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INTRODUCTION

Asthma is a chronic inflammatory disease of airway with in-
termittent and reversible episodes,1 including airway hyper-
responsiveness, allergen-induced airway obstruction, airway 

remodeling, and airway inflammation. The pathogenesis of 
asthma is related to environmental, genetic, and infectious fac-
tors, and most often occurs in childhood.2,3 Airway smooth 
muscle cells (ASMCs) are effector cells for airway disorders, 
inflammation, and remodeling through hypertrophy.4 ASMCs 
have a strong capacity for switching between contractile and 
proliferative phenotype in response to stimulation, which con-
tributes to the persistence of airway inflammation or remod-
eling.5 Platelet-derived growth factor (PDGF) is closely related 
to the phenotypic transformation of ASMCs, promoting pro-
liferation, migration, and inflammatory responses.6,7

The solute carrier gene family 26 (SLC26) is the second larg-
est membrane protein in the human genome.8 Among its fam-
ily members, SLC26A9 modulates the airway stress response 
to stimulation.9 It has been reported that SLC26A2 mediates 
the exchange of electrically neutral anions, and participates in 
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the exchange of SO42– and oxalic acid with 2 Cl–, 2 OH–, 1 Cl–/1 
OH–, or with each other.10,11 Moreover, SLC26A2 is essential for 
the proliferation and differentiation of chondrocytes and the 
synthesis of proteoglycans,12 and it also regulates the secretion 
of aldosterone in the adrenal cortex.13 However, the function 
of SLC26A2 on airway remodeling and inflammation has not 
been investigated.

MiRNAs inhibit or degrade RNA by binding to complemen-
tary target mRNAs at the post-transcriptional level, and they also 
play an significant role in biological processes including cell 
growth, differentiation, and inflammatory response.14 It has 
been shown that miR-9-5p is down-regulated in asthmatic pa-
tients and associated with lung function and immune inflam-
mation.15 Additionally, miR-9-5p has been found to be pro-in-
flammatory in TRAPM2.5-induced airway inflammation.16 
More importantly, lncRNA could function as competitive en-
dogenous RNA (ceRNA) via directly sponging of miRNA, which 
further regulates the expression of target mRNA.17 A previous 
study showed that LncRNA NEAT1 could sponge miR-9-5p to 
facilitate the cervical cancer cell growth as a ceRNA.18 Moreover, 
the knockdown of NEAT1 inhibits EMT by regulating miR-9-5p 
to modulate lung fibrosis.19

Here, we hypothesized that NEAT1/miR-9-5p regulates SL-
C26A2, thereby inhibiting the proliferation and inflammation 
in HASMCs. We detected the effect and molecular mechanisms 
of NEAT1/miR-9-5p/SLC26A2 in PDGF-induced HASMCs. 

MATERIALS AND METHODS

Screening of candidate mRNA, miRNA, and lncRNA 
based on bioinformatics
We downloaded pediatric asthma-related expression profiling 
data from the GEO database, and obtained differential expres-
sions of mRNAs by performing the difference analysis (|log2FC| 
>1, adj.P.Val<0.05) by the Limma package pair separately. Then, 
the upstream miRNA of SLC26A2 was predicted by TargetScan. 
In conjunction with the literature, miR-9-5p showed decreased 
expression level in asthmatic patients and had a target-regula-
tory relationship with SLC26A2. The starBase and ENCORI 
databases were then used to predict the upstream lncRNA of 
miR-9-5p, and we found that NEAT1 and miR-9-5p had base 
complementary sequence.

Cell culture
Human airway smooth muscle cells (HASMCs) (BeiNa Bio-
logical, Beijing, China) were incubated in DMEM medium 
with 10% FBS (Gibco, Grand Island, NY, USA), 1% penicillin-
streptomycin (Invitrogen, Carlsbad, CA, USA), and placed in a 
humidified incubator at 37°C, 5% CO2. Cells were morpholog-
ically observed by optical microscopy (Olympus, Inc., Tokyo, 
Japan). Cells were stained by α-smooth muscle actin (α-SMA, a 
contractile phenotype protein fluorescence). After that, cells 

were stimulated with PDGF (20 ng/mL, Peprotech, Rocky Hill, 
NJ, USA) for 24 h.

