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Abstract

Temperature sensation guides animals to avoid temperature extremes and to seek their

optimal temperatures. The larval stage of Drosophila development has a dramatic effect on

temperature preference. While early-stage Drosophila larvae pursue a warm temperature,

late-stage larvae seek a significantly lower temperature. Previous studies suggest that this

transition depends on multiple rhodopsins at the late larval stage. Here, we show that early-

stage larvae, in which dorsal organ cool cells (DOCCs) are functionally blocked, exhibit simi-

lar cool preference to that of wild type late-stage larvae. The molecular thermoreceptors in

DOCCs are formed by three members of the Ionotropic Receptor (IR) family, IR21a, IR93a,

and IR25a. Early-stage larvae of each Ir mutant pursue a cool temperature, similar to that of

wild type late-stage larvae. At the late larval stage, DOCCs express decreased IR proteins

and exhibit reduced cool responses. Importantly, late-stage larvae that overexpress IR21a,

IR93a, and IR25a in DOCCs exhibit similar warm preference to that of wild type early-stage

larvae. These data suggest that IR21a, IR93a, and IR25a in DOCCs navigate early-stage

larvae to avoid cool temperatures and the reduction of these IR proteins in DOCCs results in

animals remaining in cool regions during the late larval stage. Together with previous stud-

ies, we conclude that multiple temperature-sensing systems are regulated for the transition

of temperature preference in fruit fly larvae.

Author summary

Animals depend on their temperature-sensing systems to avoid noxious temperature

extremes and to seek optimal temperatures to survive, mate, and reproduce. Some animals

pursue different optimal temperatures during development. We use fruit flies as a model

to investigate how temperature-sensing systems are modulated to guide animals to dis-

tinct optimal temperatures during development. While early-stage fruit fly larvae pursue a

warm temperature, late-stage larvae seek a lower temperature. Previous studies find that

this transition depends on multiple rhodopsin molecules. In this study, we find an addi-

tional mechanism that also contributes to this transition. At the early larval stage, a set of

cool-sensing cells express a high level of cool responsive molecules, respond strongly to
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low temperatures, and drive animals to avoid cool regions. At the late larval stage, these

cool-sensing cells become less sensitive to low temperatures due to the decreased expres-

sion of cool responsive molecules and, thus, animals remain in cool regions. Together

with previous studies, we conclude that multiple temperature-sensing systems are regu-

lated for the transition of temperature preference in fruit fly larvae.

Introduction

Temperature sensation is vital for animals to avoid extreme temperatures and to seek optimal

temperatures to survive, mate, and reproduce. Temperature sensation is particularly essential

for small animals, such as fruit flies, whose body temperatures vary with ambient temperatures

[1]. Many disease vectors, including mosquitoes, respond to the temperature of their warm-

blooded hosts and use it to guide their blood-feeding, through which they can transmit human

diseases [2–7]. Therefore, it is crucial to understand the molecular and cellular mechanisms of

temperature sensation, which may provide molecular targets to prevent host-seeking behaviors

in disease vectors.

Temperature sensation is distinctively regulated through developmental stages, at least in

Drosophila larvae. While early-stage larvae pursue a warm temperature of 24˚C, the preferred

temperature drops significantly in the late third instar when they stop foraging and prepare for

metamorphosis [8,9]. Drosophila possesses multiple temperature sensing pathways and their

combined effects determine the thermal preference [10,11]. Previous studies show that this

transition depends on multiple rhodopsins (including Rh5 and Rh6), the phospholipase C

(PLC) signaling pathway (including Gq and PLC), and the transient receptor potential channel

TRPA1 [9]. These genes are expressed at the late third instar and are required to select low

temperatures. Mutants of these genes pursue a similar temperature of 24˚C at both early and

late third instar and do not exhibit the transition of temperature preference observed in wild
type [9]. Here, we focus on low-temperature sensing systems and investigate whether and how

low-temperature sensing pathways contribute to the transition of temperature preference in

Drosophila larvae.

Several low-temperature sensing pathways have been identified in Drosophila larvae. Cal-

cium responsiveness indicates that neurons in terminal organ ganglions (TOGs) respond to

10˚C at the third instar [12], although their functional importance in cool avoidance is contro-

versial [8,12,13]. Class III multidendritic (MD III) neurons in the body wall respond to 6˚C

and mediate the cold-evoked full-body contraction at the mid-third instar [14]. The TRP chan-

nels, PDK2, NOMPC, and TRPM, are required in MD III neurons for cold nociception [14].

Another class of body wall neurons, chordotonal neurons, function in temperature discrimina-

tion in the cool range (14–17.5˚C) [15]. A TRPV channel, IAV, is expressed in chordotonal

neurons and contributes to thermal avoidance at cool temperatures during the third instar

[15]. TRPL, a TRPC channel, is also involved in avoidance to cool temperatures at the first

(15–21˚C) and third (14–17.5˚C) instars [15,16]. Dorsal organ cool cells (DOCCs) are three

cool-responsive neurons in each dorsal organ ganglion (DOG) [13]. They possess large mem-

brane-rich “dendrite bulbs” and are required to avoid cool temperatures during the first and

early second instar [13]. Three members of the Ionotropic Receptor (IR) family, IR21a, IR93a,

and IR25a, form cool receptors that control the cool responsiveness of DOCCs and drive ther-

motactic behavior [17–19]. Ectopic expression of IR21a in adult heating cells (HCs) confers

cool sensitivity upon HCs [17,19,20]. This cool sensitivity depends on the endogenous IR93a

and IR25a [17]. Thus, IR21a, IR93a, and IR25a are three subunits of the cool receptors in
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DOCCs. These IRs also specify the morphogenesis of the “dendrite bulbs” in adult cooling

cells [19]. However, no study has determined the function of low-temperature sensing path-

ways in the transition of temperature preference between early and late third-instar larvae.

In this study, we investigate the role of cool-sensory pathways in the transition of tempera-

ture preference in Drosophila larvae. Drosophila larvae pursue a warm temperature (24˚C) at

early larval stages, including the second, early, and mid-third instar, but a cooler temperature

(18–20˚C) at the late third instar. DOCCs and their cool molecular receptors, formed by

IR21a, IR93a, and IR25a, are indispensable for cool avoidance at early larval stages. Early-stage

larvae, in which DOCCs are functionally blocked, or Ir21a, Ir93a or Ir25a is mutated, exhibit a

preference for 18–20˚C. Late third-instar larvae express decreased IR proteins and their

DOCCs are less sensitive to cool temperatures. Importantly, overexpression of IR21a, IR93a,

and IR25a in DOCCs directs animals to 24˚C at the late third instar. Therefore, IR21a, IR93a,

and IR25a in DOCCs navigate early-stage larvae to avoid 18–20˚C and pursue 24˚C, while

reduction of these IR proteins in DOCCs causes animals to remain at 18–20˚C during the late

larval stage. Taken together, our findings identify a cool sensing pathway that is critical for the

transition of temperature preference in Drosophila larvae.

