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The main focus in pin-tip (or print-tip) microarray analysis is determining which probes, genes, or oligonucleotides are
differentially expressed. Specifically in array comparative genomic hybridization (aCGH) experiments, researchers search for
chromosomal imbalances in the genome. To model this data, scientists apply statistical methods to the structure of the experiment
and assume that the data consist of the signal plus random noise. In this paper we propose “SmoothArray”, a new method to
preprocess comparative genomic hybridization (CGH) bacterial artificial chromosome (BAC) arrays and we show the effects on
a cancer dataset. As part of our R software package “aCGHplus,” this freely available algorithm removes the variation due to the
intensity effects, pin/print-tip, the spatial location on the microarray chip, and the relative location from the well plate. removal
of this variation improves the downstream analysis and subsequent inferences made on the data. Further, we present measures
to evaluate the quality of the dataset according to the arrayer pins, 384-well plates, plate rows, and plate columns. We compare
our method against competing methods using several metrics to measure the biological signal. With this novel normalization
algorithm and quality control measures, the user can improve their inferences on datasets and pinpoint problems that may arise
in their BAC aCGH technology.

1. Introduction

Pin-tip microarray technology was invented in the early
1990s [1]. The technology has grown tremendously, and now
there are numerous types of probes and target elements. Tar-
get elements can include genes, oligonucleotides, or bacterial
artificial chromosomes (BACs) and new microarray chips
can contain on the order of a hundred thousand probes. Due
to the technology, the signal obtained is a combination of
the biological signal and technological signal. Specifically, we
will focus on BAC CGH microarrays. Array-based compar-
ative genomic hybridization (aCGH) technology is similar
to cDNA arrays and is an extension from conventional
CGH that is used to identify and quantify DNA copy

number changes across the genome in a single experiment
[2]. The advantages of aCGH include high-resolution and
high-throughput measurement capability allowing for more
quantitative analysis of the genomic aberrations. A thorough
introduction to the design and manufacture of microarrays
is provided in [3] while [4] provides an introduction to the
statistical issues in analyzing microarray datasets.

In BAC aCGH, the probes corresponding to locations
on a genome are cloned (grown) in a bacterial culture
and then arrayed to a glass slide. BAC aCGH technology
can be employed to discover markers in diseases as in
[5–8] and for detecting genomic imbalances in cancers as
described in [9–20]. In BAC aCGH studies, the markers
for cancer are often discovered by comparing the signal at
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a given chromosome loci between the tumor sample and a
control sample. Specifically, researchers often examine the
logarithm (base 2) of the ratio of the tumor sample to the
control sample (logT/C). This value will allow researchers to
determine the presence of an imbalance in copy number for a
given marker between the tumor sample (T) and the control
sample (C).

It is necessary to normalize the raw logT/C values before
subsequent analysis to determine regions of chromosomal
imbalance. Normalization procedures have been recognized
as necessary for microarray experiments, and a recent search
on PubMed (http://pubmed.org) reveals over 500 references
to articles on microarray normalization. For two-channel
microarrays, some of the normalization algorithms similar
to the proposed analysis in this paper are cited in [21,
22]. Specifically, with regards to aCGH datasets, recent
normalization algorithms are proposed in [23–27] and in R
software packages [28, 29]. Our normalization approach for
the logT/C data will be similar to the approach in [23] but
will feature several important differences in the estimation
procedures for the technical effects.

Specifically, the goal of this paper is to isolate the bio-
logical signal in the logT/C by removing the technological
signal via the novel “SmoothArray” normalizing process. The
technological signal is composed of three major components:
(1) signal due to the intensity of each scanning channel,
(2) signal due to spatial (array) location, and (3) signal
due to the spotting technology. We remove each signal
sequentially thus isolating the biological signal. We compare
our procedure against other normalization procedures and
use several metrics to measure the improvements of our
method. Although our results can be applied to any print-
tip microarray setting, our examples were obtained from
the Roswell Park Cancer Institute (RPCI) aCGH microarray
facility. Note our software is written in the R programming
language [30] and is freely available at [31].