Cell transfection
In order to overexpress the levels of LncRNA-NEAT and miR-
9-5p, cells were transfected with miR-9-5p mimic or NEAT1 
overexpression vector (GenePharma, Shanghai, China). Like-
wise, cells were transfected with NEAT1 siRNA, miR-9-5p in-
hibitor, and SLC26A2 siRNA (GenePharma) to knock down 
LncRNA-NEAT1, miR-9-5p, and SLC26A2 levels in cells. Trans-
fection experiments were conducted with the Lipofectamine 
2000 reagent (Invitrogen).

Western blot
Western blot was conducted as previously described.20 In brief, 
SLC26A2 (Thermo Fisher Scientific Inc., Waltham, MA, USA), 
PCNA, MMP-9, α-SMA, and calponin (Cell Signaling Technol-
ogy, Boston, MA, USA) expressions were determined by west-
ern blot using the corresponding primary antibody. Antibod-
ies were incubated with HRP-conjugated secondary antibody 
followed by ECL western blot detection reagent (Beyotime, 
Shanghai, China). The protein expressions were indexed to 
GAPDH.

Quantitative real-time PCR
Total RNA in cells was extracted by TRIzol reagent (Invitro-
gen), and reversely transcribed into cDNA via High-Capacity 
cDNA Reverse Transcription Kit (Applied Biosystems, Foster 
City, CA, USA). qRT-PCR was conducted by a miScript SYBR 
Green PCR Kit (Qiagen, Hilden, Germany) on the 7900 H T 
Fast Real-Time PCR system (Applied Biosystems). For miR-9-
5p, reverse transcription was conducted by miScript II Reverse 
Transcription Kit (Qiagen), and the miScript SYBR Green PCR 
Kit with miScript Primer Assay Kit (Qiagen) was used to detect 
the miR-9-5p expression. MiR-9-5p, NEAT1, and SLC26A2 
mRNA levels were calculated by the 2-ΔΔCt method, and GAP-
DH served as the endogenous control of NEAT1 and SLC26A2, 
and U6 for miR-9-5p. The primer sequences used were as fol-
lows: 

MiR-9-5p: 5'-GCG TCT TTG GTT ATC TAG CTG TA-3' 
(forward), 5'-AGT GCA GGG TCC GAG GTA TT-3'(reverse); 
NEAT1: 5'-TGG CTA GCT CAG GGC TTC AG-3'(forward), 5'-
TCT CCT TGC CAA GCT TCC TTC-3'(reverse); SLC26A2: 5'-
CCA GAT GTG GAG GAT TAG CAG AAT GG-3'(forward), 5'- 
ACA GCT TCA TAA TCT CTG CGA ACT TCT TTC AGT GT-
3'(reverse); U6: 5'-GCT TCG GCA GCA CAT ATA CTA AAA T-
3'(forward), 5'-CGC TTC ACG AAT TTG CGT GTC AT-
3'(reverse); GAPDH: 5'-CAT GGC CTT CCG TGT CCC CA-
3'(forward), 5'-TGC TTC ACC ACC TTC TTG ATG-3'(reverse).

Measurement of HASMC proliferation
Cell proliferation assays were performed by MTT and EdU 
analyses. After cell treatment, MTT assay was performed ac-
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cording to the instructions. Cells were incubated in 96-well 
plates with 200 μL of 5 mg/mL MTT (Sigma, St. Louis, MO, 
USA). After 4 h, 150 μL of DMSO was added into the plates af-
ter the medium was aspirated. 

For EdU assay, the treated cells were exposed to 10 nM of 
EdU solution (RiboBio, Guangzhou, China). After 2 h, cells were 
then treated by 4% formaldehyde and 0.5% Triton X-100. After 
30 min of treatment with Apollo cocktail, Hoechst was applied 
to stain cells for 30 min. The fluorescence microscopy was 
used to observe and record the images. 