Results

Drosophila larvae seek a lower temperature during the late third instar

To understand Drosophila larval thermotactic behaviors, we set up a temperature gradient

from 13–31˚C (S1 Fig). Drosophila larvae pursued 24˚C during the early stages, including the

second instar (48 hr After Egg Laying (AEL)), early third instar (72 hr AEL), and mid-third

instar (96 hr AEL) (Fig 1A and 1C). First-instar larvae (24 hr AEL) had limited mobility and

were not examined. However, Drosophila larvae preferred a lower temperature of 18–20˚C

during the late third instar (120 hr AEL) (Fig 1A and 1C). To quantify the thermal preference,

we calculated the fraction of larvae within the 13–21˚C region (21˚C is halfway between 18˚C

and 24˚C) and found that a significantly higher fraction of late third-instar larvae chose the

13–21˚C region than early-stage larvae (Fig 1B). This observation is consistent with a previous

report that the late third-instar larvae pursued a lower temperature [9]. In the following study,

we used early (72 hr AEL) and late third-instar (120 hr AEL) larvae to understand the mecha-

nism for the transition of thermal preference in Drosophila larvae.

At 120 hr AEL, Drosophila larvae started to cessate foraging and transited to the wandering

stage. To examine whether larvae exhibited a distinct temperature preference in the foraging

and wandering stages, we analyzed their thermotactic behavior and did not detect a difference

in thermal preference during both stages (Fig 1D and 1E).

The role of DOCCs in cool avoidance

At the first instar, DOCCs control cool avoidance and are specifically labeled by Ir21a-Gal4
[17]. At 72 hr AEL and 120 hr AEL, Ir21a-Gal4 was expressed in three neurons in each DOG

(Fig 2A and 2B). Within these neurons, robust GFP signals were observed in the cell bodies

(yellow arrows) and “dendrite bulbs” (white arrowheads), indicating that they are DOCCs.

DOCC cell bodies and their “dendrite bulbs” are intact at the late third instar and morphologi-

cal defects are not observed.

To address the function of DOCCs in cool avoidance at the early and late third instar, we

blocked the function of DOCCs by expressing the synaptic neurotransmitter blocker, tetanus

toxin light chain (TNT) [21] using Ir21a-Gal4. At 72 hr AEL, these larvae concentrated in the

18–20˚C region (Fig 2C and 2E), suggesting that DOCCs are required to avoid 18–20˚C dur-

ing the early third instar. In contrast, blockage of DOCCs did not affect the temperature
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Fig 1. The switch of temperature preference in Drosophila larvae. Fig 1A. Distribution of 48 hr, 72 hr, 96 hr, and 120 hr AEL wild type larvae along a thermal gradient.

Data represent mean ± s.e.m; n = 9. Fig 1B. Fraction of larvae of indicated ages in the 13–21˚C region. Scatterplots are superimposed with bars that represent mean ± s.e.

m. Ordinary one-way ANOVA, F = 9.31; � p< 0.01, Tukey HSD. Fig 1C. Mean percentages of 48 hr, 72 hr, 96 hr, and 120 hr AEL wild type larvae in each temperature

zone from 13˚C to 31˚C. Fig 1D. Distribution of foraging- and wandering-stage larvae along a thermal gradient. Combined: larvae at 120 hr AEL, including both

wandering- and foraging-stage larvae. Data represent mean ± s.e.m; n = 9. Fig 1E. Fraction of larvae of indicated ages in the 13–21˚C region. Boxes are defined by 25th to

75th percentiles; internal lines show median; whiskers extend 1.5 times interquartile range; black dots denote outliers. Kruskal-Wallis test, p = 0.5206.

https://doi.org/10.1371/journal.pgen.1009499.g001
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Fig 2. The role of DOCCs in the transition of temperature preference. Fig 2A. Third-instar larval anterior. Each dorsal organ ganglion (DOG) contains three DOCCs

(blue ovals). Each DOCC possesses a “dendrite bulb” (blue circles). The double-headed arrow denotes the anterior-posterior axis. Fig 2B. Ir21a-GAL4;UAS-GFP
(Ir21a>GFP) labels DOCCs at 72 hr (top) and 120 hr (bottom) AEL. Yellow arrows denote cell bodies and white arrowheads denote “dendrite bulbs.” Scale bars, 10 μm.

Fig 2C and 2D. Larvae distribution along a thermal gradient of indicated genotypes and ages. Data represent mean ± s.e.m; n = 9, except n = 8 for Ir21a>TNT (Ir21a-
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preference at 120 hr AEL (Fig 2D and 2F), indicating that DOCCs are dispensable for the tem-

perature preference at the late third instar.

At 72 hr AEL, functional blockage of DOCCs shifted the temperature preference to 18–

20˚C, similar to the temperature preference of wild type larvae at 120 hr AEL (S2 Fig). These

data suggest that the preference of late third-instar larvae to 18–20˚C may be due to the down-

regulation of the activity of DOCCs or the DOCC-dependent neural pathway at 120 hr AEL.

To investigate whether the neural circuit downstream of DOCCs is inactivated at the late

third instar, optogenetics was applied. DOCCs drive cool avoidance behavior [13]. We used

the red light-shifted channelrhodopsin CsChrimson to activate DOCCs [22]. At 72 hr AEL,

red light-mediated DOCC activation drove aversive behaviors, including the pause of run,

which in turn led to the decrease of the run speed–a parameter that negatively correlates with

aversive behaviors (Figs 2G and S3 and S1 Movie) [23,24]. These aversive behaviors reflect the

cool avoidance driven by DOCCs on a thermal gradient. At 120 hr AEL, DOCC activation

drove similar behaviors (Figs 2G and S3 and S1 Movie). Not only DOCCs but also the neural

circuit downstream of DOCCs is necessary for the avoidance behavior. Since CsChrimson is

expressed in DOCCs, red light activates DOCCs, which in turn activates the downstream neu-

ral circuit. If the downstream neural circuit is inactivatable, activation of DOCCs by red light

would not cause the aversive behaviors. Therefore, the optogenetic data suggest that, at the late

third instar, the DOCC-dependent neural pathway is activatable and can drive the avoidance

behavior. Thus, we propose that the thermal responses of DOCCs, not their downstream neu-

ral circuit, are downregulated at the late third instar.

