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Abstract

Transposable elements (TEs) compose the majority of angiosperm DNA. Plants counteract TE activity by silencing them

epigenetically. One form of epigenetic silencing requires 21–22 nt small interfering RNAs that act to degrade TE mRNA

and may also trigger DNA methylation. DNA methylation is reinforced by a second mechanism, the RNA-dependent DNA

methylation (RdDM) pathway. RdDM relies on 24 nt small interfering RNAs and ultimately establishes TEs in a quiescent

state. These host factors interact at a systems level, but there have been no system level analyses of their interactions.

Here, we define a deterministic model that represents the propagation of active TEs, aspects of the host response and the

accumulation of silenced TEs. We describe general properties of the model and also fit it to biological data in order to

explore two questions. The first is why two overlapping pathways are maintained, given that both are likely energetically

expensive. Under our model, RdDM silenced TEs effectively even when the initiation of silencing was weak. This rela-

tionship implies that only a small amount of RNAi is needed to initiate TE silencing, but reinforcement by RdDM is

necessary to efficiently counter TE propagation. Second, we investigated the reliance of the host response on rates of

TE deletion. The model predicted that low levels of deletion lead to few active TEs, suggesting that silencing is most

efficient when methylated TEs are retained in the genome, thereby providing one explanation for the large size of plant

genomes.
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Introduction

Angiosperm genomes vary >1,000-fold in size, and this var-

iation correlates strongly with transposable element (TE) con-

tent. For plant species with small genomes, like Arabidopsis

thaliana or Brachypodium distachyon, DNA derived from TEs

constitute 20–30% of the genome (AGI 2000; IBI 2010).

Species with larger genomes have commensurately larger

proportions of TE-derived DNA. For example, TE-derived

DNA represents>85% of the barley (Hordeum vulgare) and

maize (Zea mays ssp. mays) genomes (Wicker et al. 2004;

Schnable et al. 2009). When one considers that the average

size of a diploid angiosperm genome is similar to that of barley

genome, at 6400 Mb, then it is clear that most extant plant

DNA is derived from TEs (Tenaillon et al. 2010).

Despite the obvious evolutionary success of TEs, the plant

host checks their proliferation. The two entities engage in a

continuous arms-race, where TEs seek to proliferate and the

host attempts to control them (Lisch and Slotkin 2011). In

fact, most—but not all (Li et al. 2010)—TEs are epigenetically

silenced under normal conditions (Lisch 2009). The plant host

exerts this control by suppressing TE activity both before and

after transcription. Posttranscriptional modification relies

chiefly on RNAi that recognizes and degrades TE mRNA pro-

duced by RNA polymerase II (Pol II). Degradation requires as-

sociated factors like RNA-polymerase 6 (RDR6), which

converts single-stranded to double-stranded RNA (dsRNA);

the Dicer-like proteins DCL2 and DCL4 that cleave dsRNAs

to produce 21 and 22 nucleotide (nt) small interfering RNAs
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(siRNAs); and the Argonaute1 (AGO1) protein that guides

siRNAs to mRNAs for cleavage (Fultz et al. 2015).

Presumably, 21–22 nt siRNAs can prime multiple cycles of

mRNA cleavage, but they may have another important func-

tion, which is to initiate transcriptional silencing (Nuthikattu

et al. 2013; McCue et al. 2015). Hence, 21–22 nt siRNAs can

be seen as dual-purpose, because they are involved in post-

transcriptional silencing and also because they initiate DNA

methylation (Cuerda-Gil and Slotkin 2016).

Transcriptional silencing is achieved through epigenetic

modifications like DNA methylation, histone modifications,

and shifts in nucleosome positioning (Bernatavichute et al.

2008; Chodavarapu et al. 2010). The first of these, DNA

methylation, relies on the RNA-directed DNA methylation

(RdDM) pathway. RdDM begins when the plant-specific

RNA polymerase Pol IV transcribes a TE. The resulting single-

stranded RNA is processed into 24 nt siRNAs by RDR2 and

DCL3, two homologs that are distinct from those employed

in RNAi. Ultimately, the 24 nt siRNAs guide protein complexes

to homologous DNA sequences that are then targeted for

cytosine methylation. Once DNA methylation is established,

at least two mechanisms act to maintain it. The first is a pos-

itive feedback loop: Pol IV and Pol V, the RNA polymerases

involved in RdDM, preferentially act on methylated DNA (Law

et al. 2013; Johnson et al. 2014), thereby reinforcing silencing

(Panda and Slotkin 2013). The second is the maintenance of

symmetric CG and CHG (where H¼A, C, or T) methylation

during DNA replication and cell division (Law and Jacobsen

2010). Although the switch from RdDM to maintenance is

not well understood (Panda and Slotkin 2013), once a TE is

targeted for DNA methylation the host genome employs

feedbacks to ensure that the TE reaches and maintains a qui-

escent state.

Numerous molecular studies have characterized the RNAi

and RdDM pathways (reviewed in Law and Jacobsen 2010;

Fultz et al. 2015; Matzke et al. 2015). These have been com-

plemented by evolutionary studies showing that small RNAs

are used for TE defense across both prokaryotes and eukar-

yotes (Blumenstiel 2011) and that most RNAi and RdDM com-

ponents are present in early land plant lineages (Huang et al.

2015; Ma et al. 2015; Zhang et al. 2015; Tsuzuki et al. 2016).

However, several important questions remain about systems-

level interactions between TEs and their plant hosts. One ma-

jor question is why the host relies on two mechanisms—that

is, RNAi and RdDM—to silence TEs. Presumably both path-

ways are capable of silencing; they are thus overlapping and

potentially redundant. Both require the production of myriad

polymerases, methylases and small RNAs and therefore must

have some energetic cost (Bousios and Gaut 2016). Why,

then, are two pathways maintained? One working hypothesis

is that they act synergistically, but this hypothesis has yet to be

explored.

