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The innate immune response provides the first line of defense against invading pathogens,
and immune disorders cause a variety of diseases. The fruit fly Drosophila melanogaster
employs multiple innate immune reactions to resist infection. First, epithelial tissues
function as physical barriers to prevent pathogen invasion. In addition, macrophage-like
plasmatocytes eliminate intruders through phagocytosis, and lamellocytes encapsulate
large particles, such as wasp eggs, that cannot be phagocytosed. Regarding humoral
immune responses, the fat body, equivalent to the mammalian liver, secretes antimicrobial
peptides into hemolymph, killing bacteria and fungi. Drosophila has been shown to be a
powerful in vivomodel for studying the mechanism of innate immunity and host-pathogen
interactions because Drosophila and higher organisms share conserved signaling
pathways and factors. Moreover, the ease with which Drosophila genetic and
physiological characteristics can be manipulated prevents interference by adaptive
immunity. In this review, we discuss the signaling pathways activated in Drosophila
innate immunity, namely, the Toll, Imd, JNK, JAK/STAT pathways, and other factors, as
well as relevant regulatory networks. We also review the mechanisms by which different
tissues, including hemocytes, the fat body, the lymph gland, muscles, the gut and the
brain coordinate innate immune responses. Furthermore, the latest studies in this field are
outlined in this review. In summary, understanding the mechanism underlying innate
immunity orchestration in Drosophila will help us better study human innate immunity-
related diseases.
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INTRODUCTION

We live in an environment surrounded by different pathogens, including bacteria, fungi and viruses.
Our immune system, which involves immunological organs, blood cells and other defense
mechanisms, combat these invading pathogens. However, the worldwide spread of coronavirus
disease 2019 (COVID-19) into a pandemic has suggested that infectious diseases are still major
threats to human health (1). Therefore, discovering how organisms recognize and eliminate
pathogens is an urgent goal. To study host-pathogen interactions, many in vivo and in vitro
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studies have been performed with murine models and
mammalian cell lines, respectively (2, 3). In fact, the signaling
pathways and biological processes associated with innate
immune responses are highly conserved in Drosophila and
vertebrates. For instance, nuclear factor-kappa B (NF-kB)
signaling, phagocytosis and apoptosis are evident in the innate
immunity of both vertebrates and invertebrates (4–8). Hence, it
is possible to utilize insect models such as flies and nematodes to
investigate pathogen and host interactions. In addition, the
immune system of insects can be investigated relatively simply
because they lack adaptive immunity, and genetic manipulation
in insects is tractable (9–11).

The fruit fly Drosophila melanogaster lives in decaying
organic matter. However, these flies are not infected by
pathogens under this condition, largely because of their
powerful immune defense system. As the first line of defense,
Drosophila innate immunity comprises multiple strategies to
fight against invading pathogens (12). First, the epithelial
systems in the epidermis, trachea and gut provide physical
barriers to obstruct the entry of bacteria and other pathogens.
In addition, a local immune response follows pathogen attack at
an epithelial site; for instance, insects produce antimicrobial
peptides (AMPs) and reactive oxygen species (ROS) that
enable the gut to combat oral infection (13). In addition,
phagocytosis and encapsulation by plasmatocytes and
lamellocytes, respectively, play important roles in the cellular
responses of Drosophila. Plasmatocytes are macrophage-like
hemocytes that can phagocytose pathogens (14, 15), whereas
lamellocytes encapsulate large particles such as wasp eggs (16).
Notably, lamellocytes are rare in healthy larvae, and they are
differentiated upon immune challenge and in disadvantageous
environments (17–19). As a third blood cell type, crystal cells are
indispensable in wound healing, which is mediated by
melanization (20). Furthermore, the fat body, functionally
equivalent of the mammalian liver, is a vital immune tissue in
Drosophila, playing a role in addition to metabolism. After
infection, fat bodies secrete various AMPs into the hemolymph
to kill invading microorganisms (21, 22). This process is the
hallmark of the humoral immune response, also known as the
systemic immune response. AMP production largely depends on
two NF-kB-related signaling pathways: the Toll and immune
deficiency (Imd) pathways (12). Interestingly, these two
pathways show affinity for different pathogen types, with the
Toll pathway more likely to respond to gram-positive bacteria
and fungi and the Imd pathway primarily capable of responding
to gram-negative bacteria (21). At the end of the 20 th century,
the study of Toll signaling pathways in flies led to the
identification of the mammalian Toll-like receptor (TLR),
which makes a large contribution to the field of innate
immunity (23). Thereafter, using Drosophila as a model to
investigate the mechanism of innate immune responses has
become increasingly popular, and host-pathogen interactions
are largely understood because these signaling pathways are
conversed between flies and humans, genetic tools are available
and fly mutants are abundant. Moreover, through the UAS/Gal4
system, the genetic expression of viral factors in pathogens offlies
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can be studied in infectious diseases and is a current research
hotspot (24).

In this review article, we first describe the main components
involved in Drosophila innate immunity, including immune
tissues, cells, and signaling pathways. We also summarize
tissue communication in terms of immune responses. Finally,
we briefly explain the reasons thatDrosophila is an ideal model to
study innate immunity.
INTRODUCTION TO DROSOPHILA
INNATE IMMUNITY

Drosophila is an ideal model for studying innate immunity
because these organisms do not produce an adaptive immune
response. Various bacteria, fungi, viruses, parasitoid wasp eggs
and aberrant host cells (wounded tissues, tumors, etc.) can
induce a Drosophila immune response. Drosophila innate
immunity can be classified into two kinds: humoral immunity
involving fat bodies and hemolymph and cellular immunity
mediated by immune cells (mostly hemocytes). In this review,
we introduce humoral immunity executor AMPs, Drosophila
hemocytes and the cellular immunity processes to which
different kinds of hemocytes contribute (Figure 1).

Drosophila Humoral Immunity Depends
on AMPs
AMPs are small peptides that kill microbial cells (22, 25, 26).
AMP expression is regulated by NFkB immune signals. When
the immune signal is activated, AMPs are produced in the fat
body and released into hemolymph (Figure 1A). Because AMPs
are positively charged, microbes with a negatively charged cell
membrane recruit AMPs to the hemolymph. Then, the AMPs
can embed in the hydrophobic region of the microbe cell
membrane and cause membrane destabilization and cell death
(27). This wide-ranging process is called the systemic immune
response. In addition, some susceptible tissues, such as the
trachea, midgut, oviduct, spermatheca, ganglia and a
subpopulation of hemocytes, produce AMPs in response to
local infection (28, 29). Overall, the expression level of AMPs
directly reflects the strength of the immune response.

Twenty AMP genes and another AMP-like gene have been
identified in Drosophila thus far (Figure 1A) (22, 30). According
to the structures of the peptides, 20 AMP genes have been
classified into 7 families: Diptericin (Dipt or Dpt), Attacin
(Att), Drosocin (Dro), Cecropin (Cec), Defensin (Def),
Drosomycin (Drs) and Metchnikowin (Mtk). According to
their targets, 7 AMP families have been classified into 3
categories: response to fungi (Drs and Mtk), gram-positive
bacteria (Def) and gram-negative bacteria (Att, Cec, Dro
and Dpt).

Drosophila Cellular Immunity
Drosophila Immune Cells
Generally, Drosophila circulating hemocytes are considered to be
immune cells because they play key roles in cellular immunity.
July 2022 | Volume 13 | Article 905370
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Because of the higher quantity and variety of hemocytes in the
larval stage, larval hemocytes are extensively studied (16). On the
basis of morphological and cytochemical analyses, three types of
hemocytes have been identified: plasmatocytes, crystal cells and
lamellocytes (Figure 1B) (15, 16, 19, 31, 32). Plasmatocytes,
which are round and small, account for the majority of
circulating hemocytes (95%). The immunological function of
plasmatocytes is phagocytosis of small pathogens, similar to
mammalian macrophages/monocytes (Figure 1B) (15, 16, 32).
Another 5% of the circulating hemocyte population consists of
crystal cells that contain crystalline inclusions (15, 16, 19, 32).
With prophenoloxidase (PPO) in crystalline inclusions, crystal
cells participate in melanization (Figure 1B) (15, 19, 32–34).
Lamellocytes can only be seen in larvae under immune challenge.
Lamellocytes are large and flat, and they encapsulate large
invading pathogens that plasmatocytes are not able to
phagocytose, such as parasitic wasp eggs (Figure 1B) (15, 16,
19, 31, 32).