DOCCs exhibit reduced cool responses at the late third instar

To assess the physiological responses of DOCCs to cool, we expressed a genetically encoded

calcium indicator GCaMP6m [25] with Ir21a-Gal4. At 72 hr AEL, when exposed to a sinusoi-

dal temperature stimulus between ~26˚C and ~14˚C, GCaMP6m fluorescence in DOCCs

increased upon cooling and decreased upon warming (Fig 3 and S2 Movie). The fluorescence

in DOCCs only subtly declined when samples were held at constant cool temperatures for 60

seconds, but rapidly dropped to the pre-stimulus level upon warming (S4 Fig). At 120 hr AEL,

DOCCs exhibited significantly reduced responses to cooling when exposed to similar tempera-

ture stimuli (Fig 3 and S2 Movie). These data suggest that the cool responses of DOCCs are

significantly reduced during the late third instar. Since DOCCs drive an avoidance behavior,

the strong responses of DOCCs to cool temperatures navigate early third-instar larvae to avoid

cool regions. When the cool responses reduce, this avoidance decreases.

DOCCs express fewer cool receptors during the late third instar

We then asked whether reduced cool responses in DOCCs were due to a lower expression of

IR21a, IR93a, and IR25a, which form the cool receptors in DOCCs in first-instar larvae

[17,18]. We examined the expression of each IR in DOCCs at 72 hr AEL and 120 hr AEL by

staining larvae with antisera for IR21a, IR93a, and IR25a [18,19,26] (Fig 4). At 72 hr AEL,

robust IR21a protein (magenta) was specifically detected in three Ir21a-Gal4-expressing

DOCCs (green) (Fig 4A). IR93a protein (magenta) was expressed in five neurons, including

Gal4/UAS-TNT) at 72 hr AEL. Fig 2E and 2F. Fraction of 72 hr (Fig 2E) and 120 hr (Fig 2F) AEL larvae of indicated genotypes in the 13–21˚C region. Ordinary one-way

ANOVA; (Fig 2E) F = 17.56; � p< 0.0001, Tukey HSD; (Fig 2F) F = 2.165, p = 0.1115. Fig 2G. Relative speed of 72 hr and 120 hr AEL larvae when DOCCs express

CsChrimson with or without dietary retinal (ATR). Relative speed is defined as the moving speed during red light on divided by the moving speed during light off. The

genotype of Ir21a>CsChrimson is Ir21a-Gal4;UAS-CsChrimson. n = 9. Ordinary one-way ANOVA, F = 18.42; letters denote statistically distinct groups, p< 0.001, Tukey

HSD.

https://doi.org/10.1371/journal.pgen.1009499.g002

PLOS GENETICS Drosophila larval cool cells and the transition of thermopreference

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009499 April 7, 2021 6 / 21

https://doi.org/10.1371/journal.pgen.1009499.g002
https://doi.org/10.1371/journal.pgen.1009499


PLOS GENETICS Drosophila larval cool cells and the transition of thermopreference

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009499 April 7, 2021 7 / 21

https://doi.org/10.1371/journal.pgen.1009499


Fig 3. DOCCs exhibit lower cool responses at the late third instar. Fig 3A and 3B. Temperature responses of Ir21a-Gal4;UAS-GCaMP6m-labeled DOCCs

at 72 hr (left) and 120 hr (right) AEL. (Fig 3A) raw images; (Fig 3B) colors reflect fluorescence intensity. Yellow arrows denote cell bodies. Scale bars, 10 μm.

Fig 3C. Fluorescence is quantified as the percent change in fluorescence intensity compared to initial intensity. 72 hr AEL, n = 33 cells from 10 animals; 120

hr AEL, n = 30 cells from 11 animals. Traces, mean ± s.e.m. Fig 3D. Ratio of maximum fluorescence versus initial fluorescence during the first and second

cooling phase at 72 hr and 120 hr AEL. Mann-Whitney test, � p< 0.001.

https://doi.org/10.1371/journal.pgen.1009499.g003

Fig 4. Expression of IR21a, IR93a, and IR25a proteins decreases in DOCCs at the late third instar. Fig 4A, 4C, and 4E. IR21a (Fig 4A), IR93a (Fig 4C), and IR25a (Fig

4E) immunostaining. Left: Ir21a>GFP-labeled DOCCs. Middle: Expression of IR21a (Fig 4A), IR93a (Fig 4C), and IR25a (Fig 4E) proteins in the dorsal organ. Right:

Ir21a>GFP-labeled DOCCs express IR21a (Fig 4A), IR93a (Fig 4C) and IR25a (Fig 4E) proteins at 72 hr AEL (top), which are significantly decreased at 120 hr AEL

(bottom). Yellow arrows denote cell bodies and white arrowheads denote “dendrite bulbs.” The genotype of Ir21a>GFP is Ir21a-Gal4;UAS-GFP. Scale bars, 10 μm. Fig 4B,

4D, and 4F. Normalized somal fluorescent intensity of IR21a (Fig 4B), IR93a (Fig 4D) and IR25a (Fig 4F) at 72 hr AEL and 120 hr AEL. Mann-Whitney test, � p< 0.001.

IR21a: n = 84 cells from 14 animals at 72 hr AEL and n = 109 cells from 21 animals at 120 hr AEL. IR93a: n = 69 cells from 12 animals at 72 hr AEL and n = 90 cells from

16 animals at 120 hr AEL. IR25a: n = 76 cells from 13 animals at 72 hr AEL and n = 56 cells from 12 animals at 120 hr AEL.

https://doi.org/10.1371/journal.pgen.1009499.g004
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three Ir21a-Gal4-expressing DOCCs (green) (Fig 4C). IR25a protein (magenta) was detected

in multiple cells, as well as three Ir21a-Gal4-expressing DOCCs (green) (Fig 4E). Robust IR

proteins were detected in “dendrite bulbs,” which is consistent with a role of these IRs in

thermosensing (Fig 4A, 4C and 4E; white arrowheads). At 120 hr AEL, expression of each

IR protein in DOCCs was significantly decreased (Fig 4). In adults, lack of IR21a, IR93a, or

IR25a results in degeneration of the “dendrite bulbs” in cooling cells, which can be observed

by optical imaging techniques [19]. Although expression of IR21a, IR93a, and IR25a was sig-

nificantly decreased at the late third instar, no change in morphology of “dendrite bulbs” was

observed (Fig 4A, 4C and 4E). These data suggest that DOCCs express a lower level of IR21a,

IR93a, and IR25a in the late third instar, which results in a decrease of cool responses in

DOCCs.

