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A B S T R A C T

Background: Trials demonstrate the effectiveness of web-based interventions for cannabis-related disorders. For
further development of these interventions, it is of vital interest to identify user characteristics which predict
treatment response.
Methods: Data from a randomized factorial trial on a web-based intervention for cannabis-users (n= 534) was
reanalyzed. As potential predictors for later treatment response, 31 variables from the following categories were
tested: socio-demographics, substance use and cognitive processing. The association of predictors and treatment
outcome was analyzed using unbiased recursive partitioning and represented as classification tree. Predictive
performance of the tree was assessed by comparing its cross-validated results to models derived with all-subsets
logistic regression and random forest.
Results: Goal commitment (p< .001), the extent of self-reflection (p< .001), the preferred effect of cannabis
(p= .005) and initial cannabis use (p= .015) significantly differentiate between successful and non-successful
participants in all three analysis methods. The predictive accuracy of all three models is comparable and modest.
Conclusions: Participants who commit to quit using cannabis, who at least have moderate levels of self-reflection
and who prefer mild intoxicating effects were most likely to respond to treatment. To predict treatment response
on an individual level, the classification tree should only be used as one of several sources of information.
Trial registration: http://www.isrctn.com/ISRCTN99818059

1. Introduction

With a lifetime prevalence of 26% and 1% daily users, cannabis is
the most widely used illegal drug in Europe. Cannabis-related problems
have become the most important reason to begin drug treatment
(European Monitoring Centre for Drugs and Drug Addiction
[EMCDDA], 2017). In recent years, a range of Internet interventions
targeting cannabis users have been developed, extending the reach of
care to individuals who otherwise would not seek specialized treatment
(EMCDDA, 2014).

The therapist-guided program “Quit the Shit” (QTS) is an evidence-
based Internet intervention for cannabis use disorder (CUD) made
available by the German Federal Centre for Health Education (BZgA). It
provides several weeks of counselling for individuals who aim to reduce
or quit using cannabis. QTS is currently one of only two evidence-based
Internet interventions for cannabis users worldwide that are freely
available to the public (Rogers et al., 2017; Tossmann et al., 2011).

To improve user experience and effectiveness, QTS is subject to

continuous development. Therefore, identification of user character-
istics which may influence treatment response is of vital interest. Such
predictors could be used for the further development or to detect vul-
nerable subgroups of participants who need additional support.
However, since only few predictor or moderator trials were conducted
in this field of studies, these characteristics are largely unknown.

Regarding demographic variables, neither age nor gender is asso-
ciated with the effectiveness of Internet interventions for cannabis users
(Tait et al., 2013). In interventions targeting alcohol use, female gender
predicted beneficial outcomes in two studies (Riper et al., 2008; Henson
et al., 2015), while two other trials found no such association (Castro
et al., 2017; Blankers et al., 2013). Participants with higher education
yielded better results in the studies of Riper et al. (2008) and Castro
et al. (2017), an association not replicated by Blankers et al. (2013). Of
46 possible candidate variables in the study of Blankers and colleagues,
the most important predictor of a positive treatment outcome was living
together with others.

In Internet interventions targeting CUD, the association between
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initial cannabis use and later treatment outcome has not yet been stu-
died. In online interventions for alcohol abuse, evidence is hetero-
genous. In a study conducted by Doumas et al. (2016), largest effects
were observed among those who were abstinent at baseline. In another
trial, participants with low daily alcohol use at baseline had a better
outcome than those with daily medium use, weekend only use or no use
(Baumann et al., 2017). It is also not clear, how an early onset of
substance use in life is associated with treatment outcome. While there
is again no evidence from cannabis-related interventions, studies on
alcohol-related interventions show diverging results. According to
Doumas et al. (2016), participants with an onset of alcohol use at
11 years or earlier achieved the best results. In contrast, subjects in the
study of Henson et al. (2015) were less likely to respond if they started
drinking early in life. In two web-based brief interventions targeting
CUD, beneficial outcomes were found among participants with a higher
readiness to change (Lee et al., 2010; Palfai et al., 2016). In studies
being conducted in a traditional face-to-face intervention setting, can-
nabis users with a higher degree of refusal self-efficacy (i.e. the belief to
abstain from cannabis use in certain situations) and those who were
legally coerced into treatment achieved better outcomes (Connor et al.,
2014; Copeland and Maxwell, 2007).

