 20,000 drop-

lets, allowing for independent amplification of target molecules. When combined with target-

specific fluorochrome-labeled probes, the fluorescence of each droplet can be read and quanti-

fied, and rare DNA target copies can be detected with high sensitivity. Using Poisson statistics

and a reference gene of known ploidy, the ratio between target molecules and reference mole-

cules allows for the determination of the CN of the target nucleic acid molecule.

The ddPCR method is helpful for a multitude of purposes, e.g., gene expression studies,

mutation and gene edit detection, residual DNA detection, and CNV detection. Digital PCR

systems are available from several manufacturers, but the principle of the method remains the

same. Designing custom ddPCR assays or acquiring validated assays is easier and more cost-
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effective than designing or gaining access to custom CGH-arrays. Furthermore, both the run-

ning cost and the DNA mass requirement of one sample is roughly 1/100 of a sample run on a

custom CGH-array, and the turn-around-time is cut to one-third.

Within the context of neuromuscular disorders, ddPCR has been used in only a few studies.

In spinal muscular atrophy patients, the method has been used to determine SMN1 and SMN2
exon 7 copies [15]. In addition, while it appears not to have been used for CN determination

of dystrophin in Duchenne muscular dystrophy patients, it has been used in the quantification

of exon skipping in the development of antisense oligonucleotide therapy [16]. Furthermore, it

has been used in CNV analysis of the BRCA1 gene in high-grade serous ovarian cancer tissue

samples and presented as a promising method for diagnostics [17]. To our knowledge, no

papers have been published reporting CNV analysis of intragenic segmental duplication

regions using ddPCR.

Here, we present our NEB TRI targeted ddPCR-based screening method as a precise, sensi-

tive, high-throughput, and cost-effective method for the CNV analysis of the NEB TRI region

and as an example of how ddPCR can be used as an analysis tool for the CN determination of

SD regions.

2. Materials and methods

2.1. Samples

Altogether 130 DNA samples were acquired for this study. Of these, 26 were healthy controls

from the Fondation Jean Dausset-CEPH, and 20 were healthy controls from the Finnish Red

Cross Blood Service. In addition, we used 84 DNA samples from our sample collection of con-

genital myopathy patients and their family members. The NEB TRI CN of all samples had pre-

viously been determined using the NM- or NMD-arrays [10, 11].

The study was approved (approval number 6/E7/05) by the Ethics Committee of the Chil-

dren’s Hospital, University of Helsinki, Finland. The approval was renewed by the Ethics

Review Board of Helsinki University Hospital in 2021. Samples were obtained according to the

Declaration of Helsinki of 1975, and written consent was obtained from subjects, or data were

analyzed anonymously where appropriate.

The patient samples used were heterogeneous in terms of clinical diagnosis, ethnic back-

ground, and age. Furthermore, some DNA samples had been received extracted while some

were extracted in our laboratory. The DNA stocks were extracted from leukocytes or saliva,

eluted into EDTA, TE-buffer, or water, and stored at -20˚C or -80˚C. The DNA concentration

and quality were measured with DeNovix DS-11 FX+ Spectrophotometer/Fluorometer

(DeNovix Inc., Wilmington, DE, USA). Subsequent dilutions for the ddPCR reactions were

done in sterile water in appropriate series.

2.2. Microarray design, protocol, and data analysis

All samples had previously been run on the NM-CGH-array or the NMD-CGH-array as previ-

ously described [10, 11].

To avoid any subtle differences caused by the genome-wide normalization of the analysis

software (CytoSure Interpret Software v.4.11.30, Oxford Gene Technology Ltd), the previously

acquired aCGH data for NEB was further manually aligned to gain a baseline of zero. The log2

value for the NEB TRI region and large portions of the NEB gene on either side of the NEB
TRI were extracted from the aCGH data. The breakpoints used for normalization were Chr2:

(152340824_152341131)_(152432955_152433349) and Chr2:(152465657_152465735)_

(152592449_152583346). The NEB TRI region used to calculate the normalized CN was Chr2:

(152433598_152434494)_(152465223_152465448). The genomic locations are given in the
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reference genome Hg19/GRCh37. The normalized log2 value of the NEB TRI region was

acquired by subtracting the averaged background log2 value from the NEB TRI region. This

value was then used to calculate the estimated CN by assuming a normal CN of 6 and com-

pared with the previously published log2 values for different NEB TRI CNs (Table 1 in [8]).