The role of IR21a, IR93a, and IR25a in cool avoidance

To understand the role of IR21a, IR93a, and IR25a in cool avoidance, we analyzed the thermo-

tactic behavior in Ir21aΔ1, Ir93aMI, and Ir25a2 mutants [17,18,26]. At 72 hr AEL, Ir21aΔ1 larvae

pursued a lower temperature and concentrated at 18–20˚C (Fig 5A and 5B). An Ir21a geno-

mic minigene reversed the phenotype (Fig 5A and 5B) [17]. These data suggest that IR21a is

important in determining thermal preference, and specifically contributes to aversion of cool

regions during the early third instar. By contrast, Ir21aΔ1 larvae exhibited a similar tempera-

ture preference to wild type larvae at 120 hr AEL, suggesting that IR21a is dispensable for tem-

perature preference at the late third instar (Fig 5C and 5D). Similar phenotypes were observed

in Ir93aMI and Ir25a2 mutants at 72 hr AEL, which were reversed by Ir93a and Ir25a-specific

rescue, respectively [18,26] (Fig 5E, 5F, 5I, and 5J). Neither the Ir93aMI nor the Ir25a2 mutant

had defects in cool avoidance at 120 hr AEL (Fig 5G, 5H, 5K, and 5L). Therefore, IR21a,

IR93a, and IR25a are required to avoid cool temperatures at the early but not the late third

instar. The phenomena observed in Ir21aΔ1, Ir93aMI, and Ir25a2 mutants were not due to

developmental defects, because the time to pupation was indistinguishable between the

mutants and controls (S5 Fig). Moreover, the Ir21aΔ1, Ir93aMI, and Ir25a2 mutant phenotypes

were not due to the general impairment in temperature discrimination or locomotion activity,

because these mutants had no defects in the aversion of 30–32˚C in the two-choice thermotac-

tic behavioral assay (S6 Fig).

In addition, Ir21aΔ1, Ir93aMI, and Ir25a2 mutants at 72 hr AEL exhibited similar tempera-

ture preferences to wild type larvae at 120 hr AEL (S7 Fig). Since the expression of IR21a,

IR93a, and IR25a in DOCCs is decreased during the late third instar (Fig 4), we hypothesize

that the low-temperature preference is, at least partially, due to a decreased expression of IR-

formed cool receptors in DOCCs.

To test this hypothesis, we expressed IR21a, IR93a, and IR25a proteins in DOCCs using

Ir21a-Gal4 (Ir21a>IR21a/93a/25a) and analyzed the thermotactic behavior at 120 hr AEL

[17,18,27]. While controls pursued cooler temperatures at 120 hr AEL (Fig 6), expression of

IR21a, IR93a, and IR25a proteins in DOCCs directed animals to 24˚C, similar to the preferred

temperature of wild type larvae at 72 hr AEL (Fig 6A and 6B). Correspondingly, expression of

IR21a, IR93a, and IR25a was significantly increased at 120 hr AEL in Ir21a>IR21a/93a/25a
compared to wild type (S8 Fig). Of note, at 72 hr AEL, other IR25 and IR93a positive cells were

detected beyond three DOCCs (Figs 4C and 4E and S8A and S8D). In contrast, in

Ir21a>IR21a/93a/25a animals at 120 hr AEL, these other positively staining cells were barely

observed compared to three DOCCs (S8C and S8F Fig). These data support the hypothesis

that the reduction of IRs in DOCCs causes late third-instar larvae to remain at a lower

temperature.
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Discussion

In this study, we identified a mechanism underlying the transition of temperature preference

in Drosophila larvae. Drosophila larvae pursue a warm temperature (24˚C) during early larval

stages, but a cooler temperature (18–20˚C) during the late third instar. Our findings indicate

that the transition of thermal preference is, at least partially, due to reduced expression of cool

thermoreceptors, formed by IR21a, IR93a, and IR25a, in DOCCs at the late third instar.

Reduced expression of cool receptors leads to decreased cool responses of DOCCs, which, in

turn, limits the ability of late third-instar larvae to avoid cool temperatures.

Drosophila possesses multiple temperature sensing pathways [10,11] and thermal prefer-

ence results from the combined effects of these pathways. At different developmental stages,

Drosophila exhibits distinct thermal preference [9]. On a shallow temperature gradient, early

third-instar larvae pursue 24˚C and late third-instar larvae seek 18–20˚C. Previous studies

identified that mutants in the rhodopsin signaling pathway, including Rh5/6, Gq, PLC

(encoded by norpA), and TRPA1, pursue 24˚C at the late third instar [9], suggesting that these

genes function at the late third instar in driving animals to low temperatures. Driver lines

Fig 5. The role of IR21a, IR93a, and IR25a in the transition of temperature preference. Fig 5A, 5C, 5E, 5G, 5I, and 5K. Larvae distribution along a thermal gradient

of indicated genotypes and ages. Data represent mean ± s.e.m; n = 9, except n = 14 for Ir25a2 at 72 hr AEL. Fig 5B, 5D, 5F, 5H, 5J, and 5L. Fraction of larvae of

indicated genotypes and ages in the 13–21˚C region. (Fig 5B) Mann-Whitney test. � p< 0.0001, comparing to wild type. # p< 0.0001, comparing to Ir21aΔ1;{Ir21a+}.
(Fig 5D) Welch’s test, F = 1.075, p = 0.1813. (Fig 5F) Mann-Whitney test. � p< 0.01, comparing to wild type. # p< 0.001, comparing to Ir93aMI,Ir93a>Ir93a (Ir93aMI,
Ir93a-Gal4/UAS-mCherry:Ir93a). (Fig 5H) Welch’s test, F = 1.065, p = 0.0918. (Fig 5J) Welch’s test, wild type vs Ir25a2: F = 2.878, wild type vs Ir25a2;{Ir25a+}:
F = 1.103, Ir25a2 vs Ir25a2;{Ir25a+}: F = 2.608. � p< 0.05, comparing to wild type. # p< 0.05, comparing to Ir25a2;{Ir25a+}. (Fig 5L) Welch’s test, F = 1.172, p = 0.0536.

https://doi.org/10.1371/journal.pgen.1009499.g005
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showed that Rh5 and Rh6 are coexpressed with TRPA1 in the body wall. A recent study identi-

fied that Rh6 and a different PLC, PLC21C, are necessary for the cool activation of adult bitter

neurons [28]. If the function of Rh6 in cool sensing is conserved throughout the development,

then the rhodopsin pathway, at the late third instar, drives an attractive behavior. Alternatively,

the rhodopsin pathway, including Rh5/6, Gq, PLC, and TRPA1, may be required for sensing

24˚C and drives an avoidance behavior.