2. Materials and Methods

2.1. The Arrayer Procedure. In the RPCI aCGH microarray
facility, differentially labeled total genomic DNA from a
“test” and a “reference” cell population are cohybridized
to the BAC clones. After hybridization, a GenePix Axon
scanner generates two images of the array at the wavelengths
of light corresponding to the two dyes (Cy3 and Cy5).
The images are processed to generate a single number
corresponding to each sample (dye) for each spot on the
array. For the RPCI facilities, GenePix is currently used to
perform the image processing. The resulting ratio of the
fluorescent intensities at a location on the chromosomes
is approximately proportional to the ratio of the copy
numbers of the corresponding DNA sequences in the test
and reference genomes. A traditional experiment describing
tumor extraction, preparation, and so on is described in [32].

For our BAC aCGH studies, the RPCI 19 K BAC array
was utilized containing ∼19,000 BAC clones (probes) that
were chosen by virtue of their STS content, paired BAC
end-sequence, and association with heritable disorders and
cancer. Reference and test sample genomic DNA (1 μg each)

were individually fluorescent labeled using the BioArray
CGH Labeling System (Enzo Life Sciences) as described in
[33]. The hybridized BAC-based aCGH slides were scanned
using a GenePix 4200AL Scanner (Molecular Devices) to
generate high-resolution (5 μm) images for both Cy3 (test)
and Cy5 (control) channels.

In bacterial artificial chromosome (BAC) aCGH tech-
nology, the target DNA elements are physically arrayed in a
two-dimensional grid on a chemically modified glass slide.
Note that the BAC clones are stored in freezers on a total of
51 plates (384 wells per plate). A potentially large source of
technical variation may be present because of these plates.

Another source of potential variation is due to the
pin array process of printing the BAC clones on the glass
microarray slide. For our data, the 48 pins in the arrayer are
arranged in a 12×4 matrix structure, approximately 4.5 mm
on center, so that they transport the probes to the slide where
each pin fills one region or “grid” of the array. The spots
are approximately 80 μm in diameter, with respective centers
150 μm apart from each other to ensure no overlap between
spots.

The array has the spots laid out in a 116 × 348 array
of 40368 spots. More specifically, each of the grids within
the array (corresponding to pin number) has dimensions
29 × 29 thus there are 841 spots per grid (pin). The array’s
spot locations are consecutively labeled row-wise within each
pin, first numbering within Pin 1 (1–841), followed by the
spots within Pin 2 (842–1682), and so forth. Thus, the
spot location values range from 1 to 40368. Due to this
geometry, each BAC clone is repeated on the array; in other
words, each clone has two spots on each array. Further, note
that there are 384/48 = 8 spots per grid per plate. Since
8 × 51 × 2 = 816 and each grid has 841 spots, there are
841 − 816 = 25 blank spots in each grid. Each plate is used
twice, as each spot is replicated within a grid on the array. Put
another way, this procedure can produce the intensity levels
of 40, 368/2−25×48 = 18984 BAC clones per array arranged
in a two-dimensional array on the slide that accommodates
up to 40368 spots. The remaining 25 × 48 = 1200 spot
locations remain unused and are, therefore, not considered
in this analysis (note that however, these unused spots may
contain valuable information regarding the background and
laser scanner settings).

2.2. Data Acquisition. The data summary gives the intensity
readings from the Cy3- and Cy5- labeled genetic material
for each spot, as produced by the image processing software.
Since our dataset is related to oncology research, we will
refer to the data in terms of the tumor channel (T) and
the control channel (C). For spot i on the array, we will be
interested in the logarithmic ratio of the tumor channel (Ti)
to the control channel (Ci). In other words, we will focus on
Mi ≡ log2Ti/Ci for a given spot i. We will define the vectorM
as the collection of Mi values for a given sample. From [34]
there are three major sources of possible systematic variation
inM which are a consequence of the experimental procedure
and do not contribute to differential expression. The first
source of variation is due to the intensity effects. This bias
is evident from Figure 2 and is a noted source of variation in
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Table 1: Each step in the “SmoothArray” normalization process for CGH microarray experiments. Each step is detailed in Section 2.3.

Bias Normalization method Description

Intensity Global Loess Fit M according to intensity values A

Spatial Spatial Kernel smoother Fit a spatial smoother to M values after CBS [37]

Spotting process Median Compute a median to estimate the pin, plate, plate
row, and plate column effects

two-channel microarrays [35]. In the data shown in Figure 2,
this bias predominately produces a curvature shape where
the lower intensity probes tend to have a large logT/C value.