With advances in single-cell sequencing, some studies have
identified subpopulations of the three classical types of
hemocytes or have proposed new types on the basis of
differentially expressed genes. For example, in 2020, Cattenoz
et al. described 13 subpopulations of plasmatocytes (PL-0-PL-3
and 9 other subpopulations with specific molecular signatures), 1
subpopulation of crystal cells and 2 subpopulations of
lamellocytes (LM-1 and LM-2) (35). In the 13 plasmatocyte
Frontiers in Immunology | www.frontiersin.org 3
should be subpopulations, PL-Rel, PL-vir1, PL-robo2, PL-Amp
and PL-ImpL2 have been suggested to participate in specific
immune responses, as indicated by a GO term enrichment
analysis. The PL-Rel subpopulation expresses the transcription
factors Toll and Imd. The marker of the PL-vir1 subpopulation is
vir1, which responds to viral infection. GO term enrichment with
the PL-robo2 subpopulation has been related to migration and
phagocytosis. The PL-Amp subpopulation significantly expresses
AMPs. Some markers of the PL-ImpL2 subpopulation indicate
that this cluster creates a niche through which immune cell
differentiation is regulated, similar to the posterior signaling
center (PSC) of the lymph gland (the Drosophila hematopoietic
organ during the larval stage), which is the hematopoietic niche
(19, 32, 36, 37). The LM-1 and LM-2 subpopulations of
lamellocytes represent mature lamellocytes and hemocytes in
the plasmatocyte/lamellocyte intermediate state, respectively.
Tattikota et al. identified 12 subpopulations of plasmatocytes
(PM1-PM12), 2 subpopulations of crystal cells (CC1 and CC2)
and 2 subpopulations of lamellocytes (LM1 and LM2) (38, 39). In
the 12 plasmatocyte should be subpopulations, PM3-PM7 are
considered immune-activated plasmatocytes. The PM3-PM5
subpopulations highly express several immune response-
induced genes, such as metalloproteinase 1 (Mmp1) and
immune-induced molecule 18 (IM18). PM6 and PM7 highly
express AMPs, similar to the PL-AMPs described in the Pierre
et al. study. CC1/CC2 and LM1/LM2 are crystal cells and
A B

FIGURE 1 | Overview of Drosophila host defenses. (A) The hallmark of humoral immunity (also known as the systemic immune response) is antimicrobial peptides (AMPs,
i.e., Diptericin, Attacin and others) secretion by the fat body; this process is mainly modulated by the Toll and Imd pathways. (B) Cellular immunity depends on three types of
hemocytes in Drosophila: plasmatocytes, crystal cells and lamellocytes. In addition the lymph gland is the main hematopoietic tissue in the larval stage. Plasmatocytes and
lamellocytes can phagocytose and encapsulate pathogens, respectively, and crystal cells participate in wound healing through melanization.
July 2022 | Volume 13 | Article 905370
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FIGURE 2 | The relationship between main immune pathways, immune responses and immunological functions in Drosophila innate immunity. From top to bottom,
the three rows represent the immune pathway (the Toll, Imd, JNK and JAK/STAT pathways are depicted,from left to right) (A), the immune response (B) and
immunological functions (C). The red, blue, green and yellow lines indicate that the processes are related to the Toll, Imd, JNK and JAK/STAT pathways,
respectively. The black lines indicate that the processes are related to other pathways. The dotted lines represent processes waiting to be confirmed. The arrows
and “T” indicate promoting and inhibitory effects, respectively. The red cross indicates depletion. The scissors represent cleavage. Abbreviation: p, phosphorylation;
Ub, ubiquitination; (s), short form; and (f), full length.
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lamellocytes in the intermediate/mature state, respectively. Fu
et al. identified 4 subpopulations of plasmatocytes (Ppn+ PMs,
CAH7+ PMs, Lsp+ PMs and reservoir PMs), crystal cells,
lamellocytes and two novel hemocyte types: thanacytes and
primocytes (40). Four plasmatocyte subpopulations play
defined roles in the immune system. Although Drosophila
hemocytes do not comprise a lymphoid lineage, thanacytes
specifically expressing CG30088 and CG30090 are homologous
to human GZMB and GZMH, which are highly expressed in
natural killer cells and CD8+ T cells (40).

Phagocytosis Depends on Plasmatocytes
In addition to plasmatocytes, cells of various types have been
found to engulf particles such as pathogenic microbes and
apoptotic cells (41, 42), and the phagocytosis process is similar
between these cell types and plasmatocytes. However, as
professional phagocytes, plasmatocytes take up more particles
with greater efficiency than other cell types. Extracellular
phagocytosis-facilitating processes include opsonization and
recognition. Opsonins bind to microbes, making them easier
for phagocytes to engulf. Opsonins are required for opsonization,
which occurs in the humoral environment (43). The thioester-
containing protein family has been reported to be an opsonin in
Drosophila (44), and recognition of ligands on particles and
receptors on plasmatocytes is triggered. Various particles and
molecules on the surface of particles, including bacterial
peptidoglycans (PGNs), lipopolysaccharides (LPSs), fungal b-1,
3 glucans and phosphatidylserine, which are exposed to the outer
cell membrane in apoptotic cells, can be recognized by
phagocytic receptors. Most phagocytic receptors overlap with
molecular markers of plasmatocytes, including Croquemort
(Crq) (45), Nimrod C-type proteins NimC1 (46, 47) and Eater
(19, 32, 48, 49). In addition, two subunits of Integrin, Integrin
aPS3 and Integrin bn, have been reported to mediate
phagocytosis of apoptotic cells and bacteria, indicating that
these subunits may be phagocytic receptors (50, 51). Therefore,
plasmatocyte uptake of particles depends on the dynamic
remodeling of the plasma membrane.

Intracellular events of phagocytosis include phagosome
formation, maturation and degradation. After particle
internalization, phagosomes form. Then, phagosomes mature
through fusion with endosomes, which endows phagosomes with
bactericidal ability. Finally, upon fusion with lysosomes,
phagosomes are degraded by hydrolases in the lysosomes,
completing the clearance of the particles engulfed by the
phagosomes (52).
Antitumor Effects of Plasmatocytes
Recent studies have shown that plasmatocytes are antitumor
immune cells in Drosophila because: 1. these cells are recruited
and specifically associated with tumors (53, 54), 2. their
proliferation is activated in flies with tumors (53), 3. they
express Drosophila tumor necrosis factor (TNF) and Eiger
(Egr) to induce tumor cell apoptosis (55, 56), 4. they take up
AMPs to induce tumor apoptosis (54, 57), and 5. they
phagocytose tumor cell fragments (Figures 2A–C) (55).
Frontiers in Immunology | www.frontiersin.org 5
Plasmatocytes are recruited by tissue basement membrane
damage caused by tumors (53). Plasmatocytes are associated
with tumors and express TNFs to induce tumor cell apoptosis
(55, 56). In addition, tissues burdened with tumors secrete Upd
cytokines and Pvf1 into the hemolymph, which causes an
increase in the number of circulating plasmatocytes (53, 56).
Furthermore, the expression level of the Toll signaling ligand
Spätzle (Spz) in circulating plasmatocytes is elevated. Toll
signaling in the fat body is activated, which results in increased
AMP levels (Figures 2A, B) (56). Therefore, AMPs are taken up
and transported to tumors by plasmatocytes (54). In the presence
of Egr, which is expressed during the immune response, tumors
are sensitive to AMPs, which means that AMPs induce tumor
apoptosis facilitated by Egr (Figures 2B, C) (57). In addition,
plasmatocytes can phagocytose tumor cell fragments, which
might be debris from apoptotic cells (55).

Cell Encapsulation of Pathogens
Parasitoid wasp infection is a health threat to larvae, in addition
to microbial pathogens. Because parasitoid wasp eggs are too
large to be phagocytosed by plasmatocytes, encapsulation of
these eggs by lamellocytes to sequestrate and eliminate themis
a key immune response (17, 58). Upon parasitoid wasp infection,
immune signaling is activated, such as through the Toll and
Janus kinase (JAK)/signal transducer and activator of
transcription (STAT) signaling pathways; these pathways
induce lamellocyte generation in both circulating hemocytes
and the lymph gland (32). In a cell trajectory analysis with
single-cell sequencing, lamellocytes were found to be derived in
two ways in the lymph gland (59): 1. hematopoietic progenitor
differentiation into lamellocytes (60–63) and 2. plasmatocyte
transdifferentiation into lamellocytes (64, 65). However, there
is only one way for circulating hemocytes to become
lamellocytes; plasmatocytes are transdifferentiated into
lamellocytes (Figure 2B) (35, 39, 66). The lymph gland
dissociates several hours after infection and then releases
lamellocytes into the circulatory system (62, 63).

Upon parasitoid wasp infection, plasmatocytes are recruited
and distributed on the surface of the wasp eggs (67). Then,
plasmatocytes transdifferentiate, and lamellocytes are then
recruited by plasmatocyte-coated eggs to initiate encapsulation
(Figure 2B) (65). Ao et al. noted that C-type lectins DL2 and
DL3 on the surface of Drosophila hemocytes are recognition
receptors of agarose bead encapsulation (68). However, the
recognition receptors on hemocytes and molecules on the
surface of parasitoid wasp eggs require further study. During
encapsulation lamellocytes organize to form multilayered
capsules to sequester pathogens. Proper localization of
Integrin-b and to the plasma membrane of lamellocytes is
required for this process (33, 69). Pathogens are thus
eliminated by melanization, which depends on the actions of
both lamellocytes and crystal cells (Figures 2B, C) (details
in 2.2.5).