2.3. Digital droplet PCR

The ddPCR assays were designed, performed, and analyzed according to the updated dMIQE

guidelines [18, 19]. The dMIQE checklist is available in S1 Table.

2.3.1. Primer and probe design. Two custom assays to target two different exons of the

eight-exon-block of the NEB TRI were designed. The first assay targets the fourth exon of the

NEB TRI region, corresponding to NEB exons 85/93/101, referred to from now on as exon IV.

The second assay targets the last exon of the NEB TRI region, corresponding to NEB exons 89/

97/105, referred to from now on as exon VIII (Fig 1). The target selection was limited by

unique sequences, sequence GC% and BsuRI restriction site locations.

Primers and probes for the assays were designed using Primer3Plus (https://www.

bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi/) as per the manufacturer’s sugges-

tions. The primers designed had a melting temperature (Tm) of 55.8–57.5˚C (calculated by the

nearest-neighbor method), a primer concentration of 300 nM, and a salt concentration of 50

nM), a GC content of 50%, and a length of 20 bp. The amplicons were not allowed to contain

the BsuRI cut site sequence GGCC. Amplicon lengths were 104 and 169 bp for exons IV and

VIII, respectively.

Hydrolysis probes were designed to have a Tm of approximately 65˚C and a GC content of

55–57%. Custom probes were labeled with fluorescein amitide (FAM).

The specificity of primers and probes were verified by the Standard Nucleotide BLAST

blastn suite (https://blast.ncbi.nlm.nih.gov/Blast.cgi), allowing three hits for both assays. A

commercial PrimePCR ddPCR Copy Number Assay for human EIF2C1 labeled with hexa-

chloro-fluorescein (HEX) (Cat. No. 10031243, Bio-Rad Laboratories Inc., Hercules, CA, USA)

was used as a reference. EIF2C1 is a diploid gene located on 1p34.3, and also known as Argo-

naute 1 (AGO1).

The probes were manufactured by Bio-Rad Laboratories Inc. All primer and probe

sequences along with amplicon lengths are presented in S2 Table. The custom assays were

ordered at a primer-probe ratio of 3.6:1 per assay.

2.3.2. Assay optimization. The optimal melting temperature for the assays was deter-

mined by replacing the annealing step in the ddPCR cycling program with a thermal gradient

(temperatures 55.2˚C, 58.0˚C, 60.0˚C, 60.5˚C and 62.3˚C) for 1 minute. A melting tempera-

ture of 60.0˚C was chosen, as it allowed equally good separation between droplet clusters in

both assays.

The quantity of DNA was scaled down to 10 ng/reaction as per the manufacturer’s

suggestion.

Fig 1. A schematic of the exons in the NEB TRI region. The exons targeted by the ddPCR assays are marked with an

asterisk (�).

https://doi.org/10.1371/journal.pone.0267793.g001
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2.3.3. No-template controls. In all runs, individual no-template controls (NTCs) with

water were included for both assays in each run. The NTCs were placed in the last wells of

each run plate.

2.3.4. Assay protocol. For each well, a 20 μl reaction was prepared, containing 10 μl 2x

Bio-Rad ddPCR Supermix for Probes (No dUTP), 1 μl 20x custom assay, 1 μl PrimePCR

ddPCR Copy Number Assay for EIF2C1, 1 μl BsuRI (Thermo Scientific, Waltham, MA, USA)

diluted 1:1 in Fast Digest buffer (Thermo Scientific), and 10 ng of DNA template diluted in 7

μl of sterile water. The final concentration of primers and probes was 900 nM and 450 nM,

respectively.