The second source of variation is the physical layout on
the glass slide; one can imagine that there are spatial effects
across the slide (caused, e.g., by the way the dye-labeled
material is hybridized to the slide) which would manifest
as a pattern of row and/or column effects if the data were
analyzed as 348 × 116 array. The third source of variation
stems from the 384 well plates which are the source of the
spots on the glass slide; one can imagine that there are effects
which are localized to one (or more) specific plates which
would appear as localized effects on the glass slide. As stated
in [23, 36], this bias “may be caused by the fact that different
clones that are produced in the plates might have experienced
slightly different physical conditions during the polymerase
chain reaction (PCR) or in subsequent purification steps.”

Also there are potential effects due to the 384 well-
plate rows (16 rows) and 384 well plate columns (24
columns). Note that the localization is complicated because
of the arrayer procedure described above; recall the complex
numbering scheme. There may also be a source of variation
due to the pins themselves. One can easily imagine that the
pins vary in shape, head size, or some other property that
causes the observations to vary from quadrant to quadrant
on the array. Equally, one can imagine a serial (in time)
correlation among the observations caused by, for example,
the pins not being adequately cleaned between successive
dips into the wells on the plates. This is not intended to be
an exhaustive list of possible sources of systematic variation,
but rather simply a short list of obvious possibilities. The
key point here, and in all subsequent analysis, is that we
assume a random spatial distribution of the probes on the
microarray chip. In other words, we assume that there is
no correlation between a probe’s genomic location and its
spatial coordinates on the array. This random assumption is
required in order for our normalization method to preserve
the biological signal present in the chip.

With this layout and the potential sources of technical
variation, we can define the “SmoothArray” algorithm
to preprocess BAC CGH arrays. Note the goal of our
“SmoothArray” algorithm will be to remove the technical
variation in the logT/C values. The data used to demonstrate
the process consist of 219 head and neck tumor samples
obtained from the RPCI microarray facility.

2.3. The SmoothArray Algorithm. The “SmoothArray” pro-
cess consists of the steps described in Table 1 applied
sequentially to M, where M denotes the vector of Mi spot

values for a specific array. Let A denote the vector of Ai
values, where

Ai ≡ log2(Ti × Ci), i = 1, 2, 3, . . . , 37968. (1)

A is the vector of logarithm products for the two channels in
an CGH microarray experiment. In all subsequent analysis,
we will use a typical sample from a dataset designed to
examine head and neck tumors as obtained from the RPCI
microarray facility.

The M vector of values from the scanner represents the
input values for the “SmoothArray” algorithm. Figure 1
represents the input data for “SmoothArray.” Figure 1 shows
the raw dataset (M values) in the form of an array image and
a genomic plot. Note that since each BAC clone is printed
twice on the array, the genomic plot is obtained by averaging
the two Mi values for each BAC clone. The representation of
M values and the ranked M values based on their location on
the array image is a good way to view the spatial bias present
on an array. The plot shown in Figure 1(a) is commonly
referred to as an M-XY plot. By design, each sample is
hybridized against a sex mismatch hence, as seen in the
genomic plot (Figure 1(b)), there is a gain (increase) in the
ratio on the X chromosome mimicking a single-copy gain.
The data is not centered around 0 in Figure 1(b) indicating a
bias in the logT/C values.

2.3.1. Intensity Effect Step. The first step in the “SmoothAr-
ray” algorithm employs a loess smoother on the Mi values
using the Ai values as the explanatory variable. In short,
a loess smoother fits a polynomial surface determined by
the set of explanatory variables. We consider this a global
operation since the entire set of probes from an array is used
in the loess fitting function, regardless of position on the
array or genome. Fitting is by (weighted) least squares using
the “loess” function in the R package stats [30]. The result
from this operation is a set of fitted values, GL(Mi), according
to the Ai values, where we denote the loess function as GL().
The fitted values, GL(Mi), represent the intensity bias present
at spot i due to the probe intensity Ai. By subtracting the
fitted values GL(Mi) we account for this technological bias.
Hence, we carry forth the M′ vector to the next step, where
M′ is a vector consisting of