Naoaki et al. showed that one kind of encapsulation, called
phagocytic encapsulation, depends on enlarged plasmatocyte
phagocytosis (70). Overexpression of Drosophila p38 MAPK
kinase plasmatocytes in Salmonella-infected flies increased 3 to
July 2022 | Volume 13 | Article 905370
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4-fold compared to uninfected flies, and the flies are filled with
phagocytosed Salmonella in the late stage of infection.
Phagocytic encapsulation regulated by Drosophila p38 MAPK
kinase can sequester pathogens and increase the survival rate
after infection.

Melanization by Crystal Cells
Melanization contributes to blood coagulation, wound healing
and encapsulation. Melanization involves phenol oxidation to
quinones, which polymerize to generate melanin. Phenol
oxidation is required for the generation of phenol oxidase
(PO), which is derived from the proteolytic cleavage of PPO.
Upon melanization, PPO is released into the hemolymph by
crystal cell rupture and proteolytic cleavage by serine protease
(SP), which is activated by pathogens and wounds (Figure 2B).
Thus, melanization is a combined cellular and humoral
immune response.

Pyroptosis is a programmed cell death in mammals.
Pyroptosis involves cell membrane swelling, causing rupture
and cytosolic content release, which induces inflammation
(71). Drosophila crystal cell rupture is similar to pyroptosis.
Recently, Dziedziech et al. showed Drosophila crystal cell rupture
as a type of proto-pyroptosis, an ancient form of pyroptosis, that
is dependent on Caspase activity (72). Previous studies have
indicated that crystal cell rupture is required for JNK activation
by Egr (73) and ROS (74). Dziedziech et al. first proposed that
crystal cells are activated by JNK signaling, while ROS
production promotes JNK signaling. Subsequently, cell
membranes begin to swell, and the Caspase cascade induces
crystal cell rupture (72).

Three PPO genes have been identified in the Drosophila
genome: PPO1, PPO2 and PPO3. PPO1 and PPO2 are mainly
expressed in crystal cells. PPO3 is mainly expressed in
lamellocytes (33). PPO3 differs from PPO1 and PPO2 in that
only PPO3 overexpression can induce spontaneous melanization
in the absence of pathogens. This function implies that the
zymogen form of PPO3, but not that of PPO1 or PPO2, is
enzymatically active independent of SPs. Moreover, PPO3 is
required for melanization in the hoptum-l mutant, in which JAK/
STAT is activated and many lamellocytes are in circulation (75).
However, to reveal the detailed processes by which lamellocytes
participate in melanization and PPO3 is released, further study
is required.

The N-termini of the PPOs are cleaved by SP, which results in
the activation of POs. Approximately 150 genes encoding SPs
have been found in the Drosophila genome (76). Three SPs have
been identified as PPO activators in hemolymph: MP1, MP2
(also called Sp7 or PAE1) and Hayan (77–79). Dudzic et al.
pointed out that two distinct SP pathways induce melanization.
Hayan activates both PPO1 and PPO2, specifically inducing the
melanization reaction, which blackens wound sites. In addition,
MP2 activates only PPO1, inducing alternative melanization and
thus killing pathogens such as Staphylococcus aureus (80). In
addition, MP1 is required for melanization in response to both
bacterial and fungal infection. MP2 mainly participates in
melanization in fungal infection. These differences imply that
MP1 is a common downstream SP that activates PPOs through
Frontiers in Immunology | www.frontiersin.org 6
different melanization cascades activated by bacteria or fungi
exposure. This means that MP1 acts downstream of MP2, and
MP2 cannot directly activate MP1 in vitro (81).

Constitutive melanization is harmful to flies and even causes
death. The SP inhibitor serpin can also regulate melanization.
Three serpins have been shown to inhibit excessive melanization
in Drosophila: Spn27A, Spn28D and Spn77Ba (82–84). Upon
infection, Spn27A is depleted from the hemolymph and activates
PO (85), causing melanization. Spn77Ba is an inhibitor of the
MP1 and MP2 protease cascades in Drosophila trachea (84). In
addition, the venom of the parasitoid wasp Leptopilina boulardi
contains a serpin, LbSPNy, which allows their eggs to escape
melanization in Drosophila (Figure 2B) (86).
DROSOPHILA IMMUNE SIGNALING
PATHWAYS

Activated immune signals induce the expression of immune
response genes, which comprise the core of Drosophila innate
immunity. Typically, immune signals are initiated by recognition
between pathogen-associated molecular patterns (PAMPs) on
pathogens and pattern recognition receptors on host cells. The
PAMP-induced signal transduction is mediated by adaptor
proteins in the host cell. Activated kinases, proteases and
ubiquitin ligases contribute to biochemical modifications of the
core transcription factors in immune signaling pathways.
Ultimately, the modified transcription factors are translocated
to the nucleus and promote immune-related genes in response to
immune challenge. In this section, we summarize the main 4
immune signaling pathways in Drosophila: NFkB/Toll, NFkB/
Imd, JAK/STAT and JNK (Figure 2A).

The Toll Pathway
The Toll pathway, which is part of the NFkB pathway, was first
identified in the dorsal-ventral patterning of embryos. NFkB
family transcription factors regulate immune-responsive gene
expression to defend the host. There are 2 NFkB family
transcription factors in the Toll pathway: Dorsal and Dif. Toll
is mainly activated by gram-positive bacteria and fungi. The Toll
pathway contributes to both humoral immunity and cellular
immunity. In addition, the Toll pathway is required for
melanization and epidermal wound repair during the late
embryonic stage (Figure 2C).

Overview of the Toll Pathway
Important extracellular processes of the Toll pathway are
recognition, SP cascade and the cleavage of ligand Spz. The
recognition molecules on gram-positive bacteria and fungi are
lysine (Lys)-type PGNs and b-glucan, respectively. The
recognition factors gram-negative binding protein (GNBP1),
GNBP3, PGN recognition protein (PGRP)-SA and PGRP-SD
react with these recognition molecules on the surface of microbes
(87–90). GNBP3 specifically participates in yeast recognition
(90). The other 3 recognition factors mainly recognize Lys-type
PGNs on gram-positive bacteria. In addition, the recognition of
July 2022 | Volume 13 | Article 905370
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diaminopimelic acid (DAP)-type PGNs on gram-negative
bacteria is mediated by PGRP-SD, which induces Toll pathway
activation (91). The signals emitted through these recognition
processes are integrated by the modular SP ModSP (92). Gram-
positive-specific SP (Grass) and 4 other SPs, Spirit, Spheroide,
Sphinx1 and Sphinx2, localize downstream of ModSP, which
induces Spätzle-processing enzyme (SPE) activation (93, 94).
Ultimately, a ligand in the Toll pathway, Spz, is cleaved by
activated SPE and binds with the receptor Toll (Figure 2A) (95).

Important intracellular processes in the Toll pathway include
the degradation of Cactus and nuclear translocation of Dorsal
and Dif. Under normal conditions, the NFkB family
transcription factors Dorsal and Dif are bound to Cactus and
primed for nuclear translocation (23, 96). Upon activation, Spz
binds to the Toll receptor, and the Toll receptor intracellular
Toll/Interleukin-1 receptor (TIR) domain interacts with the
adaptor protein MyD88, which forms a complex with the
kinase Pelle and the adaptor protein Tube that can
phosphorylate and degrade Cactus (Figure 2A) (97–100).
Dorsal and Dif are then translocated to the nucleus, which
promotes immune-related gene expression.

Negative feedback loops maintain hemostasis of the Toll
pathway. The Wnt inhibitor of Dorsal (WntD) is a target in
the Toll pathway and a feedback inhibitor of the Toll pathway in
both developmental processes and immune responses to septic
infection (101). The expression of dipt remains high following
infection in wntD-null mutants (101). Rahimi et al. showed that
WntD is secreted and associated with its receptor Frizzled4
(Fz4), which blocks the Toll extracellular domain in the dorsal-
ventral patterning of embryos (102). However, whether this
mechanism is the same as that mediating the WntD inhibitory
effect on the Toll pathway during the immune response remains
to be confirmed. Another negative regulator of the Toll pathway
is the ubiquitin E3 ligase Pellino (103). Pellino was initially
thought to be a positive regulator of the Toll pathway because the
AMP Drs expression level in Pellino-null mutants is lower after
Micrococcusluteus infection (104). However, additional data
indicated that Pellino is a negative regulator of the Toll
pathway (105). Ji et al. indicated that after the Toll pathway is
activated, Pellino is recruited by MyD88 and accumulates on the
plasma membrane. MyD88 is then ubiquitinated and degraded
by Pellino, inducing negative regulation of the Toll pathway
(Figure 2A) (105).