For droplet generation, 20 μl of reaction mixture and 70 μl of Bio-Rad Droplet Generation

Oil for Probes were pipetted onto a DG8 cartridge and covered by a DG8 gasket in a DG8 Car-

tridge Holder. Droplets were generated using the Droplet Generator QX200 (Bio-Rad Labora-

tories Inc). The droplets were then transferred to ddPCR 96-well plates (Bio-Rad Laboratories

Inc.) and sealed with the PX1 PCR Plate Sealer (Bio-Rad Laboratories Inc.). The PCR reaction

was performed using the DNA Engine Tetrad 2 Thermal Cycler (Bio-Rad Laboratories Inc)

with the ramp rate set to 2˚C/sec. The samples were cycled as follows: 95˚C 10 minutes; 40

cycles of 94˚C 30 seconds, 60˚C 1 minute; 98˚C 10 minutes; 4˚C hold. On each plate, a no-

template control for each assay was included. Droplet fluorescence was measured using the

QX200 Droplet Reader (Bio-Rad Laboratories Inc) and the QuantaSoft Analysis v.1.7.4.0917

software.

All reagent and consumable manufacturer information and catalog numbers are presented

in S3 Table.

2.4. Data analysis

2.4.1. Analysis of raw data. The samples were primarily analyzed on the QuantaSoft

Analysis v. 1.7.4.0917 and QuantaSoft Analysis Pro v. 1.0.596 (Bio-Rad Laboratories Inc.)

softwares.

Intensity thresholds for droplets were set manually per plate, assay, and channel. Each drop-

let was assigned to a group based on their intensities of the two detection channels: FAM posi-

tive-HEX positive, FAM positive-HEX negative, FAM negative-HEX positive, and FAM

negative-HEX negative. Assuming Poisson distribution, a ratio between the target and refer-

ence channel was automatically calculated by the software. The NEB TRI CN was estimated by

doubling the thus estimated ratio of assay target to diploid reference.

2.4.2. Filtering of raw data. Droplet data were extracted from the QuantaSoft Analysis

software and imported into Microsoft Excel.

The data were filtered by removing runs in which any single droplet cluster had 100 or

fewer accepted droplets and runs in which the total accepted droplet count was 10,000 or less.

Runs on whole-genome amplified DNA (n = 4), samples from patients with known mosaicism

in NEB (n = 1), samples with other CNVs in NEB (n = 9), samples run successfully in only one

of the assays (n = 15), and samples with no successful runs in either assay were excluded. After

the filtering steps, results from 98 independent samples remained, with 176 and 162 data rows

for NEB IV and NEB VIII, respectively. Of these 98 samples, 39 were controls and 59 were

from neuromuscular disorder patients and healthy family members thereof. The filtered data

were extracted as comma-separated value (CSV) files. Subsequent statistical analyses were per-

formed in RStudio v.1.3.959.

2.4.3. Assessment of intra-assay and inter-assay variability. Intra-assay analyses were

conducted to assess reproducibility within experiments. The analyses were performed
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separately for the two custom ddPCR assays (NEB IV n = 8, NEB VIII n = 9) using duplicates

run within the same experiment.

Inter-assay analyses were conducted to assess repeatability between experiments. The analy-

ses were performed separately for the two custom ddPCR assays (NEB IV n = 60, NEB VIII

n = 42). In cases where a sample had been run more than twice in separate experiments or had

an intra-assay duplicate, we used the two runs with the highest accepted droplet counts from

two separate experiments.

2.4.4. Statistical analysis. To determine the concordance between the ddPCR and aCGH

results, we used linear regression analysis, the Pearson correlation coefficient, and a weighted

κ-analysis [20]. Unweighted κ-analysis was used to estimate the level at which the ddPCR

assays were able to distinguish between pathogenic and benign CNVs. Linear regression analy-

sis and the Pearson correlation coefficient were also used to evaluate the concordance between

the two ddPCR assays.

For the κ-analysis, we classified the degree of agreement as 0.81–1.0, almost perfect agree-

ment; 0.61–0.80, substantial agreement; 0.41–0.60, moderate agreement; 0.21–0.40, fair agree-

ment; and<0.20, slight agreement.