M′
i =Mi −GL(Mi), i = 1, 2, 3, . . . , 37968. (2)

M′
i represents the signal for spot i after removing the

technological signal due to the product of the intensities from
the two channels. The goal in the next step is to remove the
spatial bias present in the aCGH technology.
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Figure 1: Raw Data: (a) Image of logT/C signal arranged in an image format corresponding to location on the microarray. (b) The aCGH
logT/C data as arranged in chromosomal order. Since each BAC clone is spotted twice on the array, the genomic plot is created by averaging
the two logT/C values for each BAC clone. This data corresponds to the raw normalization method where no normalization is performed.
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Figure 2: Intensity effect: the estimated loess fit (red line) using the
logT/C as the response with logT × C as the explanatory variable.

2.3.2. Spatial Effect Step. The next step in the algorithm
removes the technological noise due to the spatial location
in the array. It is reasonable to expect nearby spots to be
correlated with each other due to the reagents process and the
hybridization process in microarray technology. The goal in
this step is to accurately determine the spatial pattern present
in the array and thus remove it. The data depicted in Figure 3
is the starting point for the spatial smoothing step.

Rather than perform the spatial smoothing on the data
depicted on Figure 3, we will modify our approach to
ensure we preserve the biological signal. The biological signal
present in aCGH data can be captured using the circular
binary segmentation (CBS) algorithm described in [37].
In short, the CBS algorithm can be applied to cluster the
M′ values into segments of estimated equal copy number
according to their location on the genome [37]. After CBS,
each probe i is a member of a specific segment where we
will denote CBS(M′

i ) as the logT/C group mean for the

segment containing probe i. We apply the CBS function
(denoted by CBS()) to the values in Figure 3 and compute
the residuals from the CBS operation as M′ − CBS(M′). The
spatial two-dimensional kernel density smoother is applied
to the residuals from the CBS operation. Note that, by
subtracting the CBS group we are, in a sense, removing the
genome/biological signal to ensure that our kernel density
estimate of the spatial signal has a minimal amount of
biological signal and is only modeling the technical variation.
This is one of the key ways in which our method differs
from the algorithm described in [23]. In short, we apply
the kernel density smoother to the vector M′ − CBS(M′).
The two-dimensional kernel density smoothing is performed
using the function “smooth.2d” in the fields library in R
[38]. The smoothing parameter (bandwidth) is chosen via
a cross-validation (CV) procedure. Namely, a random subset
is removed from the data and the surface is fit. After fitting a
surface, the absolute value loss (L1 loss) or the sum of squares
loss (L2 loss) for the random subset is computed. The value
of the smoothing parameter that yields the smallest sum of
squares is used as the optimal value in the kernel smoothing
algorithm. After estimating the spatial technical variation
(Figure 4(a)), we compute the resulting set of logT/C values
with the spatial variation removed. In other words for spot i,
we compute

M′′
i =M′

i − KS
(
M′

i − CBS
(
M′

i

))
, (3)

where KS represents the kernel smoothing function. M′′
i

represents the logT/C value for spot i after the technical
signal due to intensity and the spatial location has been
removed.

2.3.3. Spotting Process Effect Step. At this point, we remove
the technological signal due to the spotting of the array.
The technical issues of the spotting procedure noted in
[22, 34, 39] demonstrate a solution for CGH microarray
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Figure 3: Intensity correction results: The aCGH data from Figure 1 after removing the intensity effects shown as a function of (a) location
on the array (b) and genomic location. The genomic profile was created by averaging the signal for the two replicates of each BAC clone.
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Figure 4: Spatial effect: (a) the estimated spatial effect as determined by a kernel density smoother. (b) The ranked cross-validation error
as a function of the smoothing parameter (bandwidth) for the kernel density smoother. The cross-validation error is shown as an absolute
error loss (“1”) and as a squared error loss (“2”).

chips. Similar to determining the kernel smoothed spatial
surface, we determine the pin, plate, plate row, plate column
and repetition effects for the vector M′′ populated with M′′

i

for spot i. Similar to the estimation of the spatial effect,
we will estimate the spotting process effects on the dataset
where we preserve the biological signal by employing the CBS
algorithm. We apply the CBS function to the M′′ data and
then compute the residuals by subtracting the CBS segment
mean. The residuals are used to estimate the effects of the
spotting process. We compute a median of the residuals for
each pin, plate, plate row, plate column, and repetition value
and use that as our estimate for the spotting process effect.
We obtain the final set of logT/C values representing the
remaining biological signal by subtracting the effect of the

pin, plate, plate row, plate column and repetition effect from
M′′, that is, the vector of logT/C values after accounting for
intensity and spatial effects.