HASMC migration analysis
Cell migration ability was analyzed by Transwell. The treated 
cells were incubated in the upper chamber containing serum-
free medium, and cell migration was induced by the lower 
chamber containing 20% FBS. After 24 h, cells adhering to the 
upper surface were wiped off using cotton swabs. While cells 
on the lower surface were treated with 10% methanol and 0.1% 
crystal violet solution. The number of stained cells were re-
corded with a microscopy.
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Fig. 1. SLC26A2 was overexpressed in PDGF-stimulated HASMCs, and SLC26A2 knockdown restrained cell proliferation and migration. (A) Volcano plot of 
differently expressed genes in the GEO database. Red dots indicate highly expressed genes and green dots represent poorly expressed genes. (B) The 
expression of SLC26A2 in samples with acute asthma (n=56) and healthy samples (n=50). (C) Western blotting showed SLC26A2 expression in PDGF-in-
duced HASMCs. (D) Western blotting showed SLC26A2 expression in PFGF-induced HASMCs transfected with siSLC26A2. (E and F) The effect of SL-
C26A2 on the proliferation of PDGF-induced HASMC was assessed by MTT and EdU analyses. (G) The effect of SLC26A2 on the migration of PDGF-in-
duced HASMC was evaluated by Transwell analysis (scale bar: 100 μm). (H) Western blotting showed PCNA and MMP-9 expressions in PDGF-induced 
HASMCs transfected with siSLC26A2. Data are presented as the mean±SD of three independent experiments. *p<0.05, compared to scrambled control 
group, †p<0.05, compared to PDGF+si-NC group. HASMCs, human airway smooth muscle cells; PGDF, platelet-derived growth factor; NC, negative control.
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ELISA assay
Inflammatory factors IL-4, IL-6, and IL-13 in supernatants of 
cells were assayed with ELISA Kits (ExCell Bio, Shanghai, Chi-
na) according to the instructions. 

Immunofluorescence
Immunofluorescence experiments were performed as report-
ed previously in the literature.21 Briefly, after fixation and block-
ing, cells were incubated with α-SMA antibodies overnight and 
FITC-labeled secondary antibodies for 1 h. DAPI (Beyotime) 
was applied to stain the nucleus. The results were observed 
using a fluorescence microscope (Olympus).

Luciferase assay
Cells were co-treated with vector harboring wild or mutated 
NEAT1 or SLC26A2 and miR-9-5p mimic for 48 h. The dual-lu-
ciferase reporter assay system (Promega, Madison, WI, USA) 
was used to test luciferase activity.

RIP assay
RIP assay was conducted by the Magna RIP kit (Millipore, Bed-

ford, MA, USA) as described in previous literature.22 Magnetic 
beads conjugated with human anti-Ago2 antibody (Millipore) 
or anti-IgG (negative control) were used to treat lysed cells at 
4°C for 24 h. Finally, the beads were collected and digested 
with Dnase and Proteinase K for sebsequent qRT-PCR analysis. 

Statistics
All experimental treatments were repeated three times. The 
results are presented as mean±SD, and were plotted by Prism 
software (Graphpad Software Inc., La Jolla, CA, USA). Statisti-
cal comparisons were conducted by Student’s t test or one-way 
analysis of variance, and a p-value<0.05 was considered a sta-
tistically significant difference. 

RESULTS

SLC26A2 was overexpressed in PDGF-stimulated 
HASMCs, and SLC26A2 knockdown restrained cell 
proliferation and migration
Childhood acute asthma-related expression profiling data 
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downloaded from the GEO database (GSE103166) were ana-
lyzed. Difference analysis was performed by the Limma pack-
age. A total of 13 differently expressed genes were obtained; 
among them, seven were up-regulated and six were down-reg-
ulated (Fig. 1A). Analysis of the expression of differently ex-
pressed genes in the samples showed that SLC26A2 was sig-
nificantly up-regulated in the samples with childhood acute 
asthma compared to healthy samples (Fig. 1B). These findings 
suggested that SLC26A2 is of great significance in asthma. To 
validate the effect of SLC26A2 on asthma, we cultured HASMCs 
and treated them with PDGF to promote the proliferation and 
migration of HASMCs (Supplementary Fig. 1, only online). As 
shown in Fig. 1C, PDGF-induced HASMCs remarkably up-
regulated the expression of SLC26A2 compared to the control, 
suggesting that SLC26A2 was involved in regulating the biologi-
cal function of PDGF on HASMCs. To investigate the effect of 
SLC26A2 on PDGF-induced HASMCs, we transfected HASMCs 
with siSLC26A2 and verified its silencing efficiency by western 
blotting (Fig. 1D). The proliferative and migratory capacity of 
the cells was assessed by MTT, EdU, and Transwell analysis. 
The abovementioned experimental results indicated that PDGF 
markedly induced HASMCs proliferation and migration, and 
SLC26A2 deficiency significantly lightened the effect of PDGF 
on cells (Fig. 1E-G). Moreover, western blotting revealed that 
PDGF treatment noticeably elevated the level of proliferation-

related protein PCNA and the migration-related protein MMP-
9, whereas this trend was reversed by siSLC26A2 (Fig. 1H). 