The weighted κ-analysis was performed for both assays for the concordance between the

aCGH and ddPCR results using the assigned aCGH CN and the ddPCR CN estimate rounded

up or down to the nearest integer. The range, mean, standard deviation (σ), and coefficient of

variation in percent (%CV) were extracted and calculated for each CN group for aCGH and

the two ddPCR assays separately.

Statistical analysis was executed in RStudio v.1.3.959 using R v.4.0.4 and Microsoft Excel.

3. Results

3.1. Data overview

Custom ddPCR assays were run on n = 130 samples. After filtering, 98 samples remained for

analysis. In these samples, the NEB TRI CN ranged from 5 to 14, lacking samples representing

CNs of 12 and 13 due to unavailability. The sample numbers per NEB TRI CN are presented in

Table 1.

Example 2D droplet plots from successful samples and NTCs are provided in S1 Fig.

The mean accepted droplet count was 12,974 (σ 1,701.2, %CV 13.1) for the NEB TRI exon

IV assay and 13,285 (σ 1,434.9, %CV 10.8) for the NEB TRI exon VIII assay, indicating a rea-

sonably consistent quality in the reaction set up. The droplet counts for both clusters and all

Table 1. Number and percentage of samples representing different NEB TRI CNs. The NEB TRI CN of 6 is consid-

ered the normal CN, with 5 and 7 being benign CNVs. A deviation of two or more NEB TRI blocks is considered a

pathogenic CNV.

Copy number Number of samples % of samples

Benign (n = 83) 5 22 22.4

6 44 44.9

7 12 12.2

Pathogenic (n = 20) 8 3 3.1

9 5 5.1

10 7 7.1

11 2 2.0

14 3 3.1

Total 98 100

https://doi.org/10.1371/journal.pone.0267793.t001
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accepted droplets are presented in S4 Table. The mean, σ, and %CV values for copies per parti-

tion are presented in S5 Table.

The estimated ddPCR CNs are shown plotted against the aCGH-determined NEB TRI CN

in Fig 2.

The minimum, maximum, and mean values for the NEB TRI CN given by the aCGH results

and the two ddPCR assays are presented in S6 Table. The average %CV for the NM- and

NMD-CGH-arrays was 2.86. For the ddPCR assays, the %CV was 12.14 and 9.22 for the NEB
TRI exon IV and NEB TRI exon VIII assays, respectively.

3.2. Intra-assay analysis

The intra-assay duplicate means, standard deviations, and %CV were calculated, along with an

average %CV for the complete assay to assess reproducibility. The intra-assay %CV mean for

NEB TRI exon IV (n = 8) was 3.8, and the intra-assay %CV mean for NEB TRI exon VIII

(n = 9) was 4.1. The intra-assay analysis is presented in S7 Table.

3.3. Inter-assay analysis

The inter-assay duplicate means, standard deviations, and %CV was calculated, along with an

average %CV for the complete assay to assess repeatability. The inter-assay %CV mean for

NEB TRI exon IV (n = 60) was 19.3, and the inter-assay %CV mean for NEB TRI exon VIII

(n = 42) was 5.1. The inter-assay analysis is presented in S8 Table.

3.4. Pearson correlation coefficient

The Pearson coefficient for the NEB TRI exon IV assay against the aCGH-determined CN was

0.898. The corresponding Pearson coefficient for the NEB TRI exon VIII assay was 0.957.

Additionally, we calculated a Pearson coefficient to compare the two ddPCR assays with each

other, yielding a value of 0.910.

3.5. Linear regression

The linear regression model for the NEB TRI exon IV assay yielded an estimate of 1.004, a mul-

tiple R2 value of 0.807, and an adjusted R2 value of 0.805 (p< 0.0001). The linear regression

model for NEB TRI exon VIII yielded an estimate of 1.115, a multiple R2 value of 0.917, and an

adjusted R2 value of 0.916 (p< 0.0001). The complete linear regression analysis results are pre-

sented in S9 Table.