2.4. Other Normalization Methods. To assess our
“SmoothArray” procedure, we compare it with five
other normalization methods. Specifically, we examine
raw, grid loess, background subtraction, global median
normalization, and quantile normalization. In the raw
normalization method, we use the raw log ratios without
performing any normalization. In a grid loess procedure,
within each pin grid, a local polynomial regression fit [40]
is performed on the Mi values using the Ai values as the
explanatory variables. The normalized values from this
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Figure 5: Spatial correction results: (a) The array image after spatial correction (and intensity correction). (b) The genome plot of logT/C
after spatial correction (and intensity correction).

procedure are obtained by taking the difference between the
raw values (Mi) and the fitted loess values. The loess fitting
is done using the “loess” function in the R package stats
[30]. The background subtraction method is employed by
subtracting the estimated background intensity from the
estimated foreground intensity of each spot before taking
the logarithm ratios. The global median normalization
procedure is performed by estimating the median log ratio
on each array and then subtracting this value from the log
ratios on the array. With a global median normalization
procedure, the empirical (sample) median of the normalized
log ratios for each array is zero. The quantile normalization
procedure is enacted according to the procedure outlined
in [41]. In this procedure the goal is to impose the same
empirical distribution of log ratios to each array. A mean
array is created by taking the sample mean across the sorted
values of the log ratios in each array. Then the distribution
of the log ratios in the other arrays in the experiment is
matched to the empirical distribution of log ratios in this
hypothetical mean array. In the Results Section we compare
these normalization methods with the “SmoothArray”
normalization method.

3. Results

As a tool to quantify the results at each step of “SmoothAr-
ray” in terms of reduction of noise we employed the median
absolute deviation (MAD) on the X chromosome. The signal
was estimated by the MAD on the X chromosome since
the X chromosome, by design, was always altered by the
virtue of the sex-mismatched controls. Further, we do not
expect there to be any disease-specific imbalances to occur
on the X chromosome. The MAD as calculated on the X
chromosome acts as a good measure of the performance of
“SmoothArray” and other preprocessing algorithms since the
genomic logT/C data is ultimately used to call regions of
genomic imbalance, and this measure is based on a subset of

the genomic data. Also note that none of the “SmoothArray”
steps require knowledge of the genomic location for a given
spot. Hence by using this metric to evaluate “SmoothArray”
we are assured that the improvement (reduction) in this
measurement must be the result of the removal of technical
variation and not biological variation. For the chosen array
in our experiment, the MAD on the X chromosome prior to
applying our algorithm is 0.087.

3.1. Intensity Effect Results. Figure 2 shows the loess fit as
a function of the intensity (A). The intensity bias in this
case is depicted by a convex curve (red line) that shows that
probes with a small intensity are more likely to have a large
logT/C value. Figure 3 shows the resulting M′ vector as
function of location on the array (Figure 3(a)) and genomic
location (Figure 3(b)). For the genomic plot (Figure 3(b))
we averaged the two probes for each BAC clone in order to
obtain a value for the loci. The MAD for the X chromosome
after this step is 0.102, indicating a slight increase from the
starting MAD on the X chromosome.