SLC26A2 knockdown enhanced contractile 
phenotype marker protein expression and restrained 
inflammatory factor production in PDGF-stimulated 
HASMCs
PDGF stimulation induces a decrease in cell contractility, ac-
companied by a decrease in the expression of contractile pro-
teins (α-SMA, calponin).23 Therefore, we further explored 
whether SLC26A2 affected the PDGF-induced hypotonicity of 
HASMCs. Consistent with previous research, PDGF signifi-
cantly decreased α-SMA expression in cells, and the knock-
down of SLC26A2 reversed this trend (Fig. 2A and B). Similarly, 
Calponin expression level was inhibited by PDGF, and it was 
increased after knocking down SLC26A2 (Fig. 2B). Further-
more, PDGF significantly up-regulated interleukin (IL)-4, IL-6, 
and IL-13 levels compared to the control. However, knocking 
down SLC26A2 significantly decreased the levels of inflamma-
tory factors (Fig. 2C-E). In summary, the knockdown of SLC26A2 
promoted PDGF-stimulated contractile phenotype marker pro-
tein expression of HASMCs, and inhibited the production of 
inflammatory factors.
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The upstream regulatory miRNA of SLC26A2 
is miR-9-5p
To further investigate the effect mechanisms of SLC26A2 on 
PDGF-stimulated HASMCs, we predicted the upstream miR-
NA (miR-9-5p) for SLC26A2 using TargetScan (Fig. 3A). We first 
verified the direct targeting effect of miR-9-5p and SLC26A2 
(Fig. 3B). Dual luciferase reporter gene analysis revealed that 
miR-9-5p overexpression obviously inhibited the luciferase 
activity of the reporter vector containing SLC26A2-wt, but not 
the reporter vector containing SLC26A2-mut (Fig. 3C). These 
results validated that miR-9-5p targeted SLC26A2 directly. 
Next, qRT-PCR and western blot were applied to measure SL-
C26A2 mRNA and protein expressions in PDGF-induced 
HASMCs transfected with miR-9-5p mimic. The results in Fig. 
3D and E showed that PDGF stimulation significantly up-reg-
ulated SLC26A2 levels, and the up-regulated levels were re-
markably attenuated by miR-9-5p overexpression. Such find-
ings showed that miR-9-5p targeted and negatively regulated 
SLC26A2 level.

Knockdown of miR-9-5p significantly reversed the 
effect of SLC26A2 knockdown on PDGF-stimulated 
HASMCs
Based on the negative regulation of miR-9-5p on SLC26A2, we 
assumed that the function of SLC26A2 on HASMCs could be 
inhibited by miR-9-5p. We transfected HASMCs with siNC, 
siSLC26A2, or siSLC26A2+miR-9-5p inhibitor, and then per-
formed MTT, EDU, and Transwell analyses. A series of experi-

mental results showed that the inhibition of proliferation and 
migration of HASMCs caused by siSLC26A2 was restored by 
the miR-9-5p inhibitor (Fig. 4A-D). Similarly, the upregulation 
of cell contractile proteins caused by siSLC26A2 was also in-
hibited by the miR-9-5p inhibitor (Fig. 4D and E). The decline 
in inflammatory factor levels caused by the knockdown of SL-
C26A2 was also restored by the treatment of miR-9-5p inhibi-
tor (Fig. 4F). 

NEAT1 directly regulated miR-9-5p/SLC26A2
There has been growing evidence that lncRNA sponges miR-
NAs, thereby down-regulating miRNA expression and acting 
as ceRNA. To explore the lncRNA-regulating miR-9-5p/SL-
C26A2, we confirmed the upstream lncRNA of miR-9-5p by 
starBase and ENCORI databases, which showed that NEAT1 
has a base complementary sequence to miR-9-5p (Fig. 5A). 
The binding relationship between NEAT1 and miR-9-5p was 
validated by dual luciferase reporter gene and RIP experiments. 
As shown in Fig. 5B, miR-9-5p mimic treatment markedly re-
duced the luciferase activity of NEAT1-wt-containing vector, 
whereas it had no effect on NEAT1-mut-containing vector. 
RIP experiments also validated that miR-9-5p was a bona fide 
NEAT1-targeting miRNA (Fig. 5C). qRT-PCR assay showed that 
overexpressing NEAT1 down-regulated the miR-9-5p levels, 
while knocking down NEAT1 significantly up-regulated the 
miR-9-5p levels (Fig. 5D). Rescue experiments showed that 
miR-9-5p inhibited SLC26A2 expression, but oe-NEAT1 trans-
fection mitigated this inhibition (Fig. 5E). These results validat-
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ed that NEAT1 directly targeted miR-9-5p to regulate the level 
of SLC26A2. 