Fig 2. Boxplots visualizing the CN of the NEB TRI exon IV and VIII assays in relation to the CN assigned by

aCGH with linear regression trend line. The NEB TRI exon IV assay gives a relationship with a lower linear slope

than the NEB TRI exon VIII assay, which seems to follow a 1:1 linear relationship adequately. The dashed lines

represent the linear regression trend lines.

https://doi.org/10.1371/journal.pone.0267793.g002

PLOS ONE A ddPCR method for the detection of CNVs in the NEB triplicate region

PLOS ONE | https://doi.org/10.1371/journal.pone.0267793 May 16, 2022 7 / 12

https://doi.org/10.1371/journal.pone.0267793.g002
https://doi.org/10.1371/journal.pone.0267793


3.6. Kappa analysis for copy number variation detection comparison

The κ-value for the NEB TRI exon IV assay in detection of CN was 0.558, indicating moderate

agreement (p< 0.00001) between aCGH and the NEB TRI exon IV assay. The κ-value for the

NEB exon VIII assay in detection of CN was 0.778, indicating substantial agreement

(p< 0.00001) between aCGH and the NEB TRI exon VIII assay. The Kappa tables are available

in S10 Table.

3.7. Kappa analysis for detection of pathogenicity comparison

The κ-value for the NEB TRI exon IV assay in detection of pathogenicity was 0.388, indicating

a fair agreement (p< 0.0005) between aCGH and the NEB TRI exon IV assay. The κ-value for

the NEB TRI exon VIII assay in detection of pathogenicity was 0.774, indicating a substantial

agreement (p< 0.00001). The Kappa tables are available in Table 2, with additional statistics

in S11 Table.

4. Discussion

Our results show that the ddPCR method is a viable option for the detection of CNVs of the

NEB TRI region. To date, only the NMD-CGH-array and other custom CGH-arrays covering

the regions have been reliable methods in CNV analysis of the region. Methods based on algo-

rithms applied to massively parallel sequencing data may detect these variations, but exact CN

determination cannot be done reliably. The aim of the study was to develop a method comple-

mentary to aCGH to be used for NEB TRI CNV screening because, in comparison, the run-

ning of a custom-aCGH is both rather costly and time-consuming. As ddPCR is more

approachable than aCGH, our custom method allows for anyone with the necessary equip-

ment to adopt the method for NEB TRI CNV screening.

Critical evaluation of the data showed that extreme outliers passing the droplet number cut-

offs in the analysis pipeline all had reasonable explanations. Among these were factors such as

known mosaicism for a nebulin deletion, the sample having been whole-genome amplified, or

the DNA otherwise being of low quality, all reflected in the corresponding aCGH data also.

Our data demonstrate the importance of verification in the development of new ddPCR

assays. Although our two assays were designed to function in the same PCR conditions, there

was a substantial difference between them in terms of accuracy. The NEB TRI exon IV assay

Table 2. The Kappa tables for detection of pathogenicity of assays NEB TRI exon IV and exon VIII.

NEB TRI exon IV

aCGH

Benign Pathogenic

ddPCR Benign 58 6

Pathogenic 20 14

Total 78 20 98

NEB TRI exon VIII

aCGH

Benign Pathogenic

ddPCR Benign 71 1

Pathogenic 7 19

Total 78 20 98

https://doi.org/10.1371/journal.pone.0267793.t002
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consistently gave lower CN estimates than expected, while the NEB TRI exon VIII assay gave

good estimates and showed substantial agreement with aCGH results, both in terms of CN

determination and identification of pathogenic CNs. Hence, we believe our assay for NEB TRI

exon VIII is representative. We appreciate the fact that the designed assays only cover repre-

sentative portions of the NEB SD region and that multiple assays throughout the region would

increase their accuracy. However, the design of suitable assays is limited by amplicon size and

the repetitive nature of the region.