A second major question concerns 24 nt siRNAs. As men-

tioned earlier, 24 nt siRNAs are predominantly produced by

the RdDM pathway, which preferentially acts on TEs that have

already been targeted for silencing. An important feature of

these 24 nt siRNAs is that they can act in trans to guide the

methylation of TEs that have similar sequence characteristics

to the original TE template (Slotkin et al. 2005; Teixeira et al.

2009; Ito et al. 2011; Ye et al. 2012; Fultz et al. 2015). Under

this process, 24 nt siRNAs may constitute a kind of “immune

memory” that act as a buffer against the possibility of TE

activity (Fultz et al. 2015). If true, this implies that the strength

of the host epigenetic response is related to the number of

similar TEs in the genome that have already been silenced.

Yet, no studies have explored the potential codependence

between TE copy numbers and the strength of the host

response.

Our final systems-level question concerns a separate pro-

cess that occurs in cells associated with (but not part of) the

germline. In cells such as the pollen vegetative nucleus (Slotkin

et al. 2009), some TEs are actively demethylated, expressed,

and utilized to produce 21–22 nt siRNAs. These siRNAs are

then transported to the germline, where they presumably

contribute to stable TE silencing across generations (Slotkin

et al. 2009; Ibarra et al. 2012; Mart�ınez et al. 2016; Martinez

and Köhler 2017). But what is the systems-level benefit of this

additional step in the host response, given that there are al-

ready at least two overlapping pathways dedicated to silenc-

ing TEs and also that symmetric DNA methylation is typically

inherited faithfully?

Here, we address these questions by building a model

of host: TE interactions based on ordinary differential

equations (ODEs). ODE models have been used widely to

study biological phenomena that range from population

growth (Malthus 1798), to predator–prey interactions

(Volterra 1926), to the dynamics of viral infection and re-

production (Perelson 2002). ODE models have also studied

the interactions between TEs and the host response

(Abrus�an and Krambeck 2006), but without a focus on

plants and with few details of host response mechanisms.

Our model includes proxies for RNAi, RdDM, and addi-

tional factors like TE propagation and TE deletion. We

study properties of the model but also estimate reasonable

biological parameters by fitting the model to biological

data, specifically from the study of the accumulation of

the Evade element in an A. thaliana inbred line (Mari-

Ordonez et al. 2013). Given these parameter estimates,

we explore dynamics of the model and address systems-

level questions about host: TE interactions. We focus on

three sets of questions: 1) Are both pre- and posttranscrip-

tional silencing necessary to control TEs? If not, what ad-

vantage is gained by having two mechanisms? 2) Given

that methylated TEs may be an important source of im-

mune memory, does TE deletion affect the dynamics of

the host response? And, finally, 3) What is the added ben-

efit of a third mechanism for generating 21–22 nt siRNAs

in the germline?
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Materials and Methods

Equilibria and Stability

Given our ODE model, its equations and its parameters

(see Results), we found equilibria by solving for active TEs

(aTEs), silenced TEs (sTEs) and siRNAs when all equations

were equal to zero. The first, trivial equilibrium point was

aTEeq¼ sTEeq¼ siRNAeq¼ 0. To derive the stability of this

equilbrium, we calculated the Jacobian matrix for the

ODEs around that equilibrium, which provided:

JTE 0; 0; 0ð Þ ¼

v�p� d 0 0

0

e�v

�d

0

0

�1

2
6664

3
7775:

The resulting characteristic equation is:

det JTE 0; 0; 0ð Þ � k � Ið Þ ¼ 0

¼ k3 þ vpk3 þ k vpd � vpþ d2
� �

� vpd � d2;

(1)

where the solutions of this equation are the eigenvalues.

The equation clearly communicates that stability depends

on a complex relationship among v, p, and d but only on

these parameters. The critical eigenvalue (i.e., the one

that crosses zero) is in fact (p v – d), and hence the sta-

bility of this equilibrium is controlled by this compound

parameter. See supplementary text, Supplementary

Material online, for additional details based on a rescaled

model.

The second equilibrium point is shown in equations (3) and

(4) (see Results) for aTEeq and sTEeq; the corresponding equa-

tion for siRNAeq is:

siRNAeq ¼
v

r
e�d � i

d
v�pÞ:ð

(2)

We also examined the Jacobian matrix and eigenvalues

to study stability for this equilibrium point. Because the

stability equation was complex, we analyzed the rescaled

model for further insights into the stability of this nontrivial

equilibrium (see supplementary text, Supplementary

Material online).

Fitted Parameters

We obtained the data from Mari-Ordonez et al. (2013) by

loading their figure 3a onto WebPlotDigitizer (https://autome-

ris.io/WebPlotDigitizer/, last accessed February 28, 2018). To

estimate model parameters that fit the empirical data, we

used the sum of least squares method, based on the following

formula:

sqEr ¼
X
ðECN � OCNÞ2 þw �

X
ðEExp � OExpÞ2:

In this formula, ECN and OCN are the expected and observed

copy number, respectively. The expected copy number was

defined as the sum of aTEs and sTEs obtained from the model.

EExp and OExp are the expected and observed values, respec-

tively, for relative expression.

The expected relative expression for generation n was

obtained from the model by taking the total expression in

generation 8, which is equal to v multiplied by the aTE copy

number at generation 8, and comparing that to the total ex-

pression at generation n, which is equal to v multiplied by the

number of aTEs in generation n. Note, however, that our

measure of relative expression may not correspond perfectly

to that from Mari-Ordonez et al. (2013), because the empir-

ical data on relative expression actually compares two genes

(Evade and ACT2) within each generation and also because

qRT-PCR can be inaccurate, especially when it is used as a

ratio (of ACT2 vs. Evade expression). In the square error (sqER)

equation, we assigned w a weight of 40 to reflect the mag-

nitude of difference in the empirical data, because copy num-

ber reached �40 and relative expression plateaued at �1

(fig. 2A).