Knockdown of NEAT1 regulated miR-9-5p/SLC26A2 
to inhibit the effect of PDGF on HASMCs 
To further validate that NEAT1 regulates the miR-9-5p/SL-
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C26A2 signaling to affect the function of PDGF-treated HASMCs 
in terms of proliferation, migration, contractile phenotype 
marker protein expression, and inflammatory factor produc-
tion, we firstly synthesized siNEAT1 for cell transfection (Fig. 
6A). A series of assays revealed that NEAT1 knockdown regu-
lated miR-9-5p/SLC26A2 to inhibit PDGF-stimulated HASMC 
proliferation (Fig. 6B, C, and E), migration (Fig. 6D and E), and 
inflammatory factor production (Fig. 6G), while enhancing 
the cell contractile phenotype marker protein expression (Fig. 
6E and F).

DISCUSSION

As effector cells involved in the abnormal constriction and 
narrowing of asthmatic airways, the ASMCs are of great signifi-
cance in airway remodeling.24 Furthermore, ASMCs have been 
reported to have contractile, proliferative/synthetic pheno-
types. In response to stimulation, ASMCs switches from one 
phenotype to another.25 The different phenotypes exhibit dif-
ferent biological functions. Growth factors, such as PDGF and 
transforming growth factor, are involved in the phenotypic 
transformation.26 Among them, PDGF has been shown to be 
associated with changes in airway structure and function.25,27 
PDGF has also been reported to induce the proliferation, syn-
thesis, and migration of ASMCs, as well as the production of 
inflammatory factors.23,28-30 In our study, PDGF remarkably 
increased the proliferation, migration, and inflammation of 
HASMCs, and was applied to treat ASMCs in vitro for subse-
quent experiments. 

In addition, SLC26A2 was found to be very highly expressed 
in PDGF-induced HASMCs, and the deficiency of SLC26A2 in-
hibited proliferation, migration, and inflammatory factor pro-
duction in HASMCs. SLC26A9 could also affect the proliferation 
and migration of colon cancer cells as a member of the SLC26 
family.9 However, SLC26A2 has not been studied in cell models 
of asthma. Next, we further investigated the molecular mecha-
nisms of SLC26A2 in modulating PDGF-induced HASMCs.

MicroRNAs are a class of small non-coding RNAs contain-
ing approximately 18 to 24 nucleotides. According to the most 
recent findings, miRNAs are of great significance in the regula-
tion of asthma pathology. MiR-29c plays a vital role in children 
with asthma by affecting Th2/Th17 cell differentiation.31 MiR-
142-3p is associated with abnormal WNT signaling during asth-
matic airway remodeling.32 MiR-221-3p in airway epithelial cells 
correlates with airway eosinophilic inflammation.33 LncRNAs 
target and down-regulate miRNA expression via a ceRNA mech-
anism, thereby regulating the function of mRNA in asthmatic 
ASMCs. For example, LncRNA-PVT1 targets miR-203a/E2F3 
to inhibit the proliferation and migration of ASMCs in RSV-in-
fected rats.34 LncRNA GAS5 induces the proliferation of ASMCs 
via miR-10a/BDNF.35 In this paper, we performed bioinfor-
matic identification of LncRNA NEAT1 and miR-9-5p. We hy-

pothesized that the regulation of SLC26A2 by LncRNA NEAT1/
miR-9-5p affects PDGF-induced proliferation, migration, and 
production of inflammatory factor production of HASMCs. To 
verify our assumptions, dual luciferase reporter gene and RIP 
analysis were used to confirm the binding relationship between 
miR-9-5p and NEAT1 or SLC26A2. Rescue experiments indi-
cated that the inhibitory role of SLC26A2 deficiency on the pro-
liferation, migration, and production of inflammatory factors in 
HASMCs were blocked by miR-9-5p inhibitor. Knockdown of 
NEAT1 inhibited PDGF-stimulated HASMC proliferation, mi-
gration, and inflammatory factors production, and enhanced 
cell contractile phenotype marker protein expression via miR-
9-5p/SLC26A2.

In summary, our study is the first to identify and validate 
that SLC26A2 is significantly upregulated in PDGF-induced 
HASMCs. Also, SLC26A2 knockdown inhibits proliferation, mi-
gration, and inflammatory factor production of HASMCs via 
NEAT1/miR-9-5p. The findings provide a theoretical basis for 
exploring the inhibition of airway inflammation and remodel-
ing in asthma.
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