Fig 6. Expression of IR21a, IR93a, and IR25a in DOCCs navigates late third-instar larvae to 24˚C. Fig 6A and 6C. Larvae distribution along a thermal gradient of

indicated genotypes and ages. The genotype of Ir21a>IR21a/93a/25a is Ir21a-Gal4/UAS-IR25a;UAS-IR21a/UAS-IR93a. The genotype of UAS-IR21a/25a is UAS-IR25a;
UAS-IR21a. Data represent mean ± s.e.m; n = 9, except n = 11 for Ir21a-Gal4. The same data of Ir21a>IR21a/93a/25a were used in Fig 6A and 6C. Fig 6B and 6D.

Fraction of larvae of indicated genotypes and ages in the 13–21˚C region. Ordinary one-way ANOVA, F = 30.18 (Fig 6B) and F = 15.25 (Fig 6D); � p< 0.01, Tukey HSD.

https://doi.org/10.1371/journal.pgen.1009499.g006
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In contrast, we focused on another thermosensing system that functions in a different

developmental stage and is also critical for the transition of temperature preference in Dro-
sophila larvae. DOCCs drive an avoidance behavior. Cool receptor IR proteins are expressed

in DOCCs in early-stage larvae. Lack of these IRs limits the ability of early-stage larvae to

avoid 18–20˚C, suggesting that these proteins navigate early-stage larvae to avoid low tempera-

tures and move towards higher temperatures. Expression of these proteins decreases at the late

third instar, which renders late third-instar larvae to possess weaker low-temperature sensing

systems. Hence, late third-instar larvae do not avoid low temperatures and remain at 18–20˚C.

Both systems are required for the transition of thermal preference in Drosophila larvae: the

rhodopsin pathway guides late third-instar larvae to move towards 18˚C, while the IR pathway

navigates early-stage larvae to avoid 18˚C and move towards 24˚C (S9 Fig). Taken together,

multiple temperature sensing systems are regulated through developmental stages to navigate

animals to distinct optimal temperatures. Regulatory mechanisms will be explored in the

future. Other low-temperature sensing systems, including the cold-responsive neurons in

TOGs [8,12,13], MD III and chordotonal neurons in the body wall [14,15], and TRPL-express-

ing neurons [15,16] may function in driving larvae to avoid noxious temperatures below 18˚C.

To investigate the optimal temperatures through Drosophila larval stages, we set up a tem-

perature gradient from 13–31˚C. Using this apparatus, we demonstrated thatDrosophila larvae

pursue 24˚C during early larval stages and 18–20˚C during the late third instar. Previous stud-

ies used a temperature gradient from 18–28˚C [9,29]. In the previous study, animals accumu-

lated in the area of lowest temperature (18˚C), which does not exclude the possibility that

larvae prefer a temperature that is lower than 18˚C. Thus, they were unable to determine the

optimal temperature during the late third instar. In contrast, our apparatus clearly shows that

late third-instar larvae prefer 18–20˚C.

The following two observations support the conclusion that the neural pathway down-

stream of DOCCs does not contribute to the transition of thermal preference. First, red light-

activated DOCCs drive similar avoidance to light during the early and late third instar. Second,

overexpression of IR21a, IR93a, and IR25a in DOCCs navigates animals to 24˚C in the late

third instar. Further identification of this neural circuit could help to clarify the function of

neurons downstream of DOCCs in the transition of temperature preference.

Although IRs specify the morphogenesis of the “dendrite bulbs” in adult cooling cells [19],

morphological change of DOCCs’ dendrite endings was not observed at the late third instar

(Figs 2B, 4A, 4C, and 4E), suggesting that reduction of IRs at the late third instar has no, or

mild, effects on the morphogenesis of the “dendrite bulbs” in DOCCs. The residual expression

of IRs might be able to maintain the intact structure of “dendrite bulbs.” It is also possible that

IR reduction occurs within a short time window (from 72 hr AEL, if not later, to 120 hr AEL)

and thus the morphological change could be mild and not be detected by optical imaging tech-

niques. Alternately, IRs might not function in the morphogenesis of the “dendrite bulbs” in

DOCCs. Further studies will test these possibilities.

IRs are thought to form heterotetrameric complexes [27,30,31] and IR21a, IR93a, and

IR25a are subunits of the cool receptors. However, it has not been identified whether these

three IRs are sufficient to form a functional ion channel in response to cool temperatures or

whether a fourth IR is necessary. Overexpression of IR21a, IR93a, and IR25a directs animals to

24˚C during the late third instar, suggesting that these three IRs might be sufficient to sense

cool temperatures. However, we cannot exclude the possibility that a fourth IR is necessary

and its expression is not, or less, reduced during the late third instar.

Moreover, IR21a, IR93a, and IR25a form a phasic sensor in adult cooling cells [19]. Our cal-

cium imaging showed that the DOCCs’ responses to cool temperatures barely declined when

samples were held at constant cool temperatures for a minute (S4 Fig). This inconsistency may
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be due to the different temperatures that were used between these two studies or different fac-

tors in DOCCs and adult cooling cells that regulate the properties of the cool sensor formed by

IR21a, IR93a, and IR25a.

In summary, our findings identify a mechanism underlying the transition of temperature

preference in Drosophila larvae. Since adult flies also pursue 24˚C, it will be interesting to

understand the physiological needs of temporally pursuing 18–20˚C during the late third

instar. Another key question is to understand, at the late third instar, the regulatory mecha-

nisms for the expression of IRs and other thermosensory molecules. Transcriptional and trans-

lational mechanisms of regulation will be explored.

Materials and methods

Fly strains

CS was used as the wild type control. The following flies were previously described: UAS-TNT
(UAS-TeTxLC) [21], Ir21a-Gal4 [17], UAS-GFP (p{10XUAS-IVS-Syn21-GFP-p10}attp2) [32],

UAS-CsChrimson [22], UAS-GCaMP6m (P{20XUAS-IVS-GCaMP6m}attp2) [25], Ir21aΔ1 [17],

Ir25a2 [26], Ir93aMI [18], {Ir25a+} (BAC{Ir25a+}) [33], {Ir21a+} [17], UAS-mCherry:Ir93a [18],

UAS-Ir93a [18], Ir93a-Gal4 [34], UAS-Ir21a [17], UAS-Ir25a [27].