3.2. Spatial Effect Results. The results from studying the
spatial effects for this data are provided in Figures 4 and 5.
Figure 4(a) is the spatial effect image as estimated from a
kernel density smoother when using L2 loss as opposed to L1
loss. Figure 4(b) shows the ranked cross-validation (CV) val-
ues as estimated using an absolute error or L1 loss (“1” line)
and using a squared error or L2 loss (“2” line). Note that,
the smoothing parameter (bandwidth) for our kernel density
smoother changes slightly when using L2 loss versus L1 loss.
Note that the L2 loss is the default loss function in our algo-
rithm. TheM′′ data is shown via array location in Figure 5(a)
and genomic profile in Figure 5(b). Contrasting Figure 5(a)
with the data in Figure 1(a), it is clear that the technical
spatial variation has been removed. In fact, the MAD for
the X chromosome after removing the spatial effect is 0.075,
indicating a reduction from the MAD prior to this step.
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Figure 6: Spotting process: Pin: The box-plot showing the distribution of logT/C values for each pin (a) before correction and (b) after
correction by median subtraction.
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Figure 7: Spotting process: plate: the box plot showing the distribution of logT/C values for each plate (a) before correction and (b) after
correction by median subtraction.

3.3. Spotting Process Effect Results. Figures 6, 7, 8 and 9 show
the side by-side box plots of each of the spotting process
effects before and after their removal. The final dataset after
the “SmoothArray” process is displayed in an array location
image (Figure 10(a)) and genomic profile (Figure 10(b)).
From a closer analysis in Figures 6(a)–9(a), there is not an
obvious outlier in terms of the spotting process effects after
accounting for the intensity and spatial bias. The MAD for
the X chromosome after removing the spotting process effect
is 0.069, which represents a reduction when compared to the
MAD score of 0.075 prior to accounting for this effect.

3.4. Overall Results. The initial MAD for our sample is
0.087. After applying the “SmoothArray” algorithm, our
MAD is 0.069. This 20 percent reduction of noise indicates
that subsequent aCGH calls of gains and losses should be
improved due to the “SmoothArray” process. Figure 10(c)
demonstrates this reduction in noise as a function of location
on the chromosome. The raw genomic profile is represented

in grey points, while the values after “SmoothArray” are
represented in red.

As a global measure of the normalization methods, we
also examined the MAD for the X chromosome for each
of the 219 samples in the experiment designed to examine
biomarkers in head and neck tumors. The median MAD
prior to the “SmoothArray” process (raw normalization)
is 0.1465, while the median MAD across the 219 samples
after “SmoothArray” is 0.1139. Thus for this experiment, the
“SmoothArray” process provides approximately a 23 percent
reduction in noise. Table 2 displays the median MAD across
the 219 samples for each of the competing normalization
methods while Figure 11 shows the distribution of the MAD
for each method. From Table 2 and Figure 11, we see that
“SmoothArray” provides the optimal reduction in noise.

We also examined each of the normalization methods
by using a nonparametric one-sample t test to examine the
significance of the log ratios on the X chromosome. For each
probe, we obtain a P value measuring the significance from
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Figure 8: Spotting process: plate row/column: the box-plot showing the distribution of logT/C values for each plate row (a) before
correction and (b) after correction by median subtraction and for each plate column (c) before correction and (d) after correction by
median subtraction.
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Figure 9: Repetition: the box plot showing the distribution of logT/C values for each repetition of the BAC clones (a) before correction and
(b) after correction. In the RPCI microarray facility, each BAC clone is spotted twice on the array.
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Figure 10: Final Results: The final logT/C values from “SmoothAr-
ray” as shown via (a) array image and (b) genomic plot. (c) A
genomic plot showing the (median centered) raw genomic profile
(grey points) with the same genomic profile after applying the
“SmoothArray” algorithm (red points). Clearly there is a significant
reduction in variation using the red profile compared to the grey
profile.

a mean of 0 for each log ratio. Since each sample is hybridized
against a sex-mismatched control, we expect each log ratio
on the X chromosome to have a significantly small P value.
For this analysis, we employed the Wilcoxon Rank Sum test
(a nonparametric test) for each log ratio. The percentage of
P values less than .05 is shown in Table 3. The cutoff of.05
was chosen since, on a univariate level, this would indicate
a single copy gain or loss. Using this metric, we see that
the “SmoothArray” normalization compares favorably to the
grid loess, and global median normalization methods.

As a further comparison of each normalization scheme,
the use of M-XY plots allows the users a visual metric to
compare the different normalization methods. Figure 12
allows the user to determine if any spatial abnormalities are
present on the array. From examining Figure 12, we see that
the other normalization methods all appear to have residual
spatial artifacts.