Immunological Function of the Toll Pathway
The Toll pathway directly promotes the expression of genes
encoding AMPs, including drs, atta and mtk, which play key
roles in Drosophila humoral immunity (see section 2.1) (22).
With respect to cell immunity, Toll contributes to immune cell
survival and proliferation, lamellocyte differentiation and
encapsulation (Figures 2B, C). Matova et al. found microbes
in immune cells of the Dif-/dorsal-double-null mutant.
Moreover, more dead immune cells were found in this double-
null mutant (106). These findings indicated that Dif and Dorsal
in immune cells autonomously regulate immune cell number
and survival through the NFkB family transcription factor target
DIAP1, which is related to apoptosis (107). In addition, a
Frontiers in Immunology | www.frontiersin.org 7
significant increase in immune cell density was found in a
gain-of-function Toll receptor mutant (Toll10b) and other
constitutively activated Toll mutants (108, 109). The activated
Toll pathway causes lamellocyte differentiation of hemocytesin
the circulatory system (110, 111) and lymph gland (112).
Similarly, upon wasp eggs infection, Toll pathway activation in
the niche induces lamellocytes differentiation and dispersion of
the lymph gland (63). Sorrentino et al. found that the
encapsulation capacity is reduced in a mutant with a Toll
pathway component deleted (108). These studies showed that
the Toll pathway is crucial to the immune response to parasitoid
wasp infection.

The Toll pathway participates in a complicated interaction
with melanization. In 2002, Ligoxygakis et al. showed that the
depletion of serpin Spn27A in hemolymph depends on the Toll
pathway, which induced a melanization response to infection
(Figures 2A, B) (85). In 2004, Zettervall et al. found melanotic
nodules in the Toll10b mutant (109). Later, in 2014, Schmid et al.
found that melanotic nodule formation requires only Toll
activation in fat bodies (113). However, in 2019, Dudzic et al.
found that the extracellular processes involved in Toll pathway
signaling and PPO-activated melanization both require the SP
Hayan. Hayan localizes downstream of Grass and contributes to
SPE activation (80). Interestingly, small melanized spots caused
by epidermal defects are found in the Dif-/dorsal-double-null
mutant (107). This finding implies that the Toll pathway is
dispensable for melanization. However, remodeling E-cadherin,
a component in adherens junctions, in a wound site repair is
required for Toll pathway activation in the epidermis (114). This
finding implies that the Toll pathway is essential for epidermal
defect repair, which might explain the formation of melanized
spots in the Dif-/dorsal-double-null mutant (Figures 2B, C).

The Imd Pathway
The Imd pathway is activated by the nuclear translocation of
another NFkB transcription factor, Relish (Rel), which promotes
the expression of most genes encoding AMPs. The Imd pathway
is indispensable for Drosophila resistance to microbes.

Overview of the Imd Pathway
The recognition of PGNs on the surface of a microbe is the first
step of Imd pathway activation. DAP-type PGNs on gram-
negative bacteria and a few gram-positive bacteria, such as
Bacillus spp., are recognized by PGN recognition proteins
(PGRPs) (115, 116). According to transcript size, Drosophila
PGRPs are classified into the short (S) and long (L) form. PGRP-
LC is the principal transmembrane receptor in the Imd pathway
(117, 118). In addition, PGRP-LE is classified into the
short and full-length form; the short form facilitates PGRP-LC
action (119, 120). The short form of PGRP-LE is secreted
into hemolymph and binds PGNs that are subsequently
recognized by PGRP-LC (121). Full-length PGRP-LE localizes
to the cytoplasm and recognizes monomeric PGN (also
called tracheal cytotoxin or TCT) fragments, which gain access
to a cell (122, 123). Furthermore, PGRP-LE that localizes in the
cytoplasm can induce Imd pathway activation independent of
PGRP-LC (119–121). Although PGRP-LF is associated with the
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membrane, it cannot bind PGNs. In addition, through its
interaction with PGRP-LC, PGRP-LF is a negative regulator of
Imd signaling (Figure 2A) (124–126).

The rate-limiting step in Imd pathway activation is the
nuclear translocation of Rel. The phosphorylation of multiple
sites in the Rel N-terminus is required for Rel activation. In
addition, the C-terminus of Rel is an inhibitor of nuclear
translocation because it can mask the nuclear localization
signal in the N-terminus and inhibit Relish dimerization.
Therefore, the nuclear translocation of Rel requires not only
phosphorylation of the N-terminus but also cleavage of the C-
terminus. The IkB kinase complex composed of Ird5 and Kenny
is thought to phosphorylate the Rel N-terminus (127). The
caspase Dredd can cleave the Rel C-terminus (Rel-49) and N-
terminal (Rel-68) in vitro (128). Therefore, Rel-49 is maintained
in the cytoplasm, and Rel-68 is translocated into the nucleus to
promote immune-related gene expression (Figure 2A)
(128, 129).

Upon PGN binding with a receptor in the Imd pathway, a
complex composed of Imd, Fadd, and Dredd is formed (117, 130,
131). The E3 ubiquitin ligase Diap2 associates with the E2
ubiquitin conjugating enzymes UEV1a, Ubc13 and Ubc5 to
activate Dredd through ubiquitination (132, 133). Then, Imd is
cleaved by activated Dredd to generate a Diap2-binding site,
where K63-polyubiquitin chains are conjugated Imd (133, 134).
K63-ubiquitination of Imd induces the recruitment and
activation of a complex composed of Tab2 and TAK1, which
phosphorylates and thus activates the Ird5/Kenny complex (127,
135–137). Finally, after phosphorylation and cleavage, Rel-68 is
translocated to the nucleus (Figure 2A).

Negative feedback loops are needed to restore Imd pathway
homeostasis after infection. Pirk, a target of the Imd pathway,
interacts with PGRP-LC, PGRP-LE and Imd to inhibit signal
transduction (138). Li et al. indicated that the transcription factor
dMyc contributes to negative feedback loops that maintain Imd
pathway homeostasis. Dipt, a target AMP in the Imd pathway,
may promote dmyc expression. dmyc promotes the expression of
the microRNAmir-277, which inhibits Imd and Tab2 expression
(Figure 2A) (139).

Immunological Function of the Imd Pathway
Activation of the Imd pathway in the fat body promotes AMP
production, which is released into hemolymph in response to
systemic infection (Figures 2A, B). Because TCT in oral bacterial
infection is a small molecule that can cross the gut barrier and
enter hemolymph (140), the Imd signaling pathway in guts and
hemocytes contributes to immune signaling to fat body cells. dro
expression is downregulated by the elimination of adult fly
hemocytes via apoptosis or knockdown of an Imd pathway
component in flies injected with the gram-negative bacterium
E. coli (141). The signal emitted from hemocytes to fat bodies is
unclear. However, intestinal local infection by Erwinia
carotovora induces a systemic immune response in larval fat
bodies; hemocytes play a key role in this process (142). As
mentioned above, the Toll pathway in the niche of lymph
glands contributes to cellular immunity through the promotion
of lamellocyte differentiation and dispersion of the lymph gland
Frontiers in Immunology | www.frontiersin.org 8
during systemic infection (63). Rel is inhibited upon bacterial
infection, which disrupts Hedgehog signaling and thus
hematopoietic progenitor maintenance (36). Moreover,
hematopoietic progenitors differentiate into plasmatocytes but
not lamellocytes during the cellular immune response (143).

As the digestive tract, the Drosophila gut contains various
microorganisms. The Imd signaling pathway in the gut interacts
with local commensal bacteria. On the one hand, commensal
bacteria activate the Imd signaling pathway to a basal level in
response to pathogenic bacteria exposure. Ryu et al. found that in
the flies grown under germ-freeconditions without commensal
bacteria in their guts, Rel did not localize to the nucleus (144).
Later, Glittenberg et al. showed that germ-free flies are more
susceptible to Candida albicans infection (145). These studies
indicated that the presence of commensal bacteria can induce
chronic basal activation of the Imd signaling pathway in
response to pathogen infection. On the other hand, negative
feedback loops maintain immune tolerance in the case of
commensal bacterial death. The homeobox transcription factor
Caudal is thought to be a negative regulator of the Imd signaling
pathway (Figure 2A). Knocking down caudal expression
disrupts the commensal community structurein the gut (144).
Bosco-Drayon et al. showed that PGRP-LB and PGRP-SC1/2
expression depends on PGRP-LE sensing PGNs of commensal
Lactobacillus plantarum (146). Moreover, PGRP-LB and PGRP-
SC1/2 are thought to be negative regulators of the Imd signaling
pathway, which they mediate through their amidase activity,
leading to PGN elimination in case it has been recognized by
PGRP-LC (147). In addition, Guo et al. found that
overexpression of PGRP-SC2 in the gut reduces the
commensal dysbiosis caused by aging (Figure 2A) (148).