Larvae preparation and aging

To prepare synchronized larvae for assays, flies were maintained at 25˚C under 12-hour light/

12-hour dark cycles. They were given at least 24 to 48 hours to recover from CO2 before being

used to prepare larvae. Each vial contained 20 to 45 male and 20 to 45 female flies. To prepare

the larvae, the flies were tapped over to new vials containing yeast granules and were allowed 2

to 8 hours to lay eggs. The beginning of this egg-laying period initiated larvae aging (early,

mid, and late third-instar). Typically, 72 hr AEL coincided with the initiation of third instar,

while 120 hr AEL was a mix of wandering-stage and foraging-stage larvae. During the aging

period, larvae vials were given diH2O to moisten the environment and food as needed.

Larvae were collected at respective ages (72 hr, 96 hr, and 120 hr AEL) using 10 mL of 20%

w/v sucrose solution. After 20 minutes, the larvae were collected and thoroughly cleaned three

times with diH2O. The larvae were then plated on a 60 mm tissue culture dish (Corning) with

13 mL of 3%, room temperature (about 20˚C) agar gel and given 5 to 10 minutes to recover

from the washing process. To ensure that larvae were third instar and not second instar, they

were examined under a dissecting microscope to confirm that the anterior spiracles were

branched and posterior spiracles had an orange ring at their tip. Furthermore, immobile larvae

were discarded at this stage due to initiating the prepupal stage.

To separate wandering-stage and foraging-stage larvae at 120 hr AEL (Fig 1D and 1E),

wandering-stage larvae were first collected from the side of the vial. Then the sucrose solution

was added to collect foraging-stage larvae.

Larvae aging experiment

To prepare synchronized larvae for the aging experiment, larvae were prepared as described

above. Flies were given 4–7 days to recover from CO2 before being used to prepare larvae. The

number of pupae in each vial was counted at each of the following time intervals: 24 hr, 48 hr,

72 hr, 96 hr, 120 hr, 144 hr, 168 hr, 192 hr, 216 hr, and 240 hr AEL. Vials with less than 30

pupae were discounted due to the inaccurate analysis of a small sample size. Vials with more

than 130 pupae were also discounted because crowded environments elongated the time to

pupation. Since Ir21aΔ1 is balanced with CyoαGFP, only non-fluorescent animals were
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counted. The distribution of pupated larvae was calculated as follows: (number of pupated lar-

vae)/(total number of pupated larvae at 240 hr AEL) x 100%.

Larvae temperature gradient assay

The apparatus for the temperature gradient assays was an aluminum plate (61 x 30.5 x 0.6 cm)

on top of an ice bath (39 x 26 x 6 cm Pyrex tray) on the right side and a hot plate (SP88850200,

Thermo Scientific) on the left side set to approximately 70˚C. The aluminum plate was 13.5

cm on the hot plate and 19.5 cm on the ice bath. On top of the aluminum plate was 800 mL of

3% agar gel (36 x 24 x 0.9 cm) situated in the middle of the plate. This setup generated a steady

temperature gradient from 13 to 31˚C. The temperature on the surface of the gel was moni-

tored using a surface temperature probe (80PK-3A, Fluke) and thermometer (Fisherbrand

Traceable Big-Digit Type K Thermometer). From 13 to 31˚C, every 1˚C was located on the

temperature gradient and demarcation was made at that location, resulting in 18 demarca-

tions. A 1 cm perimeter demarcation was also made on the edge of the gel. The gel was lightly

sprayed with diH2O and covered with plastic wrap while forming the temperature gradient to

prevent the gel from drying out. The temperature gradient was formed within approximately

10 minutes.

Larvae were collected and prepared for the assay as detailed above. To initiate the tempera-

ture gradient assays, between 20 to 35 larvae were placed in the middle of the gel at approxi-

mately 22˚C and were given between 10 to 15 minutes to make temperature selections

depending on larvae age and movement speed. All of the assays were conducted in dim light

condition (<10 lux) and between 7:00 a.m. and 7:00 p.m. Larvae that moved out of the gel,

were within 1 cm of the edge of the gel, or were immobile were discounted from the analysis.

The 1 cm demarcation on the edge of the gel was created to exclude larvae that were not mak-

ing temperature selections but were seeking to move out of the gel or seeking a place to pupate.

Assays with fewer than 14 larvae after these exclusion criteria were discarded. The number of

larvae in each temperature zone was counted and the distribution was calculated as follows:

(number of larvae in temperature zone)/(total number of larvae) x 100%.

Larvae two-choice thermotactic behavioral assay

The two-choice assay was performed as described with some modifications [35]. A 3% agar gel

(10 x 9.5 in) was evenly placed on two aluminum plates separated by 1/16 inches (the release

zone). The plates were individually temperature controlled. The surface temperature was 30–

32˚C on one side of the gel and 24–26˚C on the other. The temperature was monitored before

each trial using a surface temperature probe (80PK-3A, Fluke) and thermometer (Fisherbrand

Traceable Big-Digit Type K Thermometer). A wild type control was run at the beginning of

daily experiments. Water was gently sprayed between trials to moisten the agar surface. 15 to

30 early third-instar larvae were placed at the release zone. The experiment was conducted at

dim ambient light (<10 lux). The larvae on each side were counted after 2 minutes and the

preference index (PI) was calculated as follows: ((number of larvae on the 24–26˚C side)–

(number of larvae on the 30–32˚C side))/total number of larvae. Larvae that crawled off the gel

or stayed at the release zone were not counted.

Larvae optogenetic assay

The light source for the optogenetic assays consisted of a triple red (627 nm) LED starboard

(07007-PD000-F, LEDSupply) mounted on a star-shaped heat sink (882-100AB, Wakefield-

Vette) with thermal adhesive tape (LXT-T-12, Luxeon Star). A triple secondary optic (10507,

LEDSupply) was mounted on the LED starboard with liquid adhesive (46040, Loctite). Power
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was supplied with a 1000 mA LED driver (3021-D-E-1000, Luxeon Star). Assays were recorded

on a Sony HDR-CX405 camcorder (the internal infrared filter was removed and an 830 nm

long-pass filter (FSQ-RG830, Newport) was installed) and saved as MTS files. The light source

was placed under an inverted 1L beaker. A 100 mm petri dish (351029, Corning) with 20 mL

of 3% agar was placed on top of the beaker and an infrared light (4331910725, Amazon) illumi-

nated the setup to visualize the larvae.

Larvae were collected and prepared for the assay as detailed above except that they were

kept in food with 40 μM all trans-retinal (all trans-retinal (ATR, Sigma-Aldrich) was dissolved

in EtOH as a 40 mM stock solution) in dark for two days. Individual larvae were placed on the

agar gel and given 30 seconds to acclimate. The lid was placed on the Petri dish during assays.