4. Discussion

Through a series of sequential steps we have developed an
algorithm called “SmoothArray” which normalizes the loga-
rithmic ratios from a CGH- based microarray platform. This
normalization removes three major sources of technological
signal. The technological signal due to the intensity effects is
removed first. Secondly the signal due to the spatial location
on the microarray is accounted for and removed. Lastly the
signal due to the spotting process is removed. Each of these
sources of signal is a well-documented problem in aCGH
literature [23]. Throughout the algorithm our philosophy
was to employ parsimonious and straightforward approaches
to correct for the technical effects at each step.

We note the similarity of our “SmoothArray” process
with the preprocessing defined in [23]. Specifically, both
methods remove noise due to intensity effects, spatial effects,
and plate effects. However, we have several novel additional
features that distinguishour method. Namely, we employ the
CBS algorithm throughout our “SmoothArray” algorithm to
ensure that we preserve the biological signal, in other words,
to ensure that we only remove the technical variation present
in the dataset. Although minor, we use a loess rather than the
lowess method as in [23] to remove the intensity bias. We also
employ a kernel density smoother with bandwidth chosen via
cross-validation to account for the spatial bias rather than a
11×11 window median smoother employed in [23]. Further,
we remove the effects due to the pin arrayer procedure
and additionally the plate row, plate column, and repetition
effect. By comparing these results on the X chromosome we
show the results of our “SmoothArray” algorithm.

Also, our “SmoothArray” algorithm has the flexibility
to explore the cross-validation steps using an absolute (L1)
loss function or squared error (L2) loss function. Note
that, currently we have a background option in aCGHplus
which allows the user to subtract a weighted version of the
background. Future work will explore employing a step
that takes into account the background in preprocessing
CGH BAC arrays. The background image may come into
consideration within “SmoothArray” via two ways (1) by
using the blank spots at the end of each grid (see Section 2.1)
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Figure 11: Distribution of the MAD: for each normalization method, the distribution of the MAD values for the log ratio of each probe on
the X chromosome. The median for each of the distributions is summarized in Table 2. According to Table 2, the smallest median MAD is
obtained using the “SmoothArray” algorithm.

Table 2: Table comparing the median MAD values on the X chromosome for each of the normalization methods. From this metric, we see
that the “SmoothArray” normalization procedure provides the optimal noise reduction for probes on the X chromosome.

Raw “SmoothArray” Grid loess Quantile normalization Global median Background subtraction

0.1465 0.1139 0.1215 0.1468 0.1465 0.1675
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Figure 12: Other methods: the final logT/C values from other normalizing methods, namely, (a) global median subtraction, (b) grid loess
normalization, (c) quantile normalization, and (d) background subtraction. From a visual inspection, there appear to be spatial artifacts
that are not removed by these normalization methods.

Table 3: Table comparing the percentage of P values less than .05 on the X chromosome. From this metric, we see that the “SmoothArray”
procedure performs favorably compared to the grid loess and global median normalization methods.

Raw “SmoothArray” Grid loess Quantile normalization Global median Background subtraction

100% 93% 90% 100% 89% 100%

or (2) by using images obtained from the GenePix scanner
where segmentation algorithms are applied to determine a
background signal for each spot.

By examining the spot process effect we can employ
violin plots to examine the quality control for each array-
design variable pin, plate, plate row, plate column, repetition.
Note that the repetition effect acts as a surrogate measure for
a potential time effect. That is, the time elapsed in spotting
the probes on the glass slide is represented by the “repetition”
variable, since the second spot for each BAC clone is
not spotted until all other BAC clones have been spotted
once.

Violin plots have numerous references in current statisti-
cal literature as a way of combining the information available
from local density estimates with the basic summary statistics
inherent in standard box plots. Combining the box plot and
the density trace on a single plot, comparing the distributions
of several variables via violin plots, is a great tool for CGH
microarrays [42].