The JAK/STAT Pathway
The JAK/STAT signaling pathway regulates multiple immune
processes. The JAK/STAT pathway participates in the systemic
immune response to tumors, epidermal wounds, mechanical
stress and parasitoid wasp infection. In addition, the activation
of the JAK/STAT pathway promotes the proliferation of
Drosophila intestinal stem cells (ISCs), which constitute a
unique cell type with the ability to undergo mitosis in the gut
(149). Therefore, the JAK/STAT pathway is triggered by a local
immune response in the Drosophila gut and promotes
epithelial repair.

Overview of the JAK/STAT Pathway
Similar to the other pathways described above, the nuclear
translocation of STAT92E signifies that the JAK/STAT
pathway has been activated. In Drosophila, 3 Unpaired (Upd)
family cytokines, Upd1, Upd2 and Upd3, are ligands of the JAK/
STAT pathway (150–154). These ligands can bind to Domeless
(Dome), a unique receptor in theDrosophila JAK/STAT pathway
(155, 156). A JAK unique to Drosophila is Hopscotch (Hop),
which is constitutively associated with the intracellular Dome
region (157, 158). Then, Dome dimerization induces hop
activation. The activated Hop undergoes autophosphorylation
and phosphorylates specific tyrosine residues in the intracellular
region of Dome where STAT92E docks (159, 160). In addition,
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activated Hop phosphorylates STAT92E, which induces
STAT92E dimerization and nuclear translocation (Figure 2A)
(154). JAK/STAT pathway regulators are important to multiple
biological processes. The structure of Latran (Lat), which is
associated with the receptor complex, is similar to that of
Dome. Because Lat lacks an intracellular site where STAT92E
can dock, it may inhibit JAK/STAT signal transduction (161,
162). Recently, Jumeau (Jumu) was shown to be required for the
nuclear translocation of STAT92E within Drosophila hemocytes
and within both the cortical zone (CZ) and medullary zone (MZ)
of the lymph gland. As a member of the Drosophila Forkhead
transcription factor family, Jumu may regulate the expression of
hop , a ff e c t i ng the phosphory l a t i on o f STAT92E
(Figure 2A) (163).

Undoubtedly, negative feedback loops are needed to restore
the JAK/STAT pathway. The suppressor of cytokine signaling
protein 36E (Socs36E) is a target of JAK/STAT (164, 165).
Socs36E not only can directly interact with Dome and inhibit
Dome phosphorylation by Hop but can also indirectly affect the
endocytosis of Dome (166, 167). Another target of the JAK/
STAT pathway is protein tyrosine phosphatase 61F (Ptp61F),
which has been inferred to inactivate phosphorylated Hop or
STAT92E (Figure 2A) (168, 169).

Immunological Function of the JAK/STAT Pathway
Activation of the JAK/STAT pathway in fat bodies promotes the
expression of Turandot A (TotA) and releases TotA into
hemolymph, which enhances resistance to stress, such as
bacterial infection, heat shock and ultraviolet light exposure
(170). In addition, the JAK/STAT pathway contributes mainly
to cellular immunity, such as plasmatocyte and lamellocyte
differentiation, under stress and intestinal epithelium renewal
after incurring cell damage (Figures 2B, C). The JAK/STAT
signaling response to parasitoid wasp infection in the lymph
gland is heterogeneous. The hematopoietic progenitors, which
are located in the inner region in the anterior lobe of the lymph
gland (known as MZ) and nearly the whole posterior lobe of the
lymph gland, highly express the JAK/STAT pathway receptor
Dome (19, 32). Moreover, JAK/STAT has been proven to
promote the maintenance of these hematopoietic progenitors
(61, 171). Interestingly, the JAK/STAT response pattern to
parasitoid wasp infection is different between progenitors in
the MZ and posterior lobe of the lymph gland. Upon
parasitoid wasp infection, the activity of the JAK/STAT
pathway in the progenitors of the MZ is downregulated by
Upd3 and Lat, which promotes progenitor differentiation into
lamellocytes and plasmatocytes (162). In contrast, the JAK/STAT
pathway in the progenitors in the posterior lobe of the lymph
gland is activated during differentiation, and therefore, these cells
are in reserve, primed to guarantee the appropriate quantity of
hematopoietic progenitors during the third larval stage (172). In
addition, aberrant activation of the JAK/STAT pathway in
mature hemocytes, which localize to the outer region of the
anterior lobe in the lymph gland (known as CZ), causes lymph
gland hyperplasia and lamellocyte generation independent of
parasitoid wasp infection (173). Minakhina et al. indicated that
the JAK/STAT pathway in the CZ promotes the cell autonomous
Frontiers in Immunology | www.frontiersin.org 9
and non-cell autonomous differentiation of plasmatocytes and
lamellocytes, respectively. Moreover, Pannier (downstream of
JAK/STAT) is essential for plasmatocyte differentiation (174).
Tokusumi showed that mechanical stress caused by squeezing
induces JAK/STAT activation in multiple tissues, including in
the CZ of the lymph gland, which promotes lamellocyte
formation (175). In addition, aberrant activation of the JAK/
STAT pathway causes melanotic nodule formation mediated by
lamellocytes (176, 177). The ingestion of pathogenic bacteria
damages the intestinal epithelium by the toxins released from the
bacteria and from the ROS generated by the host immune
response (178). Under this condition, Upd2 and Upd3 secreted
from enterocytes in the gut promote the proliferation of ISCs to
repair the damaged intestinal epithelium (179).

Upd family cytokines released from circulating hemocytes
activate the JAK/STAT pathway in other tissues during the
systemic immune response. Upon septic injury, Upd2 and
Upd3, especially Upd3, are secreted from circulating
hemocytes and activate the JAK/STAT pathway in fat body
and gut cells. Agaisse et al. showed that Upd3 released from
hemocytes causes JAK/STAT pathway activation in fat bodies
upon septic injury, which promoted the expression of TotA
(180). Chakrabarti et al. indicated that wounds caused by
septic injection activate p-JNK signaling in hemocytes, which
causes Upd2 and Upd3 release from hemocytes. These Upd
family cytokines promote intestinal epithelium renewal and
resistance to bacterial infection (181). In contrast, proliferation
of circulating hemocytes is promoted by the cytokine Upd3
secreted by tumors (Figures 2B, C) (53).

The JNK Pathway
The JNK signaling pathway is a part of the mitogen-activated
protein kinase (MAPK) pathway. The JNK pathway senses stress,
such as that caused by ROS, ultraviolet light exposure, DNA
damage, bacterial infection and wounding.

Overview of the JNK Pathway
The Drosophila TNF ligand Egr (182, 183) binds to two TNF
receptors, Wengen (Wgn) (184) and Grindelwald (Grnd) (185),
which activate the JNK pathway kinase cascade. The Drosophila
JNK pathway kinase cascade is composed of Msn (JNKKKK),
TAK1 (JNKKK), Hep (JNKK) and Bsk (JNK). In addition,
Slipper (Slpr) can act as a JNKKK during dorsal closure (186).
These components of the JNK pathway kinase cascade are
phosphorylated and activated gradually. Finally, Jra (also called
dJun) and Kay (also called dFos) are phosphorylated by activated
JNK and form a transcription factor heterodimer called AP-1
(187, 188). AP-1 promotes the expression of target genes that
contribute to multiple biological processes, such as the serine/
threonine protein phosphatase puckered (puc) (189, 190), the
matrix metalloproteinases mmp1/2 (191–194) and Upd family
cytokines (Figure 2A) (53, 195).