Based on our experience, different DNA extraction methods, the quality of the DNA, and

possible inhibitors of the amplification reaction likely affect ddPCR assays. Access lacking to

extensive sample collections of DNA extracted locally and stored identically, it is difficult to

draw any conclusions as to which factors may affect the results marginally and which may

affect it significantly. This further emphasizes the importance of correct assay optimization

and adherence to the dMIQE guidelines [18, 19] to the highest possible degree of reproducibil-

ity and repeatability.

Furthermore, manual handling such as pipetting differences between performers may also

affect the result. Full automation of the ddPCR assay procedure would be necessary to imple-

ment the SD-specific method in a diagnostic setting and would most likely improve both

repeatability and reproducibility. The ddPCR method is already being implemented in a diag-

nostic setting, and these automated ddPCR systems are finding their way into service laborato-

ries. We believe that the usage of ddPCR in various types of diagnostics will eventually replace

some of the methods currently in use; one such example is ddPCR replacing MLPA in the

detection of single-exon deletions of BRCA1 [17].

One of the benefits of ddPCR compared with aCGH is the usage of an internal reference

gene instead of a complete reference genome. Selecting a reference genome for aCGH to suit

the needs for the CNV analysis of regions in which benign CNVs are common, such as the

NEB TRI region, warrants carefulness. Since aCGH is a genome-wide comparative method, a

reference with a known CN of any region of interest is always needed for drawing conclusions,

and the task becomes even more challenging if one is interested in more than one such region.

For this specific problem, ddPCR offers a more clear-cut solution: the CN is determined by

comparing the repetitive region with an intragenomic diploid region.

To our knowledge, and based on our aCGH data, no cases in which the NEB SD harbors a

CNV of partial repetitive blocks have been recorded. We have, however, identified CNVs span-

ning one NEB TRI block and adjacent regions of the SD [5, 21]. In addition, we have identified

one case of a large mosaic CNV spanning the entire SD region in addition to both upstream

and downstream flanking regions, resulting in a short transcript [6]. The ddPCR method pre-

sented here is thus intended as a first-tier screening method—any findings should be investi-

gated by another validated method, such as the NM- or NMD-CGH arrays (or equivalent), to

exclude the possibility of a larger CNV extending beyond the NEB TRI region. The last introns

of each of the NEB TRI region blocks contain Alu and LINE repeats, known to contribute to

non-allelic homologous recombination. The hypothesis is that these repeats initially contrib-

uted to the emergence of the NEB TRI region in humans [22] and that they, at the same time,

contribute to the susceptibility of the region for CNVs. The relatively high proportion of

CNVs observed in the NEB TRI region would implicate that these repetitive elements and

their intricate replication contribute to the high prevalence of aberrations in NEB. The knowl-

edge of CNVs being prevalent in the NEB TRI region warrants a search for their presence in

other intragenic SDs.

The size of nebulin has been shown to correlate with thin filament and sarcomere lengths,

and there seem to be limits for optimal nebulin size within any given species [23]. According

to the Ruler Hypothesis [24, 25], large enough gains in CN in the NEB TRI region may be
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pathogenic. We have shown that gains of two or more blocks of NEB TRI in one allele segre-

gate with disease and are absent in control samples; therefore, such gains are considered patho-

genic [8]. A gain or loss of two or more blocks would significantly lengthen or shorten the

nebulin polypeptide, which would impair optimal and energy-efficient force production [23].

While our custom CGH-arrays effectively determine the CN in the NEB TRI region, they are

comparatively expensive and laborious compared with the now established ddPCR assay.

CNV detection algorithms applied to massively parallel sequencing data can sensitively detect

variation in SD regions. However, they may not precisely and effectively determine the exact

CN of the repeated blocks. In the case of the NEB TRI, exact CN determination is crucial, as a

one copy gain is considered benign, but a two-copy gain pathogenic.

Our custom ddPCR assays can be used to screen large sample numbers for NEB TRI CNVs,

especially in samples with one identified mutation in NEB and samples from families in which

a NEB TRI CNV has been found. We also suggest that the method may be applicable to other

segmental duplications and similar intragenic SDs regions of the genome and approach the

subject in our ongoing research.
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