To broaden evidence in this field of research and to use the results as
potential basis for further development of QTS, we tested a wide range
of possible predictors of treatment outcome in QTS participants. Our
goal was to develop a parsimonious and efficient model, containing the
most relevant predictors of treatment response.

2. Methods

2.1. Study design

We used data from a randomized factorial trial in which we tested
whether shortening the program duration of QTS from 50 to 28 days or
whether removing live counselling via chat had negative impact on the
program effectiveness. None of these changes had meaningful impact
on the effectiveness of QTS (Jonas et al., 2018).

In the study, participants either started into QTS via a one-to-one
chat with a counsellor or via a self-guided tour, depending on the
randomization result. All users of QTS, irrespective of being study
participants or not, are to commit themselves to a use-related goal at
the beginning of the intervention. On this occasion, they are to choose
whether they aim to reduce, pause or quit using cannabis. Individuals
who only want to reduce or pause cannabis consumption are requested
to set a clearly defined and substantial goal such as e.g. “reduce from
daily use to weekend-use with one joint on each evening”.

After starting into QTS, all participants gain access to the personal
login area of the program. The login area consists of a cannabis use
diary and several coping exercises. Once a week, participants receive
detailed feedback by their counsellor on all their entries. More details
on the program can be found elsewhere (Jonas et al., 2018).

2.2. Measures

Selection of potential predictors was mainly based on the quoted
evidence and on considerations specific to QTS. In total, we included 31
potential predictors from the following categories: socio-demographic,
variables related to substance use and one measure associated with
cognitive processing.

As socio-demographic measures, we included age, gender, level of
education and housing situation. Predictor candidates related to sub-
stance use included the cannabis use days, cannabis use quantity
(grams) and cannabis use events, each referring to the 30 days prior to
baseline and measured using the Timeline Followback method (TLFB;
Sobell and Sobell, 1992). Other predictors were cannabis dependence
measured by the Severity of Dependence Scale (SDS; Gossop and Darke,
1995; Steiner et al., 2008) and cannabis craving measured by the

cannabis craving screening (CCS-7; Schnell et al., 2011). Coping self-
efficacy, i.e. the confidence to control one's own cannabis use in high
risk situations, was measured with the Drug-Taking Confidence Ques-
tionnaire (DTCQ-8; Sklar and Turner, 1999). Self-developed items were
used to measure the age of first-time cannabis use, the cannabis use in
the social environment, the perceived support by the social environ-
ment, the preferred effects when using cannabis, whether the pursued
behavior change was motivated by a third party and if other drug
treatment was currently attended. Moreover, the days participants
consumed alcohol, cigarettes, amphetamines, cocaine, ecstasy, LSD and
other illegal drugs within 30 days prior to study baseline were each
included as potential predictors. We also included the goal commitment
of each client. As described above, clients are to define whether they
want to quit, reduce or pause using cannabis. The participants' degree
of self-reflection was also included as a candidate predictor. Self-re-
flection is a metacognition which refers to the monitoring and evalua-
tion of one's thoughts, feelings and behaviors, and can be regarded as an
antecedent for purposeful behavior change (Roberts and Stark, 2008).
Self-reflection was measured with the 20-item Self-reflection and In-
sight Scale (SRIS; Grant et al., 2002; Roberts and Stark, 2008). All
potential predictors were collected at study baseline prior to randomi-
zation, except for the use-related goal, which is set on the first day of
participation.

Treatment response was defined as binary outcome (“responder” vs.
“non-responder”) and measured during the follow-up three months
after randomization. To be categorized as responder, participants had
to reduce cannabis use days, use quantity and use events by at least half
between baseline and follow-up. Further criteria for being counted as
responder were no increase in any other illegal substance or alcohol
between baseline and follow-up, as well as cannabis use on a maximum
of 8 days during the past 30 days measured at follow-up (proxy in-
dicator for weekend-use). Participants not meeting all of these criteria
were defined as non-responder of the intervention.