The negative feedback loop of the Drosophila JNK pathway
depends on the target gene puc, which dephosphorylates Bsk
(189, 190). The Imd pathway activates the JNK pathway through
activated TAK1. In addition, a common negative feedback loop
through PDGF- and VEGF-related receptors Pvr and Erk
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connect the JNK and Imd pathways. The JNK pathway together
with Imd promotes the expression of PDGF- and VEGF-related
ligands Pvf2 and Pvf3. Both ligands activate Pvr, which inhibits
Bsk phosphorylation through Erk. Moreover, Pvr is an inhibitor
of Rel phosphorylation (Figure 2A) (196).
Immunological Function of the JNK Pathway
In humoral immunity, the Imd pathway coordinates with the
JNK pathway to generate AMP (Figure 2B). Kallio et al.
indicated that hep, kay and msn expression knockdown
decreases Att expression levels upon infection in vitro (197).
Delaney et al. showed that puc overexpression in fat body cells,
the bsk-null mutant and the jun-null mutant block AMP gene
expression (198). With respect to cellular immunity, the JNK
pathway promotes lamellocyte differentiation (Figure 2B). The
expression of constitutively active hep induces the formation of
lamellocytes in circulating hemocytes and melanotic masses
Frontiers in Immunology | www.frontiersin.org 10
(109, 199). The number of lamellocytes is changed by aberrant
JAK/STAT pathway activation in circulating hemocytes and can
be reduced by kay-null mutation (199). These findings indicate
that JAK/STAT activation induces lamellocyte differentiation in
a partially JNK pathway-dependent manner. In addition, Upd
family cytokines, which are the target of JNK pathway, are
secreted by enterocytes, promoting proliferation of Drosophila
ISCs during the repair of epithelial damage caused by microbes
(195). The JNK pathway plays a dual role in tumors (200). On
the one hand, the JNK pathway plays an antitumorigenic role
through tumor apoptosis and immune cell recruitment. As
described in section Antitumor Effects of Plasmatocytes, tumor
apoptosis is also induced by TNF secreted by immune cells. In
addition, hemocytes are recruited by activated JNK signaling in
tumors. Mmp2, a target of the JNK pathway, causes basement
membrane damage and recruits hemocytes associated with
tumors (193). On the other hand, the JNK pathway plays a
pro-tumorigenic role by promoting excessive proliferation and
FIGURE 3 | Schematic overview of tissue communication in innate immunity. In addition to autonomous regulation inside immune organs, homeostasis of the
immune system is regulated by external signals emitted by other tissues, including the brain, ring glands, muscles and others. Tissue communication is largely
dependent on two types of hormones: ecdysone and insulin. Moreover, ligands, including Upds, Vn and Spi, act as “messengers” in this process. Typically, the
lymph gland is sensitive to nutrient status, oxygen concentration, odor signals and other environmental factors. Different processes or signaling pathways are
indicated by arrows of different colors.
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inflammatory reactions. Pinal et al. showed that in apoptosis-
deficient cells, the JNK pathway is continuously activated by
stress, which induces excessive cell proliferation and
tumorigenicity (201). In addition, Zhou et al. showed that
tumors caused by loss of BMP lead to JNK pathway activation
and high Mmp2 expression levels. Mmp2 causes dysfunction of
the intestinal barrier and commensal imbalance, which lead to
inflammatory reactions. The inflammation-positive feedback
activates the JNK pathway in tumors (Figures 2B, C) (194).

The JNK pathway is required for multiple wound healing
processes; it is activated at the edge of a wound in Drosophila
epithelial cells (20) and wing imaginal disc cells (202).
Downregulation of JNK pathway components such as Hep,
Bsk, Slpr and Jun in epithelial cells induces defects in wound
healing (203, 204). The JNK pathway contributes to wound
healing through epithelial cell migration, elimination of dying
cells and cell fusion. A target of the JNK pathway, Mmp1, can
degrade the extracellular matrix and induce the migration of
epithelial cells at the edge of a wound (192, 205, 206). Another
target of the JNK pathway, Profilin, can cause actin
polymerization to enhance the migration of epithelial cells
(207). Dying cells in wounds need to be extruded to enable
regeneration. Iida et al. showed that dying cell elimination is
mediated by the JNK pathway (208). In addition, the JNK
pathway cooperates with the JAK/STAT pathway and
spatiotemporally regulates cell fusion during wound healing.
Lee et al. indicated that JNK pathway activity peaks in the
vicinity of a wound approximately 8 h after injury to promote
cell fusion. JAK/STAT activity peaks at a later stage in a
concentric ring slightly farther away from the wound site to
suppress cell fusion. Furthermore, the JAK/STAT pathway in
cells in the vicinity of the wound is suppressed by activated JNK
signaling (209). Spatiotemporal regulation of cell fusion depends
on a delicate balance between the JNK and JAK/STAT pathways
during wound healing (Figures 2B, C).
TISSUE COMMUNICATION IN INNATE
IMMUNITY

As described in the previous sections, the fat body, hemocytes and
gut respond to immune challenge through intracellular signaling.
However, the homeostasis of the immune system is maintained by
signal transduction. Here, we will illustrate tissue communication
in innate immunity by showing the functional roles of the brain
and nervous system, muscles and the ring gland, which are largely
dependent on hormonal regulation and multiple ligands
(Figure 3). We also describe the potential regulatory role of the
lymph gland in controlling hemocyte activation.

The Brain and Nervous System
Similar to a central processing unit of the computer, the brain
and nervous system control various biological processes,
including development, metabolism and immune responses. In
fact, the brain is immune-privileged and can respond to injury,
Frontiers in Immunology | www.frontiersin.org 11
infection and neurodegenerative disease through multiple innate
immunity-related signaling pathways (210, 211). For instance, in
the adult Drosophila brain, ZIKA virus induces the activation of
the Imd signaling pathway. In this context, autophagy is
activated through ubiquitinated proteins that bind to Ref(2)P.
Together, upregulated AMPs and high autophagy levels suppress
the replication of ZIKA virus (212).

Brain control of innate immunity partially depends on insulin
signaling. In flies, insulin-like peptides (Dilps) are secreted by
insulin-producing cells located in the brain (213, 214). Dlips bind
the only insulin receptor that is orthologous to insulin receptors
in vertebrates. The active insulin receptor then induces its
downstream target, Akt, which negatively regulates
thetranscription factor FOXO and positively regulates target of
rapamycin (TOR) (Figure 3) (215, 216). FOXO can directly
promote the production of AMPs through its interactions with
the promoters of NF-kB-dependent target genes (Figure 3)
(217). In addition, TOR signaling inhibits autophagy, which is
required for innate immunity (Figure 3) (218). For instance, the
bacterium Listeria monocytogenes is recognized by PGRP-LE in
hemocytes and then cleared by autophagy mediated through
Atg8 (219). Autophagy can clear pathogens, including
Mycobacterium marinum and Salmonella enterica (220). These
outcomes highlight the importance of metabolic signaling in
innate immune responses. However, excessive immune
activation can alter metabolism and inhibit fly growth,
suggesting that metabolism and immunity systems involve
complex interactions (221, 222).The insulin/TOR signaling axis
plays dual roles in controlling Drosophila hematopoiesis. First,
this axis regulates the number and activity of the PSC in the
lymph gland in a cell-autonomous manner. Second, its function
in the MZ controls the maintenance of blood cell progenitors
(223, 224). Consistent with this outcome, a study showed that
amino acid signals are recognized in the fat body, stimulating the
brain to release Dilp2, which binds the insulin receptor in the MZ
to promote progenitor maintenance viaWingless (Wg) signaling
(Figure 3) (18). Similarly, low CO2 or O2 triggers the
stabilization of hypoxia inducible factor-a (Hif-a) in neurons
of the ventral nerve cord, which upregulates the expression of the
cytokine upd3 in the brain. Active cytokine activity triggers JAK/
STAT pathway activation in fat bodies, promoting the release of
Dilp6. This secreted protein activates the insulin receptor and
induces crystal cell differentiation through Serrate, a ligand for
Notch signaling (Figure 3) (225).

Olfaction is another regulatory factor required for the
immune response. Upon olfaction stimulation, a small cluster
of neurosecretory cells acting downstream of olfactory receptor
neurons releases GABA into hemolymph and binds the GABAB

receptor in the MZ, leading to high cytosolic Ca2+ levels, which
maintain blood cell progenitors in the lymph gland (Figure 3)
(226). Olfaction-derived systemic GABA also maintains ROS
homeostasis in hematopoietic progenitors, which is essential for
lymph gland growth (Figure 3) (227). Moreover, odors emitted
by wasps induce neurosecretory cell secretion of GABA, which is
sensed by the GABA transporter (Gat) in the lymph gland MZ,
resulting in the stabilization of Sima protein through
July 2022 | Volume 13 | Article 905370

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Yu et al. Innate Immunity in Drosophila
intracellular catabolism. This process eventually primes
lamellocyte differentiation and boosts immunity against wasp
egg challenge (Figure 3) (228). A feeding behavior assay showed
that adult flies are initially attracted by the odors emitted by
pathogenic bacteria. However, the ingestion leads to long-term
suppression of feeding behaviors. This process is mushroom
body-dependent, and the octopaminergic neuron-derived
immune receptors PGRP-LC and PGRP-LE are involved in
this behavior (229). In summary, the olfaction/neuron axis is
critical for flies to overcome immune challenges.

In Drosophila larvae, a subset of hemocytes consisting of
sessile hemocytes is attached to the cuticle (16, 230). In fact,
sessile hemocytes are not randomly distributed but cluster in
every larval segment (109, 230). Sessile hemocytes are regarded
as hematopoietic tissues because they can regulate blood cell
differentiation (231). In addition, upon parasitoid wasp
challenge, sessile hemocytes are released into circulation and
can transdifferentiate into lamellocytes (232). Some studies have
identified the peripheral nervous system as a microenvironment
for sessile hemocyte homeostasis (230, 233). Activin-b (a TGF-b
family ligand) in sensory neurons of the peripheral nervous
system is required for sessile hemocyte adhesion and
proliferation (233).