Optogenetic stimulation was administered in 10 cycles of 5 seconds on and 15 seconds off. In

S3 Fig, larvae avoidance behavior was manually evaluated as follows: (number of avoidant

response/10 cycles) x 100%. The avoidant response was scored if the larva stopped, reversed in

direction, or turned its head.

To evaluate the avoidance behavior by an automated method (Fig 2G), the MTS files were

converted to uncompressed AVI files using the ffmpeg command line tool. The resulting files

were reduced in size to 720 X 576 resolution using Any Video Converter 9 (Anvsoft). The

videos were then processed using ImageJ as described with modifications [36]. The area of

interest was selected using the rectangular selection tool (Image > Crop). Then, the subtract

background function was used to remove continuous backgrounds from all frames (Process >

Subtract background; rolling ball radius of 1; box corresponding to “light background” was

selected). Next, the stack was converted to 8-bit grayscale (Image > Type > 8-bit) and the

brightness and contrast were adjusted to enhance the difference between larvae and back-

ground (Image > Adjust > Brightness/Contrast). Lastly, the threshold was edited to remove

the excess background so that the larvae appeared dark on a light background (Image > Adjust

> Threshold. The method was set to default, the background was set to dark, and the threshold

for each image was calculated).

The ImageJ plugin TrackMate was used to calculate the speed of the larvae from the larval

trajectory. To locate and track the larvae, the LoG detector was used with a threshold set to

9–12 pixels and an estimated blob diameter of 9–11 pixels for 72 hr AEL larvae and 11–15 pix-

els for 120 hr AEL larvae. The variations were due to the difference in the distance of the cam-

era from the Petri dish, size of larvae, and quality of the video. The HyperStack Displayer was

used to visualize the regions of interest and filter out the background by setting the quality,

contrast, x, and y locations for the spots tracked. The simple LAP tracker with a linking max

distance of 15–25 pixels, gap-closing max distance of 15–25 pixels, and a gap-closing max

frame gap between 500–1000 frames were used to generate the trajectory. The x and y position

for each frame was then exported by selecting the correct tracks that represented the larvae.

The movement from one frame to another was calculated through the following formula

where n is the value for the next available timepoint:

DDistance ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxnþ1 � xnÞ
2
þ ðynþ1 � ynÞ

2

q

TrackMate could not detect the larva when it moved into an area with the light source, the

reflection of the light, or along the edge of the Petri dish. Thus, not all frames had values and

the distance was calculated from the next available frame that had a tracking value. A threshold

value of 2 pixels per 0.04s (one frame apart) for distance was set, and larger values were

removed since these were due to artifacts such as shaking of the video or movement of the

tracker position along the larval body. Trials with missing data for more than 4 flash periods

were discarded. The larval speed was computed by adding the change in distance for each
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period (30 seconds for the control period before light stimulation and 5 seconds for the light-

on period) and dividing by the time of the period. The relative speed was defined as the speed

during the light-on period divided by the speed during the control period.

Calcium imaging

Larvae were immobilized between a glass slide and a glass coverslip (22 x 40 mm) with 1x PBS.

A type-N thermocouple microprobe (IT-24P, Physitemp) was also mounted between the slide

and coverslip near the larvae. Imaging was performed on a Zeiss LSM 880 with Airyscan Fast

mode and Definite Focus.2 to correct for focus drift due to thermal expansion and contraction.

Z-stacks were acquired at 11 fps, 760x760 resolution, and 1.5 zoom using a 25x water objective.

To increase the speed of z-stack acquisition, a z-axis piezo stage (432339-9000-000, Wienecke

& Sinske) with stage insert (432339-9030-000, Wienecke & Sinske) was utilized.

A custom-built thermoelectric cooler was made to decrease the temperature by attaching a

thermoelectric module (30 x 30 mm, TE-127-1.0–0.8, TE Technology) to a heat sink (12.9 x

5.5 cm, modified from ATS2193-ND, Digi-Key). The thermoelectric cooler was placed on the

slide covering the larvae, and a 2A current was applied with a power supply (CSI1802X, Circuit

Specialists). The temperature range of the thermoelectric cooler was typically 26 to 14˚C. The

temperature was monitored using a data acquisition device (USB-TEMP, Measurement Com-

puting) and DAQami software (Measurement Computing). The temperature was maintained

at 26˚C for 30 seconds. Then, the temperature was decreased to 14˚C for 30 seconds and then

increased back to 26˚C for 30 seconds for 3 cycles. Images were analyzed using Zeiss ZEN soft-

ware. Ellipse ROIs were drawn around each neuron of interest to determine average pixel

intensity. Background levels were determined by using an ellipse ROI nearby the neurons of

interest. ΔF/F was calculated as follows: (Fn−F0)/F0 x 100%.

Immunostaining

Immunostaining was performed as described [37]. The following antibodies were used: guinea

pig anti-IR21a [19] (1:100), rabbit anti-IR93a [18] (1:100), guinea pig anti-IR25a [26] (1:100),

chicken anti-GFP (1:500; Abcam), goat anti-guinea pig Cy3 (1:100; Jackson ImmunoRe-

search), goat anti-rabbit Cy3 (1:100; Jackson ImmunoResearch), goat anti-rabbit FITC (1:100;

Jackson ImmunoResearch), goat anti-chicken FITC (1:500; Invitrogene).

To quantify immunostaining, the center of each soma was determined by NIS Elements

Viewer and outlined based on GFP signals (Fig 4) or IR21a signals (S8 Fig). The mean inten-

sity was quantified using ImageJ (Analyze>Measure) and subtracted by the background inten-

sity. The normalized fluorescence was quantified as the fluorescent intensity was divided by

the average intensity of the corresponding fluorescent intensity in wild type animals at 72 hr

AEL.

Statistical analysis

Statistical details of experiments are mentioned in the figure legends. The normality of distri-

butions was assessed by the Shapiro-Wilk W test (p� 0.05 rejected normal distribution). Sta-

tistical comparisons of normally distributed data were performed by the two-tailed unpaired t-
test or, for multiple comparisons, the Tukey test. For data that did not conform to a normal

distribution, statistical comparisons were performed by the Mann-Whitney test or, for multi-

ple comparisons, the Dunn’s test. Data analysis was performed using GraphPad Prism 8. Nor-

mally distributed data were plotted by scatterplots superimposed with bars that represent

mean ± s.e.m. For data that did not conform to a normal distribution, box plots were used. In
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box plots, boxes are defined by 25th to 75th percentiles; internal lines show median; whiskers

extend 1.5 times interquartile range; black dots denote outliers.