2.3. Participants and recruitment

Trial participants were recruited from the regular program website
https://www.quit-the-shit.net, from all individuals who were interested
in signing up for QTS. In total, 534 individuals met all study criteria and
were included in the trial. Of those, 252 individuals (47.2%) provided
data at the first follow-up three months later. Data on treatment re-
sponse was available from 239 participants (44.8%). In the present
study, we analyzed data from study baseline and from this follow-up
survey. Participants and recruitment procedure are detailed in the prior
publication (Jonas et al., 2018).

2.4. Statistical analysis

To analyze the association between potential predictors and treat-
ment outcome we used unbiased recursive partitioning, a non-para-
metric regression and classification approach adopted from machine
learning (Hothorn et al., 2006; Strobl et al., 2009). Recursive parti-
tioning has gained popularity over the past years (Zhang and Singer,
2010). In psychology and medicine, recursive partitioning was applied
to predict substance use-related, mental health and medical outcomes
(e.g. Blankers et al., 2013; Berman and Hegel, 2014; Koskas et al.,
2015). One reason for its gaining popularity is its straightforward in-
terpretation, since its results are usually represented as classification
tree. Recursive partitioning methods are not bound to assumptions of
parametric regression methods and allow to analyze a high number of
variables and their interactions simultaneously even in relatively small
samples (Strobl et al., 2009). Predictor variables were included in the
classification tree if they met or fell below a Bonferroni-corrected sig-
nificance level of alpha= 0.05.

To assess the stability and performance of the classification tree, its
results were compared to models developed with all-subsets logistic
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regression and random forest. In a random forest, not a single classifi-
cation tree, but a whole ensemble of trees (e.g. 500) is combined using
recursive partitioning (Strobl et al., 2009). In all-subsets logistic re-
gression, every combination of predictor variables is tested in search for
the best model (Field et al., 2012; Kabacoff, 2015). Predictive accuracy,
sensitivity and specificity of the resulting three models were calculated
using 10-folds cross-validation.

Missing data was estimated using an Expectation Maximization
(EM) algorithm resulting in one imputation. EM (Dempster et al., 1977)
is an iterative approach frequently used for single imputation and was
shown to give reasonable estimates of missing data on alcohol use in an
earlier simulation study (Blankers et al., 2010). We used both factor
variables and all measures described above as imputation variables.
Before conducting the imputation, we applied a square root transfor-
mation on any variable quantifying substance use, i.e. the use days of
cannabis and of any other substance named above; the number of use
events and the use quantity of cannabis.

Data processing and analysis was conducted with R 3.5.1 (R Core
Team, 2018), utilizing the package Amelia II (Honaker et al., 2011) for
the imputation and party (Hothorn et al., 2006), caret (Kuhn, 2018) and
glmulti (Calcagno, 2013) for the predictor analyses.

3. Results

3.1. Sample description

The majority of the participants were male (65.7%) and had a high
educational level with 64.7% attendance or successful completion of
the highest German secondary school type (see Table 1). Cannabis use
was high with only a few abstinent days last month. Randomization

resulted in similar groups, except for a small age-related difference in
factor 2 (Treatment length; OR 0.972, 95% CI 0.948–0.996, p= .026)
and in participation goal in factor 1 (Chat-based communication;
OR=1.411, 95% CI 1.001–1.992, p= .050).

3.2. Identification of predictors

According to the classification tree (Fig. 1), the goal commitment
(p< .001), the extent of self-reflection (p< .001), the preferred effect
of cannabis (p= .005) and the cannabis use days (p= .015) sig-
nificantly differentiate between successful and non-successful partici-
pants. Participants regarded as treatment responders by the above de-
finition make up a good half of the whole sample (52.8%).

The most important predictor is the use-related goal, chosen at the
beginning of the program. With 64.9% being treatment responders,
individuals who aim to abstain from using cannabis (i.e., the right main
tree branch; n= 302) are significantly more likely successful than those
who only want to reduce or pause consumption (the left main branch;
n=232; with 37.1% responders; values not shown in Figure).

Participants who aim to cease using cannabis can further be dif-
ferentiated by their score on the Self Reflection and Insight Scale (SRIS)
and by their initial cannabis use. With 75.1% treatment responders, the
large group of individuals with >44 points in the SRIS and >22 can-
nabis use days at baseline (n=209) is particularly successful. In con-
trast, participants with exceptionally low self-reflection (n= 28) have a
low rate of treatment response (25.0%).