We used a Monte Carlo approach to estimate fitted

parameters. In this approach, all seven parameters were ini-

tialized with randomly drawn values from a uniform distribu-

tion between 0 and 1, except for v, which was ranged

between 0 and 20. We also imposed the constraint that

pþ e� 1.0. Given initial parameters, the sqEr was calculated

as above. A single parameter was then altered, with a step

size between�0.1 and 0.1 for all parameters (except v where

step size was between�1.0 and 1.0). The sqEr was calculated

and the iteration moved forward only if sqErn> sqErnþ1; oth-

erwise a new step size would be calculated. All the parame-

ters (in the following order: v, l, l, p, i, r, e, and d) were

iterated through 100 times with 50 steps for each parameter,

until the final fitted parameters were found with the smallest

sqEr for each run. The initialization and iteration of all param-

eters was performed>10,000 times; the lowest sqEr across all

10,000 runs was used to define the fitted parameters. We

note, however, that other fitted data sets with low sqEr values

produced similar model dynamics (supplementary fig. S6,

Supplementary Material online).

Running the ODE Model

The ODE model was run using odeint from the scipy.integrate

package (https://docs.scipy.org/doc/scipy/reference/integrate.

html, last accessed February 28, 2018) and python (v2.6.6).

Figure 1A was made with draw.oi (https://www.draw.io/, last

accessed February 28, 2018); all other figures were made with

R (v. 3.3.2). The heatmaps were made with heatmap2, from

the gplots library in R.
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Results

A Model of TE Propagation and Silencing

Our model assumes that an active TE (aTE) begins as single

copy and expresses mRNA at rate v (fig. 1 and table 1).

Among the produced mRNA, a proportion p is transposed

into new genomic copies of the TE per host generation.

Another proportion, e, of the TE mRNA is processed into

21–22 nt siRNAs. Note that pþ e� 1.0 under our model.

We assume that the 21–22 nt siRNAs degrade at rate d and

initiate TE silencing at rate i. Initiation encompasses both post-

transcriptional silencing (RNAi) and the onset of methylation,

following previous models (Nuthikattu et al. 2013; McCue

et al. 2015). Finally, 24 nt siRNAs reinforce methylation at

rate r, representing RdDM. In our model, the amount of

24 nt siRNA is proportional to the number of silenced TEs

(sTEs). Furthermore, 24 nt siRNAs are considered to be

trans-acting and thus may affect numerous TE insertions, in-

cluding active elements. Overall, active TEs (aTEs) may be-

come sTEs through 21–22 nt siRNAs, 24 nt siRNAs, or by a

combination of both (fig. 1).

The model includes two additional parameters. The first is

TE deletion from the genome, which occurs at rate d for both

aTEs and sTEs. The second is the potential for the loss of

silencing from TEs over time (e.g., through the loss of meth-

ylation), which we assume can lead to reactivation of TEs at

rate u. When u¼ 0, maintenance of silencing is perfect, but

silencing is not maintained when u¼ 1.

The model is represented diagrammatically in figure 1 and

consists of three differential equations:

dðaTEÞ
dt

¼ v � p� d � i � siRNA� r � sTEð Þ � aTE þ u � sTE;

dðsTEÞ
dt

¼ i � siRNAþ r � sTEð Þ � aTE� d þ uð Þ � sTE;

dðsiRNAÞ
dt

¼ e � v � aTE� d � siRNA:

The first equation describes the change in the number of

aTEs over time; the second describes the change in the

number of sTEs over time, and the third monitors numbers

of 21–22 nt siRNAs over time. Although these three equa-

tions represent our basic model, figure 1 includes a

dashed arrow representing a fourth process, the epige-

netic remodeling of TEs in the germline. This process will

be incorporated after we first explore the dynamics of the

basic model.

FIG. 1.—A schematic of the model, with details provided in the text. The dashed arrow represents a step specific to cells that contribute to germline

material.

Table 1

Summary of Parameters and Their Fitted Estimates

Parameter Description Fitted

Estimate

V Amount of Pol II mRNA expressed by active TEs 1.630

P Proportion of mRNA that contributes to

transposition

0.340

� Proportion of mRNA that contributes to

21–22nt siRNA production

0.051

I The rate at which 21–22nt siRNA initiate

methylation

0.062

R The rate at which 24nt siRNA reinforce

methylation

0.025

D The rate of TE deletion per generation 0.161

U The rate of methylation loss per generation 0.000

D The rate of degradation of 21–22nt siRNAs per

generation

0.999
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We recognize that the model, as presented, is over-

parameterized in a mathematical sense. For example,

the parameter v could be eliminated by redefining

e and p. We retain the parameter definitions provided

above throughout the main text, because we believe

their meaning to be biologically intuitive. However, in

the supplementary text, Supplementary Material online,

we also present a mathematical treatment that includes

parameter reduction, rescaling, and more extensive der-

ivations of the model’s analytical properties. We refer to

this supplement throughout the main text, where

appropriate.

Model Equilibria

Once a TE has invaded a host it has three possible fates: it

may fail to successfully invade and be lost completely; it may

establish itself and reach an equilibrium number of copies

over time; or it may expand in copy number unabated. An

advantage of ODE models is that we can analytically solve

the equilibrium points to understand TE invasion behavior

and parameter dependence. We analyzed equilibria and the

stability of those equilibria. For these analyses we assumed

u¼ 0 and d¼ 1 for simplicity, but also because it is biolog-

ically reasonable to assume both that maintenance of the

silenced state is strong (u¼ 0), based on the conservation of

symmetric methylation, and that siRNAs degrade rapidly

(d¼ 1).