Supporting information

S1 Fig. Apparatus of the thermal preference assay. S1A Fig Apparatus of a temperature gra-

dient used for testing thermal preference. One side of the aluminum plate is placed on ice, and

the other side is placed on a hot plate with a set temperature. A 3% agar gel is placed in the

middle as the testing surface with a temperature range from 13˚C to 31˚C. The measurements

are in centimeters (cm). S1B Fig Actual temperatures measured at indicated gradient positions.

Data represent mean ± s.e.m; n = 9.

(TIF)

S2 Fig. The role of DOCCs in thermal preference at 72 hr AEL. S2A Fig Larvae distribution

along a thermal gradient of indicated genotypes and ages. Data represent mean ± s.e.m; wild
type at 120 hr AEL: n = 9; Ir21a>TNT (Ir21a-Gal4/UAS-TNT) at 72 hr AEL: n = 8. The same

data from Fig 2C and 2D. S2B Fig Fraction of larvae of indicated genotypes and ages in the

13–21˚C region. Welch’s test, F = 1.899, p = 0.3881.

(TIF)

S3 Fig. Red-light avoidance rate of 72 hr (S3A Fig) and 120 hr (S3B Fig) AEL larvae when

DOCCs express CsChrimson with or without dietary retinal (ATR). The genotype of

Ir21a>CsChrimson is Ir21a-Gal4;UAS-CsChrimson. n = 30 except n = 29 for Ir21a-Gal4 at 120

hr AEL with ATR. Kruskal-Wallis test. � p< 0.0001, Dunn’s test. Behavioral recordings in Fig

2G were reused.

(TIF)

S4 Fig. DOCCs’ response to prolonged cool temperatures. Fluorescence change in Ir21a-Gal4;
UAS-GCaMP6m-labeled DOCCs at 72 hr AEL is quantified as the percent change in fluorescence

intensity compared to initial intensity. n = 7 cells from 3 animals. Traces, mean ± s.e.m.

(TIF)

S5 Fig. The time to pupation was indistinguishable between wild type and Ir mutants,

including Ir21aΔ1, Ir93aMI, and Ir25a2. Fraction of pupae of indicated genotypes over time.

Data represent mean ± s.e.m. wild type: n = 9; Ir21aΔ1: n = 4; Ir93aMI: n = 11; Ir25a2: n = 9.

Kruskal-Wallis test. Day 4: p = 0.8766; day 5: p = 0.0902; day 6: p = 0.4817; day 7: p = 0.4478;

day 8: p = 0.9477; day 9: p = 0.2589.

(TIF)

S6 Fig. Ir21aΔ1, Ir93aMI, and Ir25a2 had no general impairment in temperature discrimina-

tion or locomotion activity. Two-choice thermotactic behavioral assay was used. Larvae at 72

hr AEL were given 2 min to choose between 24–26˚C and 30–32˚C regions. Preference index

(PI) was calculated. n = 9. Kruskal-Wallis test. wild type vs Ir21aΔ1: p = 0.5442; wild type vs

Ir93aMI: p> 0.9999; wild type vs Ir25a2: p = 0.5191.

(TIF)

S7 Fig. The role of IR21a, IR93a, and IR25a in thermal preference at 72 hr AEL. S7A, S7C,

and S7E Fig Larvae distribution along a thermal gradient of indicated genotypes and ages.

Data represent mean ± s.e.m; n = 9, except n = 14 for Ir25a2 at 72 hr AEL. The same data from

Fig 5A, 5C, 5E, 5G, 5I, and 5K. S7B, S7D, and S7F Fig Fraction of larvae of indicated geno-

types and ages in the 13–21˚C region. Welch’s test. (S7B Fig) F = 1.444, p = 0.6157. (S7D Fig)
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F = 2.499, p = 0.2778. (S7F Fig) F = 2.262, p = 0.1839.

(TIF)

S8 Fig. Expression of IR21a, IR93a, and IR25a in DOCCs at the late third instar is

increased in Ir21a>IR21a/93a/25a animals. S8A, S8B, and S8C Fig IR25a immunostaining

in wild type at 72 hr AEL (S8A Fig), wild type at 120 hr AEL (S8B Fig), and Ir21a>IR21a/93a/
25a at 120 hr AEL (S8C Fig). S8D, S8E, and S8F Fig IR21a (magenta) and IR93a (green) immu-

nostaining in wild type at 72 hr AEL (S8D Fig), wild type at 120 hr AEL (S8E Fig), and

Ir21a>IR21a/93a/25a at 120 hr AEL (S8F Fig). Yellow arrows denote cell bodies and white

arrowheads denote “dendrite bulbs.” The genotype of Ir21a>IR21a/93a/25a is Ir21a-Gal4/
UAS-IR25a;UAS-IR21a/UAS-IR93a. Scale bars, 10 μm. S8G and S8H Fig Normalized somal

fluorescent intensity of IR21a (S8G Fig) and IR93a (S8H Fig) at 120 hr AEL in wild type and

Ir21a>IR21a/93a/25a. Mann-Whitney test, � p< 0.0001. IR21a: n = 109 cells from 21 wild
type animals and n = 40 cells from 9 Ir21a>IR21a/93a/25a animals. IR93a: n = 90 cells from

16 wild type animals and n = 40 cells from 9 Ir21a>IR21a/93a/25a animals. The wild type data

were the same data from Fig 4B and 4D. Since it was difficult to combine UAS-GFP with

Ir21a-Gal4/UAS-IR25a;UAS-IR21a/UAS-IR93a, the cell bodies of DOCCs could not be pre-

cisely identified in IR25a staining and thus the quantification was not performed.

(TIF)

S9 Fig. Schematic of how Rh5/6 pathway and IR21a/93a/25a pathway function in the tran-

sition of thermopreference in Drosophila larvae. Briefly, Rh5/6 pathway is expressed in the

body wall, functions at the late third instar, and navigates animals to 18˚C. However, it is

unclear whether this pathway functions in driving attraction to 18˚C or aversion to 24˚C.

IR21a, IR93a, and IR25a are expressed in DOCCs at the early third instar and drive 18˚C

avoidance. At the late third instar, expression of IR21a, IR93a and IR25a is decreased and thus

insufficient to drive aversion to 18˚C.

(TIF)

S1 Movie. Red-light responses of 72 hr and 120 hr AEL larvae when DOCCs express

CsChrimson with or without dietary retinal (ATR). The genotype of Ir21a>CsChrimson is

Ir21a-Gal4;UAS-CsChrimson.

(MP4)

S2 Movie. Temperature responses of DOCCs in 72 hr and 120 hr AEL larvae. The genotype

of Ir21a>GCaMP6m is Ir21a-Gal4;UAS-GCaMP6m.

(MP4)
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