Individuals, who aim to reduce or pause using cannabis are sig-
nificantly differentiated by their preferred cannabis effect. Participants
who favor getting mildly intoxicated (n= 103) have a success rate
close to the overall mean (50.5%), whereas individuals aiming for

Table 1
Participant characteristics at baseline and goal commitment.

Factor 1: chat-based communication Factor 2: length All participants (n= 534)

No (n= 263) Yes (n=271) 28 days (n=266) 50 days (n= 268)

Gender, n (%)
Female 85 (32.4%) 98 (36.2%) 91 (34.3%) 92 (34.3%) 183 (34.3%)
Male 178 (67.6%) 173 (63.8%) 175 (65.7%) 176 (65.7%) 351 (65.7%)

Age, mean (SD) 27.5 (7.3) 27.6 (6.7) 28.2 (7.1) 26.8 (6.8) 27.5 (7.0)
Educational level, n (%)
Basic school (Hauptschule) 25 (9.5%) 29 (10.7%) 30 (11.3%) 24 (9.0%) 54 (10.1%)
Middle school (Realschule) 64 (24.4%) 57 (21.0%) 61 (23.0%) 60 (22.4%) 121 (22.7%)
High school (Gymnasium) 165 (62.7%) 181 (66.8%) 167 (62.8%) 179 (66.8%) 346 (64.8%)
Other school 9 (3.4%) 4 (1.5%) 8 (3.0%) 5 (1.9%) 13 (2.4%)

Housing situation, n (%)
Alone 70 (26.6%) 56 (20.7%) 66 (24.8%) 60 (22.4%) 126 (23.6%)
With parents 41 (15.6%) 59 (21.8%) 45 (16.9%) 55 (20.5%) 100 (18.7%)
With partner 85 (32.3%) 90 (33.2%) 88 (33.1%) 87 (32.5%) 175 (32.8%)
Shared flat 38 (14.4%) 39 (14.4%) 40 (15.0%) 37 (13.8%) 77 (14.4%)
Other 29 (11.0%) 27 (10.0%) 27 (10.2%) 29 (10.8%) 56 (10.5%)

Cannabis
Use days, mean (SD)a 24.7 (7.3) 25.1 (6.5) 24.9 (7.0) 24.9 (6.8) 24.9 (6.9)
Use occasions, mean (SD)a 122.5 (111.6) 120.1 (104.1) 123.7 (108.9) 118.9 (106.8) 121.2 (107.7)
Amount (grams), mean (SD)a 23.2 (18.8) 21.3 (18.6) 23.2 (19.6) 21.3 (17.8) 22.2 (18.7)
SDS, mean (SD) 9.9 (2.8) 10.0 (2.7) 10.1 (2.5) 9.8 (2.9) 10.0 (2.7)
CCS-7, mean (SD) 4.4 (1.3) 4.2 (1.2) 4.4 (1.3) 4.2 (1.3) 4.3 (1.3)
DTCQ-8, mean (SD) 46.1 (18.8) 47.6 (18.0) 45.8 (17.6) 47.8 (19.1) 46.8 (18.4)
Preferred effect, n (%)
Soft/mild 100 (38.0%) 107 (39.5%) 109 (41.0%) 98 (36.6%) 207 (38.8%)
Strong/intense 163 (62.0%) 164 (60.5%) 157 (59.0%) 170 (63.4%) 327 (61.2%)

Other substancesa

Alcohol use days, mean (SD) 4.8 (6.1) 3.8 (4.8) 4.5 (5.8) 4.1 (5.2) 4.3 (5.5)
Use of illegal substances, n (%) 57 (21.7%) 48 (17.7%) 58 (21.8%) 47 (17.5%) 105 (19.7%)

Other measures
Self reflection (SRIS) 54.0 (6.3) 54.5 (6.3) 54.1 (6.6) 54.4 (6.0) 54.3 (6.3)

Goal commitment
To reduce/pause, n (%) 103 (39.2%) 129 (47.6%) 106 (39.8%) 126 (47.0%) 232 (43.4%)
To abstain, n (%) 160 (60.8%) 142 (52.4%) 160 (60.2%) 142 (53.0%) 302 (56.6%)

a During the past 30 days.
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strong psychoactive effects (n= 129) have a particularly low response
rate (26.4%).