We identified two equilibrium points in our system. The

first is when there are no TEs and, hence, no 21–22 nt and

24 nt siRNAs in the host. That is, the equilibrium points for

the active copies (aTEeq), silenced copies (sTEeq), and

siRNA (siRNAeq) are equal to zero. Stability around this

point provides information as to whether a TE will suc-

cessfully invade the genome or be lost. We investigated

stability (see Materials and Methods; see eq. 1) and found

that it does not rely on any of the parameters associated

with epigenetic processes—that is, i, e, or r. Instead, sta-

bility relies only on the parameters for TE expression,

propagation, and deletion (v, p, and d; see also supple-

mentary text, Supplementary Material online). Although

equation (1) is complex, the Jacobian matrix (see Materials

and Methods) suggests the intuitive notion that invasion

proceeds when expression and propagation (v � p) out-

competes deletion (d).

Once a TE has established its presence in the host, it may

increase in number until the second, nontrivial equilibrium

point (see Materials and Methods). The equilibrium points

for aTEs and sTEs are given by:

aTEeq ¼
1

r
d � i�e

d
v�pÞ;ð

(3)

sTEeq ¼
v�p
d

� �
� 1

r
d � i�e

d
v�pÞð

(4)

with siRNAeq given by equation (2) (see Materials and

Methods). These two equations illustrate that aTEs and sTEs

have similar parameter dependencies. However, equilibrium

values of sTEs depend more explicitly on v and p in the nu-

merator than does the equilibrium values of aTEs. This is an

interesting observation because v and p are properties of

aTEs; it drives home the point that equilibria copy numbers

of sTEs relies intricately on the properties of their active coun-

terparts. The denominator of the two equations clearly indi-

cates that increasing r tends to decrease both aTEeq and sTEeq.

Finally, the equations also hint at a complex relationship be-

tween equilibrium copy numbers and d, because the latter

appears twice in the denominator (and once in the nominator

for sTEeq). As d increases, these appearances have opposite

effects on equilibrium values.

We studied these equilibria using an equivalent rescaled

model (see supplementary text, Supplementary Material on-

line). Our analytical results provided additional insights

about the behavior of the model and particularly the stabil-

ity of the nontrivial equilibrium. For example, the nontrivial

equilibrium is stable when (pv � d) is positive and unstable

when this is negative. Conversely, the trivial equilibrium is

stable when (pv � d) is negative, which implies that both

equilibria exchange their stability for (pv � d)¼0.

Fitting the Model to Biological Data

It can be difficult to identify biologically reasonable parameter

values for ODE models. To address this concern, we fitted the

model to biological data and then perturbed parameter values

separately to explore parameter dependencies and to assess

effects on TE copy numbers. We fitted the model to experi-

mental data from the study of Mari-Ordonez et al. (2013),

who characterized the expression and transposition of a

single-copy of the Evade retroelement that had become

unmethylated in A. thaliana met1-mutant epigenetic recom-

binant inbred lines. By following two lines to generations 14

and 15, they showed that Evade was highly expressed until

generation 11 and 7, respectively, after which expression

plummeted precipitously, presumably due to host silencing.

The number of Evade copies increased rapidly while its expres-

sion was high, to a maximum of �40 copies after 11 and 7

generations.

To fit our model to their data, we extracted information

about Evade copy numbers and relative expression (see

Materials and Methods). We focused on one inbred line

(met1) from their study, because this was the only line for

which data were sampled for consecutive generations: in total

seven generations (from 8 to 14) since the reactivation of the

single Evade element. We fitted the model to the Evade data
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with a Monte Carlo approach that concurrently considered

the total TE copy number (i.e., the combined total of aTEs and

sTEs) and TE expression. Our set of fitted parameter values are

reported in table 1. These parameter values produced a good

fit to the copy number data, and a curve of similar shape to

the observed relative expression data over time (fig. 2A). (Note

that our measure of expression is only a proxy for expression

measured experimentally; see Materials and Methods.) We

recognize that we have fitted a complex model to relatively

simple data and that our fitted parameters may represent one

of many potential reasonably fitting parameter sets (but see

Materials and Methods). They nonetheless provide a biologi-

cally plausible foundation for examining model behavior.

Model Behavior under Fitted Parameters

Given the fitted parameters, we explored host: TE dynamics

over 500 generations, monitoring numbers of aTEs, sTEs, and

total TE copy number (¼aTEsþ sTEs) (fig. 2B). With these

parameter values, the model produces oscillations of all three

entities for �200 generations until it reaches an equilibrium.

The oscillations of aTEs and sTEs are somewhat out of phase

with one another. We interpret these results as reflecting

feedbacks in the epigenetic system. When a TE first invades

a host, the combination of expression (fitted value v¼ 1.63;

table 1) and propagation (p¼ 0.340) create an initial burst in

TE copy number. If TEs were able to grow unabated, there

would be an exponential increase at a rate of 0.554 (¼pv) TEs

per generation. However, some transcripts are processed into

21–22 nt siRNAs (e ¼ 0.051) that silence TEs at rate i¼ 0.062.

These 21–22 nt siRNAs degrade quickly for each host gener-

ation (d¼ 0.999), and therefore any new 21–22 nt siRNAs are

not residual, but must be made from active TEs. Once initia-

tion of methylation has begun as part of i, reinforcement

quickly takes hold at rate r¼ 0.025. Eventually, the number

of sTEs increases and the number of aTEs decreases, so that

total expression begins to decline.

As TEs become silenced, they have two fates under our

model: they can be deleted from the genome or become

active again due to loss of silencing (fig. 1). Since loss of si-

lencing was very low (u¼ 4�10�6) in the fitted parameter set,

the main fate of sTEs is to be deleted (d¼ 0.16). As these

quiescent TEs are lost, so is the source of reinforcing 24 nt

siRNAs. When reinforcement becomes unreliable, the host

loses epigenetic control, the subset of remaining aTEs propa-

gate, and the phased cycle begins again. These cycles dissi-

pate in amplitude until equilibria are reached at �20 total TE

copies, with more sTEs (�14) than aTEs (�6) (fig. 2B). It is

important to note that the equilibrium is not necessarily static;

it can be reached when equal numbers of TEs are created

versus deleted.