The aforementioned studies on sessile hemocytes strongly
indicate that the brain and nervous system play important roles
in regulating innate immunity inDrosophila. However, a series of
studies have revealed that immune responses are also involved in
neurodegenerative disease progression. For example,
extracellular deposits of insoluble fibrillar amyloid-b (Ab)
peptides constitute the hallmark of Alzheimer’s disease (AD)
(234, 235). In a Drosophila AD model, the JAK/STAT and JNK/
AP-1 signaling pathways are activated and required for the
clearance of neurotoxic Ab peptides (236). In addition, Imd
and JNK signaling are involved in a Drosophila model of
Parkinson’s disease, and inhibition of Rel in dopaminergic
neurons rescues mobility defects and neuronal loss (237). In
summary, the Drosophila brain is not only an appropriate model
for studying the systemic control of immune responses but is also
useful for understanding the interaction between innate
immunity and neurodegenerative diseases.

Muscles
Muscles have been well characterized as tissues that control
movement. However, a series of studies has highlighted the
significant roles played by muscles in the innate immune
response. For example, in Drosophila, indirect flight muscles
produce AMPs upon bacterial challenge, which is essential for
survival after infection (238). Yang and colleagues have identified
the somatic muscle as a vital immunological tissue in the fight
against parasitoid infection (239, 240). First, wasp eggs trigger
the upregulation of JAK/STAT signaling ligands Upd2 and Upd3
in hemocytes and then activate the JAK/STAT signaling pathway
in muscles, which is required for lamellocyte differentiation and
the successful encapsulation of the infesting eggs (Figure 3)
(239). In addition to the JAK/STAT pathway, muscle-derived
insulin signaling has also been shown to be important for an
Frontiers in Immunology | www.frontiersin.org 12
efficient encapsulation response (Figure 3) (240). During this
process, the JAK/STAT and insulin signaling pathways engage in
reciprocal interactions (Figure 3). Insulin signaling positively
regulates JAK/STAT signaling under normal and immune
challenge conditions (Figure 3) (240). Moreover, activating
insulin signaling rescues encapsulation rate and lamellocyte
formation defects caused by suppressing JAK/STAT signaling
in muscles, and vice versa (Figure 3) (240). These data indicate
that muscles and hemocytes coordinate to mediate the cellular
immune response upon wasp egg challenge. However, the
mechanism underlying how muscle-derived signals convert
prohemocytes/plasmatocytes into lamellocytes remains unclear.
Inspired by the role played by NimB5, a secreted protein
produced by the fat body during nutrient scarcity, in
controlling circulating hemocyte count, we reason that
metabolic processes affect lamellocyte activity, although the
mechanisms warrant further research (241).

The JAK/STAT pathway in muscles systemically modulates
insulin signaling. Muscle-derived JAK/STAT positively controls
insulin signaling in fat bodies, and inhibition of JAK/STAT in
muscles upregulates the transcription of dilp2 and dilp5 but
downregulates dilp3 transcription in larval brains (240).
Consistent with these findings, another study showed that loss
of the dome receptor in adult muscles significantly reduces fly
lifespan and causes metabolic pathologies, and these outcomes
are associated with Akt hyperactivation and subsequent
metabolism dysregulation (242). Furthermore, glutamate in
muscle promotes vitamin-dependent lipid mobilization in fat
bodies and improves intestinal pathogen clearance, which
eventually increases survival rates upon bacterial infection
(243). These data confirm that somatic muscles integrate
immune and metabolic signaling. Therefore, in addition to the
fat body, muscle may be a promising model for determining how
hosts balance metabolism and immune responses. Different
somatic muscles whose functional roles in regulating immune
responses are largely unknown, but visceral intestinal are known
to control intestinal homeostasis and local immune responses.
During the embryonic stage, visceral muscle-derived frizzled 2
and Wnt4, which encode the receptor and ligand of canonical
Wnt signaling, respectively, are required for left-right
asymmetric development of the anterior midgut (244).
Similarly, upon damage or bacterial infection, visceral muscles
secret the Wnt pathway ligand Wg, regulating ISC maintenance
and non-cell-autonomous proliferation (245, 246). In addition,
Upd signals in visceral muscles activate JAK/STAT in ISCs to
maintain ISC self-renewal and differentiation. Following
infection, damaged enterocytes (ECs, gut epithelial cells) and
enteroblasts (EBs, EC precursors) secret Upd3 to activate the
JAK/STAT signaling pathway in visceral muscles and EBs, which
trigger the secretion of two EGFR signaling ligands, Vein (Vn)
and Spitz (Spi), from visceral muscles and EBs, respectively
(Figure 3). Vn and Spi stimulate ISC proliferation through the
EGFR signaling pathway (Figure 3) (247–250). Furthermore, a
recent study showed that inhibition of Pngl, the homolog of
human N-glycanase 1 (NGLY1), in the visceral muscles of the
larval intestine significantly decreases AMP-activated protein
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kinase a (AMPKa) levels, disrupting gut homeostasis (251).
Collectively, these studies validate visceral muscles as a niche in
the control of intestinal homeostasis in a non-cell-autonomous
manner. To test whether somatic muscles employ a similar
signaling transduction mechanism as that identified in
intestinal visceral muscles, Yang and Hultmark examined the
transcript levels of EGFR ligands, Vn, Spi, Keren and Gurken, as
well as Wnt4, during wasp egg infection. However, the
expression of none of these genes was upregulated, indicating
that different muscle types regulate immune responses in
different patterns (252).

The Ring Gland and Hormones
The ring gland is an endocrine organ that controls development,
growth and reproduction in Drosophila by producing multiple
hormones (253). The ring gland consists of three tissues:
prothoracic gland, corpus allatum and corpora cardiaca tissues
(254). The prothoracic gland is the largest part of the ring gland,
and it secretes the molting hormone ecdysone, while the corpus
allatumsynthesizes juvenile hormone (253–255). Early studies
showed that ecdysone and juvenile hormone regulate AMP
expression upon immune challenge (256). They confirm the
role of ecdysone in mediating immune responses, showing that
ecdysone controls the expression of the pattern recognition
receptor PGRP-LC, subsequently modulating innate immune
recognition and host defense against bacterial challenge
(Figure 3) (257). In addition, ecdysone regulates the
expression of drs and drosomycin-like 2 (drsl2) systemically
and locally in the midgut, respectively, and Drs induction
depends on Broad (Br, an early ecdysone-response gene) (258).
Regarding cellular immunity, ecdysone activates hemocytes by
regulating both actin and the tubulin cytoskeleton (Figure 3)
(259, 260). Moreover, hemocytes insensitive to ecdysone show
impaired phagocytosis, and pupae with ecdysone-insensitive
hemocytes show higher lethality upon septic and oral infection
(259). Similar to humoral immunity, the activation of Rel in the
hematopoietic niche of the lymph gland is also controlled by
ecdysone signaling, and downregulation of ecdysone receptor
(EcR) in the PSC results in excessive differentiation of
plasmatocytes (Figure 3) (143). Because downregulated PSC-
derived Rel expression boosts the immune response during
bacterial infection, we speculate that ecdysone signaling plays
an essential role in hematopoiesis under both normal and
infectious conditions (143). These results highlight the
importance of ecdysone signaling in mediating the cellular
immune response. In summary, the ring gland systemically
regulates innate immunity by secreting hormones, although the
mechanism of this action warrants further investigation
(Figure 3). Xiong et al. revealed that microRNA-34 (miR-34)
mediates both ecdysone signaling and innate immunity by acting
as a node, suggesting that microRNAs might be key regulators in
tissue communications (261, 262).
The Lymph Gland
As described in the previous sections, the lymph gland, an
immunological organ, not only participates in hematopoiesis
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but also responds to wasp egg challenge. In addition to its effect
on nutrient and olfactory signaling, iron homeostasis controls
blood cell differentiation in the lymph gland, as indicated by
loss of Fer1HCH in the intestine causing an increase in the
crystal cell count (263). However, the mechanism by which
the lymph gland regulates other tissues remains unclear.
Sinenko et al. proposed a model in which invading parasite
eggs induce high levels of ROS production in the PSC, which in
turn induces the secretion of Spi, which eventually results in
the differentiation of lamellocyte precursors in the circulatory
system mediated through the Ras/Erk pathway (Figure 3) (62).
This speculation is based on lymph glands playing a regulatory
role in controlling circulating hemocyte differentiation. A
subsequent study indicated that high sSpi levels in the PSC
caused by parasites activate the EGFR signaling pathway in the
MZ in a non-cell-autonomous fashion, and this increase in
EGFR signal transduction is required for lymph gland
lamellocyte differentiation (63). Another study reported that
repressing headcase (hdc) in the PSC induces lamellocyte
differentiation in the hemolymph. Lineage-tracing assays
suggested that the majority of lamellocytes are not derived
from the lymph gland, confirming PSC to be a niche in which
circulating hemocyte differentiation is regulated (264).
Moreover, Khadilkar et al. highlighted the critical function of
the lymph gland in regulating circulating hemocytes, showing
that genetic ablation of occluding junctions in the PSC boosts
the cellular immune response in the circulatory system (265).
However, most hematopoietic system-specific Gal4 drivers
are expressed in hemocytes in both the circulatory system
and the lymph gland, resulting in investigations into the
communication within the blood system are difficult to
discern. Knocking down Arf1 expression only in circulating
hemocytes with Gcm-Gal4 induces excessive differentiation of
crystal cells and plasmatocytes in the lymph gland (266). Thus,
the development additional cell-specific genetic tools will
enable us to understand how lymph glands and circulating
hemocytes interact with each other and may reveal the
functional role of the lymph gland in controlling the
homeostasis of other tissues. Furthermore, whether
hemocytes act as “messengers” in this process is of great
interest and a topic for future study.
DROSOPHILA AS A MODEL FOR
STUDYING INNATE IMMUNITY