3.3. Comparative results

The logistic regression and random forest models likewise identify
the goal commitment, the preferred effect and the degree of self-re-
flection as the three most relevant predictors (Table 2). In contrast to
the classification tree, the amount of cannabis used emerged as fourth
predictor. Like the cannabis use days, it is positively associated with
treatment response. Another predictor is the educational level, ac-
cording to which participants with a middle and high education have

Fig. 1. Classification tree.a
aScales indicate the proportion of responders in each group.

Table 2
Predictors found in the all subsets logistic regression and random forest.

Logistic regressiona Random forestb

Predictor OR (95% CI) T-value (absolute) p-value Predictor Variable importance

1. Goal commitment: to abstain 5.06 (3.00; 8.72) 5.960 < .001 1. Goal commitment 0.050
2. Preferred effect: soft 2.77 (1.82; 4.24) 4.739 < .001 2. Preferred effect 0.014
3. Self-reflection 1.08 (1.05; 1.12) 4.590 < .001 3. Self-reflection 0.013
4. Cannabis use amount 1.02 (1.01; 1.04) 3.501 < .001 4. Cannabis use amount 0.011
5. Educational level: middle 3.13 (1.50; 6.62) 3.019 .003 5. Educational level 0.005
6. Educational level: high 2.60 (1.34; 5.14) 2.786 .005 6. Cannabis use days 0.005
7. Cannabis use days 1.04 (1.01; 1.07) 2.365 .018 7. Cannabis use events 0.004
8. Cannabis use in social environment 1.20 (1.01; 1.44) 1.998 .046 8. Alcohol use days 0.003
Other predictor candidates n.s. –

a Sorted downwards by the absolute value of the t-statistic; only significant predictors shown.
b Sorted downwards by the variable importance. Following the recommendation of Strobl et al. (2009), only the ranking of the predictors, and not their im-

portance values, is interpreted.

Table 3
Comparison of performance characteristics.

Accuracy [95%-
CI]

P [Accuracy vs.
NIRa]

Sensitivity Specificity

Classification tree 0.64
[0.60–0.68]

<.001 0.65 0.63

Logistic regression 0.67
[0.63–0.71]

<.001 0.70 0.64

Random forest 0.68
[0.64–0.72]

<.001 0.71 0.65

a NIR: No-information rate.
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significantly higher response rates than individuals with low education.
The accuracy, sensitivity and specificity of the three models is

shown in Table 3. With an accuracy of 0.64, the performance of the
classification tree is slightly lower than the performance of the other
two models. The overlapping confidence intervals however indicate no
significant difference. Compared to the accuracy which would be
achieved without a model (no-information rate; NIR=0.53; Kuhn and
Johnson, 2013), the classification tree significantly increases prediction
by 11%. With 0.65 and 0.63, modest rates for sensitivity and specificity
are achieved in the classification tree.

4. Discussion

In the present study, we aimed to develop a parsimonious and ef-
ficient prediction model of treatment response in QTS, a web-based
intervention for CUD. By using a classification tree, we identified the
commitment to abstain as the most important predictor for treatment
response, followed by the degree of self-reflection, the preferred effect
and the initial cannabis use. The relevance of these predictors was
verified by two other statistical methods.

Compared to the mere wish to reduce, aiming to quit obviously
implies a stronger desire to change and therefore leaves less room for
doubts and ambivalence. Corresponding results were found in a recent
study on adolescents receiving outpatient alcohol treatment (Kaminer
et al., 2018). In that trial, participants who were committed to ab-
stinence were less likely to continue problem drinking than those who
only pursued harm reduction. Devotion to change also seems less sus-
ceptible to future circumstances and contingencies than the motivation
to change (Kelly and Greene, 2014), which itself predicted treatment
response in two web-based brief interventions for cannabis users (Lee
et al., 2010; Palfai et al., 2016). This evidence can be seen as an impetus
for a clearer focus on abstinence within QTS. The benefits of abstinence
should probably be communicated more clearly, without however sa-
crificing the benefits of a low-threshold intervention, which explicitly
targets individuals who are ambiguous about behavior change.