These phased interactions occur with the fitted parame-

ters, but decaying oscillations in copy number also occur reg-

ularly with other parameter combinations (see supplementary

text and fig. S1, Supplementary Material online). Oscillating TE

numbers are not, however, a necessary outcome of the model

(see examples below and supplementary text, Supplementary

Material online).

Examining Initiation (i) and Reinforcement (r)

We have shown that the model can have complex, oscillating

dynamics based on parameters inferred from biological data.

These parameters can be modified independently to explore

the importance of various processes. In this section, we assess

the effect of perturbing the system by varying either initiation

(i) or reinforcement (r), or both, while holding the remaining

parameters to the values estimated from the Evade data. We

first set i¼ 0, and the result was both intuitive and trivial. With

i¼ 0 silencing never begins. Hence, the number of aTEs

trended upward at an exponential rate, with no resulting

sTEs (fig. 3A).

The effect of setting r to zero was less straightforward,

because i was> 0 and hence silencing was initiated.

Without reinforcement, copy numbers no longer oscillated,

but instead burst and rapidly reached a maximum for both

aTEs and sTEs. These copy numbers remained flat, implying a

steady state in which silencing was initiated by 21–22 siRNAs

and there was sufficient transposition to counteract TE dele-

tion. Under these parameter values, the steady state of sTEs
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FIG. 2.—(A) Model fit to the Evade data for total copy number (left)

and relative expression (right). The empirical data from the Evade study are

represented by circles; the whiskers indicate SD. The model results based

on the fitted parameters (table 1) are represented by the solid line.

(B) Long-term behavior of the model, based on the fitted parameters to

the Evade data. Arrows show TEmax and TEfinal, which are defined in the

text. Copy number refers to the summation of aTEs and sTEs.
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was higher than that of aTEs (fig. 3A), as with the equilibria

reached with fitted parameters (fig. 2B).

If initiation by 21–22 nt siRNAs is sufficient to reach a

steady state and to control TEs, then what is the advantage

of reinforcement by 24 nt siRNAs? Equations (3) and (4) show

that the steady-state TE copy numbers depend critically on the

values of r and i, since the denominators become very small

where r and i are small. To explore their interdependencies,

we varied i and r across their parameter ranges and assessed

total copy numbers (¼aTEsþ sTEs). To help characterize

effects, we focused on two descriptive statistics, TEmax and

TEfinal (see fig. 2B). TEmax is the highest total TE copy number

achieved under a set of model parameters, and TEfinal is the

total copy number after 5,000 generations, a point by which

total aTE and sTE copy numbers have typically reached a

steady state. Our analyses show that when r�0.5, any

change in i had little effect on TEmax and TEfinal, so long as

there was at least some initiation (fig. 3B). In contrast,

when r was low (e.g., r� 0.1), the value of i had notable

effects on both TEmax and TEfinal. For example, when

r¼ 0.001, TEmax varied over two orders of magnitude as a

function of i. Similarly, TEfinal differed�33-fold when i ranged

from 0.001 to 0.99 (fig. 3B). This relationship implies that

reinforcement can counter TE propagation efficiently, even

when initiation of silencing is weak. This observation held

true when also adjusting for TE expression (v) and deletion

(d) (supplementary fig. S2, Supplementary Material online).

The Effects of TE Deletion (d)

Theoretically, high TE deletion rates should be advantageous

for the plant host, because they limit opportunities for trans-

position and consequent deleterious mutations. However,

high amounts of TE deletion could have consequences for

immune memory, because quiescent TEs may be a major

source of trans-acting 24 nt siRNAs (Teixeira et al. 2009; Ito

FIG. 3.—Model behavior with the fitted values for all parameters but initiation (i) and reinforcement (r). (A) Graphs illustrate the effect of setting initiation

and reinforcement parameters to zero for active TEs (left) and methylated TEs (right). In both graphs, the gray dashed lines represent the number of TEs based

on the fitted model parameters to the Evade data (see also fig. 2B). (B) Heat maps showing the TEmax (left) and TEfinal (right) for the total copy number

(¼ aTEsþ sTEs) based on varied values of initiation (y-axis) and reinforcement (x-axis), with copy number displayed in each cell. The dashed cell in each heat

map represents the fitted values (table 1).
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et al. 2011; Fultz et al. 2015). Hence, high deletion rates may

adversely affect the epigenetic response. To illustrate the ef-

fect of deletion on TE copy numbers, we varied the deletion

parameter d from 0.001 to 0.99 (fig. 4), while holding the

remaining parameters to their fitted values (table 1).

The model produced four noteworthy results. First, when

TE deletion was very low (d¼0.001), aTEs burst quickly to

high copy number (�30). After peaking at a total copy num-

ber of �80, all TEs were silenced and the population of sTEs

declined slowly over time, reflecting the low rate of deletion

(fig. 4). Throughout this process, there were no aTEs after the

initial burst. Second, when d increased (0.01� d< 0.5), the

system generated oscillations in the number of aTE and sTEs.

The amplitude, frequency, and equilibrium values (i.e., TEfinal)

varied with d. Note that the running average of sTEs exceeded

that of aTEs for these parameter values (fig. 4). Third, when TE

deletion was at intermediate levels (d¼ 0.5), aTEs reached a

steady state, but there were very few sTEs. Finally, when the

rate of TE deletion was very high (d¼ 0.99), all TEs were re-

moved from the genome.

To further illustrate these dependencies on d, we plotted

TEfinal for sTEs, aTEs, and all TEs as a function of d (fig. 5).