In mammals, the protein complex NF-kB is critical for innate
immunity, while NF-kB induces the AMP production upon
pathogen invasion in the fat body of Drosophila. In the fly
genome, three genes, rel, dorsal and Dif, encode NF-kB-like
proteins, which participate in the Imd and Toll signaling
pathways (21, 267, 268). The Toll signaling ligand/cytokine
Spz, a homolog of mammalian IL-17, has an active C-terminal
region whose cysteine residues share similarities with those
found in cysteine-knot growth factors (95, 269–271). In
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addition, this region forms dimers similar to those of vertebrate
nerve growth factors (270, 272). In addition to Spz, the JAK/
STAT ligand Upd3 is a homolog of the mammalian cytokine IL-6
(155, 180). Egr, a member of the TNF family, can activate the
JNK pathway, consistent with the roles of mammalian TNFs
(182, 183). Moreover, Wgn is the first TNF receptor homolog to
be identified in flies (184). In summary, Drosophila shares
evolutionarily conserved cytokines and regulatory factors in
innate immunity with mammals.

Regarding cellular immunity, signaling pathways maintaining
Drosophila hematopoietic homeostasis have been shown to play
important roles in mammalian hematopoiesis. For instance, the
lineage commitment of hemocytes is tightly regulated by GATA,
Friend of GATA and RUNX factors, which are also key
regulators in controlling hematopoiesis in mammals (273). In
addition, theWg/Wnt and JAK/STAT signaling pathways, which
are critical for lymph gland progenitor maintenance, are crucial
for hematopoietic stem cell renewal (274, 275). To date, two
different mammalian hematopoietic niches have been identified:
the endosteal niche and the perivascular niche (276). Suppressing
BMP receptor 1A in mouse bone marrow stroma induces an
increase in the osteoblast count, and the process is similar to that
of BMP signaling pathway inhibition in the PSC of the lymph
gland (277, 278). Furthermore, upon bacterial infection,
neutrophils are produced via TLR (Toll-like Receptor)/NF-kB
signaling and activated in mouse bone marrow endothelial cells,
components of the vascular niche (279, 280). Similarly, wasp egg
challenge elevates ROS levels in the PSC, promoting lamellocyte
differentiation through the activation of EGFR and Toll signaling
pathways (63).

Another reason that Drosophila is a useful model is based on
the ability to perform tractable genetic manipulations. Through
the UAS/Gal4 system, time- and tissue-specific expression of
certain genes can be achieved. Overexpression of AvrA, an
effector protein in Salmonella typhimurium, in the fat body
affects the proper activation of the Imd pathway (281, 282).
However, acatalytically dead form of AvrA exerts no effects on
Imd signaling, suggesting that AvrA enzyme activity plays a key
role in regulating host immunity (282). Similarly, in the fat body,
genetic activation of viral protein U (Vpu), an accessory protein
in human immunodeficiency virus (HIV), inhibits Toll-
dependent immune responses and impairs the ability of flies to
combat fungal infection; this phenotype is similar to the fungal
infection susceptibility phenotype observed in acquired
immunodeficiency syndrome (AIDS) patients (131, 283).
Another study suggested that Vpu induces apoptosis in
Drosophila wings mediated through the JNK signaling pathway
(284). Furthermore, using the UAS/Gal4 system to ectopically
express human AML-associated NUP98-HOXA9 (NA9) induced
leukemia-like phenotypes: excessive proliferation of blood cells
and hyperplastic growth of the hematopoietic organ (285).
Collectively, due to the parallels in signaling pathways and
regulatory factors observed between flies and mammals and
the convenience of the genetic manipulation in flies,
Drosophila is an ideal model for studying both innate
immunity and human disease pathology.
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CONCLUSIONS AND FUTURE
PERSPECTIVES

In this review, we show that Drosophila relies on a powerful
innate immune system to combat various invading pathogens.
Upon immune challenge, a series of AMPs are produced in the
fat body and released into hemolymph in a process known as the
humoral immune response or systemic immune response. AMP
synthesis is mediated by two NF-kB-related pathways: the Toll
and Imd pathways. In addition, the JAK/STAT and JNK
pathways play important roles in innate immune responses.
The cellular immune response is another defense mechanism
activated to fight foreign intruders, and three types of hemocytes
are involved in this response: plasmatocytes, crystal cells and
lamellocytes. Plasmatocytes, macrophage-like cells, kill
pathogens through phagocytosis, and crystal cells participate in
wound healing through melanization. Although lamellocytes are
rare under normal conditions, wasp egg challenge induces their
proliferation because they encapsulate large foreign bodies, such
as wasp eggs. We also outline tissue communications in terms of
innate immunity and show that the brain, muscles, the ring gland
and the lymph gland maintain the homeostasis of the
immunological system, largely through hormonal regulation
and a series of cytokines. Because of the similarities between
fly and mammalian innate immunity-related signaling pathways,
Drosophila is a useful model for studying host-pathogen
interactions. In addition, tractable genetic manipulation and
convenient tools, such as the UAS/Gal4 system, have allowed
the use of Drosophila in investigations into infectious diseases.

As mentioned above, the mechanisms underlying pathogens
recognition and clearance are relatively well understood.
However, the communication between hemocytes and the fat
body, as well as the relationship between humoral and cellular
responses, is not very clear. Genomic, proteomic, and
metabolomic analyses at the single-cell level using up-to-date
technology are promising strategies to address issues of innate
immunity in Drosophila (286, 287). In fact, in recent years,
single-cell RNA sequencing and single-cell transcriptomics
have been applied to studies on the Drosophila blood system.
With the help of these technologies, novel clusters of hemocytes
and lymph gland cells have been identified (39, 59, 288). Notably,
Fu et al. characterized two previously unidentified Drosophila
blood cell types: thanacytes and primocytes (40). Single-cell RNA
sequencing has also led to the discovery of the novel role played
by FGF in the immune response to parasitoid wasp eggs (39).
Collectively, single-cell technologies have helped us better
understand the complexity of the fly blood system and
hemocytes differentiation and transdifferentiation upon
immune challenge. In the future, the application of these
technologies to studies on the fat body and other immune
organs will likely reveal the heterogeneity of the cells in these
tissues and previously unknown mechanism of tissue
interactions in the immune context. Although studies on
innate immunity have been performed at the single-cell level,
an increasing number of studies have focused on the role played
by AMPs in addition to those played in the immune responses.
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For instance, Diptericin B functions in the formation of long-
term memory (289). AMPs have also been correlated with aging
(290–292). Furthermore, a study illustrated that several AMP
genes are upregulated in hematopoietic tumor-bearing larvae
and that upregulated AMPs expression inhibits excess expansion
of the lymph gland (54). Consistent with these findings, Dfn
together with Eiger promotes tumor cell death, confirming an
antitumor role played by AMPs (57). In summary, investigating
the roles of innate immunity-related molecules in addition to
those in the immune context is an interesting direction that will
lead to insights into the coordination of the immune system with
other biological processes, including metabolism, development
and growth.

Finally, although Drosophila are believed to engage only
innate immunity, increasing evidence shows that they may
have the capacity for engaging adaptive immune-like
responses. For example, pre-injecting flies with a sublethal dose
of Streptococcus pneumoniae protects the flies from a second
wave of infection (293). In line with this, immunological memory
has been observed with hemocytes exposed to virus-derived
short interfering RNA (siRNA)-containing exosomes, and
antiviral immunological memory may be transmitted to
progeny (294, 295). These studies encourage us to rethink
Frontiers in Immunology | www.frontiersin.org 15
adaptive immunity in flies. Because the viral proteins of severe
acute respiratory syndrome coronavirus (SARS-CoV) have been
studied in flies, Drosophila is a promising in vivo model for
COVID-19-related research that may be used in the near future
(296–298).
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