The degree of self-reflection also seems to play a relevant role in
achieving behavior change in QTS. As the low cut-point in the re-
spective tree node suggests, only a moderate level of self-reflection
seems to be necessary to use the intervention efficiently, and to suc-
cessfully implement behavior change strategies. According to the re-
sults, higher levels of self-reflection do not necessarily promote the
chances of success any further. Though, not yet supported by other
evidence in the field of study, these results point to the role of self-
reflection as antecedent of self-regulation and behavior change.

In the large subgroup of participants who strive for abstinence, and
who at least have a moderate degree of self-reflection, initial cannabis
use further differentiates response rates. The high response rates among
individuals with (almost) daily use may largely be explained by the
close conceptual link between this predictor and the outcome. Since it
makes little sense to view high initial cannabis use as a factor of success,
this however points to the question whether this, and similar use-re-
lated baseline variables, should have been included in the analysis. We
decided to do so, since we aimed to develop a model with the highest
possible predictive accuracy.

Among participants who aim to reduce cannabis use, preference for
strong intoxicating effects is associated with particularly low chances of
success. This affinity presumably goes hand-in-hand with more and
stronger use motives, which themselves might pose an obstacle to en-
gage in behavior change . In an earlier study among individuals who
utilized an online-self-screening for cannabis users, the preference for
strong intoxicating effects was closely associated with intense cannabis
use, a high degree of cannabis dependency and the presence of several
cannabis use motives (Jonas et al., 2009).

In total, the classification tree increases prediction accuracy by
merely 11% compared to chance. The inclusion of other possible pre-
dictors, like use-related norms or outcome expectancies (Henson et al.,

2015; Connor et al., 2014), could have helped to increase the predictive
accuracy by some degree. However, the limited accuracy of other
prediction models (e.g. Blankers et al., 2013) and the partly incon-
sistent evidence in this field of study (e.g. Doumas et al., 2016,
Baumann et al., 2017) point to the difficult task of identifying sub-
stantial and reliable, client-related early predictors for treatment re-
sponse. Therefore, the predictive accuracy of the model probably also
would be limited if we would add other baseline variables.

4.1. Strengths and limitations

The present analyses have the following strengths. We included a
wide range of potential predictors which previously were found to be
associated with treatment outcome. We also defined the response
variable conservatively, including other criteria besides cannabis use.
In contrast to most other predictor or moderator analyses, our results
were cross-validated and compared with other analysis methods.

The shortcomings of the underlying trial include a limited follow-up
rate, and the reliance on self-reported data (see Jonas et al., 2018, for
details). The current analyses also have several limitations: Since vali-
dated instruments for some potential predictors were not available,
these variables were measured with self-developed and previously un-
tested items. Therefore, we cannot be sure whether the targeted con-
structs were measured reliably and in all their facets. Moreover, it may
be questioned whether our classification tree could be replicated by
independent data. Although we cross-validated the derived model on
resampled data, it is well likely that the exact structure of the classifi-
cation tree would not be replicated in later samples of QTS participants
or in other interventions targeting CUD. The tree therefore should al-
ways be interpreted cautiously. The only alternative to get better in-
formation on the generalizability of our models would have been to
cross-validate results by splitting our dataset in two independent parts,
one to train the model and the other to test its predictive accuracy.
Given the limited sample size of the study, such a data split however
was no viable option, as it likely would have resulted in greater im-
precision of estimates (Kuhn and Johnson, 2013).

4.2. Conclusions

In the present study, the commitment to quit using cannabis,
moderate to high levels of self-reflection and an affinity for softer in-
toxicating effects were identified as the three most relevant predictors
of a positive outcome in the web-based CUD intervention QTS. In
contrast, individuals who only aim to reduce or pause cannabis use,
those who prefer an intense intoxication, or those who have a low de-
gree of self-reflection, were apparently less likely to be successful. They
should be given special consideration in the counselling process and
when developing or optimizing Internet interventions targeting CUD.

To anticipate treatment response on an individual level, the classi-
fication tree should only be used as one of several sources of informa-
tion. Decisions, like the allocation of participants to intervention
modules, or the recommendation for further treatment, should always
be made using all available information on the specific case. To en-
hance classification accuracy, further potential predictors should be
tested.
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