Overall, these results convey a somewhat counterintuitive

idea: if the goal is to have few aTEs, then it is beneficial either

to have dramatically high rates of TE deletion (e.g., d¼ 0.99)

or to have such low (e.g., 0.01–0.1) deletion rates that a res-

ervoir of sTEs is preserved and contributes to reinforcement of

silencing. This supports our observation, based on equilibrium

equations (eqs. 3 and 4), that deletion plays a complex role in

determining aTEeq and sTEeq.

Additional Parameters

We also varied values of expression (v), propagation (p), and

loss of silencing (u), while the remaining parameters were

held at their fitted values. The parameter v was arbitrarily

ranged between 0 and 5. The chief effect of this range was

on the amplitude and periodicity of TE oscillations. Higher

expression levels led to more dramatic copy number oscilla-

tions (supplementary fig. S3, Supplementary Material online).

Importantly, at low parameter values (e.g., v�0.5) TEs either

did not invade the genome or were maintained at very low

copy numbers (<5 total TEs) over the long term. Varying

p produced results similar to varying v (supplementary fig.

S4, Supplementary Material online). Increasing p did, how-

ever, tend to lead to higher TEmax and average copy num-

bers relative to the parameter values we explored for v

(supplementary fig. S3, Supplementary Material online).

This was presumably because there is a trade off with v;

as it increases, so does the production of 21–22 nt siRNAs,

which then potentially affect RNAi. Propagation (p), on the

other hand, contributes only to the proliferation of more

TEs. Note that low levels of propagation (p< 0.25) resulted
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FIG. 4.—Model behavior with the fitted values for all parameters but

TE deletion (d), which is varied from 0.001 to 0.99.

FIG. 5.—The effect of varying rates of TE deletion (d) on the final

number of silenced TEs (sTE), active TE (aTE) and total copy number

(aTEþ sTE). These calculations used the fitted values for all parameters

but d. Note also that d begins at an arbitrarily low value of 0.001; when

d¼0, the number of sTEs diverges.
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in no invasion. Hence, TEs cannot invade if expression or

propagation is low.

Our model also assumes a process of silencing loss (u), for

which the most likely example is methylation loss.

Methylation loss is known to be low based on empirical

data because symmetric methylation is typically maintained

faithfully through cell division (Becker et al. 2011). Indeed,

our fitted parameter estimate was u¼ 4�10�6, suggesting

that a very low amount of sTEs become aTEs due to, for

example, leaky maintenance of symmetrical methylation.

Overall, we found that varying the u parameter had little

effect on model behavior at parameter values< 0.01 (sup-

plementary fig. S5, Supplementary Material online). This

implies that variation in spontaneous demethylation rates

is likely to have few effects on the dynamics of host: TE

interactions unless u varies by several orders of magnitudes

from our fitted estimate.

TE Reactivation Dampens TE Oscillations

Finally, we incorporated an interesting biological observa-

tion—that is, the fact that TEs are activated in some repro-

ductive tissues, ostensibly to ensure the transmission of a

complement of siRNAs to egg and sperm (Slotkin et al.

2009; Ibarra et al. 2012; Mart�ınez et al. 2016; Martinez and

Köhler 2017). TEs are known, for example, to be demethy-

lated and reactivated in the pollen vegetative nucleus, which

accompanies the sperm cell, but does not contribute DNA

to the fertilized zygote. The reactivated TEs are sources

of 21–22 nt sRNAs that are transported to the sperm and pre-

sumably target silencing of TEs in the zygote (Slotkin et al.

2009). The net effect of this process is to increase the numbers

of 21–22 nt siRNAs in germline cells; these 21–22 nt sRNA

originate not only from aTEs but also from sTEs (see below).

We added this mechanism to our model with an equation

that increases the number of 21–22 nt siRNAs in the system at

a level proportional to the number of sTEs that were deme-

thylated in the companion cells. That is,

dsiRNA

dt
¼ e � v � aTEþ sTEð Þ � d � siRNA:

This equation is represented by the dotted arrow in figure 1.

We evaluated the effects of this additional process on the

system with fitted parameter values. The effects were consis-

tent: it decreased TEmax, TEfinal and the periodicity of copy

number oscillations (fig. 6). Thus, this additional process yields

notable decrements in TE copy numbers.

Discussion

In this study, we have devised an ODE model to examine the

systems dynamics of TE propagation within the context of the

epigenetic response of a plant host (fig. 1). Although there are

clear limitations to our approach, the model has produced at

least four fundamental insights. The first is the prediction of

oscillating copy numbers typified by a burst of TE activity,

followed by silencing, deletion, and then reactivity. Despite

these oscillations, the system often reached equilibrium copy

numbers (fig. 2). Second, our model emphasizes the impor-

tance of reinforcement by RdDM-like processes, because it

buffers potential upstream inefficiencies in the initiation of

silencing (fig. 3). Third, we show that these outcomes are

linked to the rate of TE deletion. Somewhat nonintuitively,

the model predicts that either low or very high levels of dele-

tion lead to more efficient control of the number of aTEs

(figs. 4 and 5). Finally, we show that demethylation within

germline cells reinforces host defenses by dampening TE

bursts and lowering steady-state copy numbers (fig. 6).

Below, we first discuss the caveats of our ODE model before

placing our insights into the context of plant genome struc-

ture and evolution.

Caveats

Every model has limitations, and ours is no exception. One

important consideration is that our biological knowledge of

the host response is incomplete. For example, the details of

the initiation of methylation are not yet clear, because there

are at least two competing (but likely nonexclusive) hypothe-

ses as to how the host transitions from RNAi to the RdDM

response (Mari-Ordonez et al. 2013; Nuthikattu et al. 2013;

McCue et al. 2015). Furthermore, some aspects of the host

response have not been included in our model, such as recent

discoveries that 18–22 nt tRNA fragments (Martinez et al.

2017; Schorn et al. 2017) and some miRNAs (Creasey et al.

2014) may interfere with TE replication and propagation.