For the RPCI aCGH lab, there are three flags used to
determine the quality of the spotted probes. Firstly, the spot
can be flagged for having a low signal-to-noise value. The
signal-to-noise value is determined by taking the mean value
of the pixels in the signal and dividing them by the standard
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Figure 13: Violin plots for quality control: violin plots for quality control in the BAC aCGH spotting process. Each spot is evaluated
according to the hybridization quality control. There were ∼200 samples comprising the experiment, and the percentage (over the number
of samples) of times that each spot passed quality control was recorded. The violin plot in (a) shows the distribution of this percentage for
each pin. The median is shown in white. The quality control for probes is assessed according to the (b) 384-well plates, (c) plate row, (d)
plate column, and (e) repetition number for the BAC clones.

deviation of the background. If this value is too low (<2.5)
then the spot is of poor quality. Secondly, the spot can be
manually flagged by the user to determine poor quality, or
thirdly, the spot can be flagged of poor quality because of
a dim signal in one of the channels. Dimness is determined
by having a mean signal value under a prescribed cutoff

in one of the channels. With this set of flags used for poor
spot quality, for a given set of samples (experiment), we
can compute the rate for each spot being flagged with a
QC problem. Then we can examine the distribution of this
percentage via violin plots across each spotting process
variable. Figure 13(a) shows the distribution of the spot
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percentages across each pin, where the spot percentage is
the number of times the given spot passed quality control
divided by the number of samples in the experiment (219
samples). Similarly, Figure 13(b) shows the distribution
of the percentage of BAC clones from each plate that
passed the quality control. By studying Figure 13, it is
shown that Pins 1 and 3 may be suspect in terms of quality
control, while several plates have a larger frequency of
quality control problems. Specifically, Plate 28 consists of
BAC clones that are consistently flagged for quality control
problems. By examining Figures 13(c), 13(d), and 13(e) for
this experiment, there does not appear to be any obvious
problems affecting the plate row, plate column, or repetition
number for the BAC clones. The concept of violin plots for
quality control can further be extended to other commonly
reported spot variables such as background mean,
background standard deviation, and other potential outlier
flags.

For future work, we plan to examine another quality con-
trol measure relevant to the BAC clones. Due to the nature
of the BAC clones and the updates to the human genome,
it is possible that the BAC clones could be mismapped
from their position on the genome. Mismapped BAC clones
can manifest themselves as appearing as an outlier when
viewed via their genomic profile. Using a mixture model
approach, we plan to subset the number of BAC clones under
consideration based on estimating the probability for a given
BAC clone to be mismapped. This approach shows great
promise based on our early attempts at modeling mismapped
BAC clones.

A key component in preprocessing aCGH data lies
in understanding the subsequent analysis steps. With our
preprocessed data, the next step in the aCGH BAC analysis
pipeline involves characterizing the genome in terms of
detecting regions of chromosomal copy number variations
(gains and losses). The softwares and algorithms designed
for this analysis include CGHcall [43] and other breakpoint
detection methods, for example, [44–46]. A slightly different
approach allows the researcher to analyze each chromosomal
arm rather than examining within each arm for chromoso-
mal breakpoints [47]. This approach allows the researcher
to characterize a chromosome in terms of overall imbalance
(with confidence) rather than focus on specific regions of
gains and losses.

Our “SmoothArray” method clearly shows improvement
in reducing the noise for a dataset of 219 samples designed
to study head and neck tumors. Further, when using several
quality control metrics, our method performs favorably to
five other competing normalization methods described in
Materials and Methods. For future work, we plan to extend
our comparisons to quantify the amount of improvement
over other competing pre-processing methods such as those
in [23–27]. Experiments and comparisons such as those
employed in [32, 48, 49] can be used to assess the perfor-
mance and determine the best analysis routes for identifying
genomic imbalances in BAC aCGH datasets. This future
study would also compare the subsequent algorithms that
assess gains and losses across the genome.

5. Conclusion

This paper proposes a novel algorithm to preprocess BAC
CGH arrays. This novel method compares favorably against
several other normalization measures when evaluated using
several quality control metrics. For this study, we focused on
data obtained from the RPCI microarray facility on a study of
∼200 head and neck tumor samples. For this experiment, our
algorithm reduced the noise by approximately 23 percent.
By removing the technological noise due to the intensity
effect, spatial effect, and spotting process, the resulting data
has reduced noise and is suitable for subsequent analyses
to determine chromosomal regions of gains and losses.
The “SmoothArray” method also offers the user the option
to examine several quality control figures which allows
the researcher to pinpoint problems that may arise in the
spotting process. This software is freely available at [31].
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