However, these additional host mechanisms fit relatively easily

in our model, because they would likely affect conversion (e)
and initiation (i) (fig. 1). In this sense, our model already
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FIG. 6.—TE reactivation in pollen. The black line is based on the model

with fitted parameters (no pollen reactivation); the dashed line is using the

same parameters but including additional feedback for pollen guard cells

(pollen reactivation). Both lines indicate total copy numbers

(¼aTEsþ sTEs). The additional mechanism in pollen guard cells is denoted

by the dashed arrow in figure 1.
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implicitly accounts for some exciting new findings, but other

new insights may require model modifications.

Another limitation is that we have studied the invasion of

only one TE family. In reality, plant genomes harbor a multi-

tude of TE types that may interact with each other and also

vary with respect to the host response. For example, some but

not all TE families in A. thaliana are recognized by endoge-

nous miRNAs (Creasey et al. 2014), and short, nonautono-

mous DNA elements are methylated less efficiently than

longer, autonomous elements (Hollister and Gaut 2009), per-

haps in part due to biases in genomic location (Zemach et al.

2013). Finally, we have used only one data set to fit the

model, which followed the invasion of the Evade TE for a

short period of few host generations (Mari-Ordonez et al.

2013). The reliance on Evade reflects the fact that very few

studies have monitored the copy number and expression of

TEs within a plant genome over time, particularly beginning

from recent invasion or reactivation. In short, we recognize

the limitations of the empirical data, but they nonetheless

allow a glimpse into model behavior under relevant parame-

ter values.

Invasion and Oscillations

How long does it take to silence TEs in vivo? Our understand-

ing of the duration and intensity of TE amplification bursts

remains limited (Bousios and Gaut 2016). In order to be si-

lenced, a TE must first invade. Based on our model and anal-

yses of the stability of the first equilibrium point (where

aTEs¼ sTEs¼ siRNA¼ 0), invasion depends on expression

(v), propagation (p), and deletion (d) but not on downstream

properties of the host response, such as conversion of TE

transcripts to 21–22 nt siRNAs (e), initiation (i), and reinforce-

ment (r). Put simply, pv needs to outpace d for a TE to suc-

cessfully invade the host. We also investigated invasion by

modifying v and p from the fitted parameter values (table 1);

invasion did not occur when expression or propagation were

low (v< 0.5, supplementary fig. S3, Supplementary Material

online; p< 0.25, supplementary fig. S3, Supplementary

Material online).

Assuming a TE invades successfully, it has the potential to

increase rapidly in copy number. Under our model, we found

that copy numbers often oscillated before reaching an equi-

librium (e.g., fig. 2). Mathematically, the prevalence of oscil-

lations is related to the value of the expression ðv � e � iÞ=r (see

supplementary text, Supplementary Material online).

Oscillations tend to occur when TE expression is low (v), the

proportion of 21–22 nt siRNAs is low (e), initiation (i) is low or

reinforcement (r) is high (see supplementary text,

Supplementary Material online).

Under many parameter values explored in this work, the

maximum duration of a TE burst lasts for only a few dozen

generations before they are temporarily silenced and decrease

in copy number (figs. 2 and 4 and supplementary figs. S3–S5,

Supplementary Material online). These results likely reflect our

reliance on data from a study in which silencing occurred

rapidly (Mari-Ordonez et al. 2013), but there is other experi-

mental evidence that host defenses react quickly to silence

active TEs within a few host generations (Teixeira et al. 2009;

Fultz and Slotkin 2017), perhaps even more quickly than the

host response to Evade.

It is interesting to note that these experimental studies

contradict numerous genome-wide analyses, which suggest

that TE families experience massive bursts lasting thousands

or even millions of years (Piegu et al. 2006; Schnable et al.

2009; Bousios et al. 2012; Daron et al. 2014). One likely ex-

planation for this incongruence may be the difficulty of re-

solving the occurrence of multiple rounds of episodic bursts

within the expanded timeframes reported by the genome-

wide studies. Limited resolution may be due to technical issues

related to in silico TE identification, accurate age estimation,

and perhaps even heterogeneous rates of TE sequence loss

and decay across the genome (Tian et al. 2009). No matter

the cause, the apparent gaps between experimental and

genome-wide studies deserve further thought and consider-

ation. Longer term experimental studies that monitor TE copy

numbers over time and under different stress conditions

would certainly be welcome contributions to our empirical

understanding of host: TE interactions.

Equilibria

Another question is whether TEs reach long-term equilibria

within a genome. In our model, the oscillations often reduce

in intensity over time to reach a steady state (figs. 2 and 4 and

supplementary figs. S3–S5, Supplementary Material online).

In this equilibrium, sTEs are found in higher numbers than

aTEs whenever (pv)/d> 2 (eqs. 1 and 2 and supplementary

text, Supplementary Material online).

Our ODE-based approach regularly predicts two phases of

host: TE dynamics: one shaped by oscillating changes in TE

numbers, and another characterized by an equilibrium. TE

evolution has been modeled extensively with population ge-

netic approaches (Charlesworth and Charlesworth 1983;

Charlesworth et al. 1994; Brookfield 2005; Le Rouzic and

Deceliere 2005), and the basic models predict that TEs reach

steady-state copy numbers after the first TE invasion through

either a transposition-selection or transposition-deletion equi-

librium. In other words, they do not predict oscillations prior to

an equilibrium. In contrast, some studies have expanded their

models to include TE sequence evolution or competition be-

tween TEs, and these often predict oscillations in TE copy

numbers (Le Rouzic and Capy 2006; Le Rouzic, Boutin,

et al. 2007; Le Rouzic, Dupas, et al. 2007). For example, Le

Rouzic, Boutin et al. (2007) investigated host–parasite inter-

actions between autonomous TEs and their nonautonomous

counterparts, and they found oscillations in copy numbers

between both entities. Notably, the oscillations continued
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indefinitely; an equilibrium was rarely reached unless there

were very low mutation rates and few adaptive TE insertions.

Le Rouzic, Boutin et al (2007) and also Brookfield (2005) have

argued that equilibria are reached under conditions that are

probably unrealistic for in vivo TEs. This is because the param-

eters that affect TE dynamics such as selection, transposition,

and deletion are likely to change at faster rates than the time

required to reach an equilibrium. Our model does not include

autonomous and nonautonomous TEs, nor does it allow per-

turbations in subsequent generations. Yet, the focus on active

and sTEs may mimic some characteristics of host–parasite

relationships and may contribute to our observed oscillating

dynamics. We must caution, however, that our model is not

explicitly evolutionary, because it does not consider fitness or

population variation.

The Importance of Overlapping Mechanisms

Why do plants maintain two overlapping and energetically

costly pathways (RNAi and RdDM) to silence TEs? Here, i

encompasses posttranscriptional silencing and the initiation

of methylation, and r represents RdDM (fig. 1). Our results

show that only a small amount of i is needed to begin silenc-

ing of an unrecognized TE, but r is necessary to counter prop-

agation efficiently. For example, the host maintains TE copy

numbers at low levels even when i is inefficient (e.g.,

i¼ 0.001), so long as r reinforces silencing by a value of

r� 0.1 (fig. 3B). RNAi is clearly not as efficient at limiting TE

copy numbers when there is no RdDM, yet it is essential for

silencing TEs (fig. 3A). Hence, to the extent the model is cor-

rect, it implies that plants must have RNAi to start the process

of silencing, but RdDM vastly enhances host control over TEs.

The inclusion of another, apparently overlapping mecha-

nism—that is, the active demethylation of TEs in cells that

contribute siRNAs to germline cells—further enhances host

silencing (fig. 6).

Our data are consistent with the argument that 24 nt

siRNAs are important for buffering TE activity, even though

they seem unnecessary because most methylation is main-

tained independently of RdDM in heterochromatic regions

(Zemach et al. 2013). In fact, it was recently shown that these

heterochromatic regions also produce 24 nt siRNAs, albeit to a

smaller extent (Li et al. 2015). These findings are consistent

with the idea that 24 nt siRNAs may act as immune memory

(Fultz et al. 2015; Fultz and Slotkin 2017), based on evidence

that they may play a key role in suppressing reactivated TEs

(Teixeira et al. 2009; Ito et al. 2011; Fultz et al. 2015; Fultz and

Slotkin 2017).

The Curious Case of TE Deletion

If 24-nt siRNAs act as a source of immune memory, then the

retention of sTEs may be a benefit to the host, because they

may be the template for 24 nt siRNA production. This rela-

tionship is implied by our analyses of the deletion (d)

parameter under the Evade model (figs. 4 and 5). If the

goal is simply to rid the genome of TEs, the most efficient

method is to have a very high d (> 0.5) that removes all aTEs

and sTEs. However, deletions are mediated by ectopic recom-

bination and illegitimate recombination (Devos et al. 2002)

that may introduce a substantial fitness cost due to the po-

tential for catastrophic mutations (Langley et al. 1988).

Assuming that high ectopic recombination carries an unac-

ceptable fitness cost, our model suggests that the next best

solution to limit the number of aTEs is to have very low rates

of TE deletion (d� 0.01).

Our argument is that the retention of sTEs may benefit the

host by boosting immune memory. In theory, this immune

memory provides a defense against the invasion of new TEs

that have sequence homology to existing genomic TEs (Fultz

and Slotkin 2017) and also against TEs that have escaped

silencing and need to be resilenced. Two interesting features

of acquired immune memory are that it is energetically ex-

pensive but also maintained under frequent cycles of reinfec-

tion (Best and Hoyle 2013). Under the parameter values

explored with our model, the system usually reaches a steady

state in which the copy number of aTEs is >0. To the extent

that these dynamics reflect reality, a nonzero equilibrium of

aTEs defines a system in which reinfection is not merely fre-

quent but constant. This observation may explain one feature

of the selective pressure to maintain RdDM-like mechanisms,

even though it seems as if most TEs within plant genomes are

effectively silenced. There is also a conjecture that “zombie”

TEs are maintained in the genome in order to produce siRNAs

that boost immune memory and can trigger the trans-silenc-

ing of active relatives (Lisch 2009). Indirect in silico evidence

for the existence of zombie TEs has been recently uncovered

in maize (Bousios et al. 2016).

Finally, if low rates of TE deletion are somehow beneficial

to the host response, this process could drive genome size

increases over evolutionary time, because each new TE infec-

tion or TE reactivation adds copies that are silenced, retained,

and not quickly deleted. We also note that this is unlikely to be

a run-away process, because there is evidence for selection on

genome size (Diez et al. 2013; Bilinski et al. 2017), especially

when genome size gets too large (Knight et al. 2005).

Nonethless, our model offers a partial explanation for the

high TE contents and sizes of plant genomes.

Future Directions

This is the first study to explicitly incorporate features of the

plant host response into a quantitative model of host: TE dy-

namics. We view this model as a foundation for further exten-

sions that will continue to elucidate important features of

host: TE interactions. One promising avenue will be to extend

our model to include populations, genetic drift, and fitness

(Szitenberg et al. 2016), perhaps with a potential for rare

beneficial effects (Le Rouzic, Boutin, et al. 2007). Such an
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approach is likely to yield more realistic understandings of the

evolution of host: TE interactions than are available at present.

It will also be illustrative to model multiple TE families, includ-

ing autonomous and nonautonomous elements, different

length and classes of elements, and the possibility of extensive

siRNA cross-homologies. Finally, an important future goal will

be to mimic reality by introducing stresses and perturbations

into the model. One potential example of a perturbation is

polyploidy, which is thought to lead to epigenetic repattern-

ing (Matzke et al. 1999), but for which the causes remain a

mystery.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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