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Angiogenesis is an essential process in tumorigenesis, tumor invasion, and metastasis, and is an 
intriguing pathway for drug discovery. Targeting vascular endothelial growth factor receptor 
2 (VEGFR2) to inhibit tumor angiogenic pathways has been widely explored and adopted in 
clinical practice. However, most drugs, such as the Food and Drug Administration –approved 
drug axitinib (ATC code: L01EK01), have considerable side effects and limited tolerability. 
Therefore, there is an urgent need for the development of novel VEGFR2 inhibitors. In this 
study, we propose a novel strategy to design potential candidates targeting VEGFR2 using 
three-dimensional (3D) deep learning and structural modeling methods. A geometric-enhanced 
molecular representation learning method (GEM) model employing a graph neural network (GNN) 
as its underlying predictive algorithm was used to predict the activity of the candidates. In the 
structural modeling method, flexible docking was performed to screen data with high affinity and 
explore the mechanism of the inhibitors. Small -molecule compounds with consistently improved 
properties were identified based on the intersection of the scores obtained from both methods. 
Candidates identified using the GEM-GNN model were selected for in silico modeling using 
molecular dynamics simulations to further validate their efficacy. The GEM-GNN model enabled 
the identification of candidate compounds with potentially more favorable properties than the 
existing drug, axitinib, while achieving higher efficacy.

1. Introduction

Cancer remains a significant global health concern, with nearly 10 million deaths (approximately one in six) reported by the World 
Health Organization [1,2]. Tumor cells take advantage of their microenvironment by releasing growth factors and cytokines that can 
activate surrounding normal quiescent cells and initiate a cascade of rapidly dysregulated events [3]. Once the tumor lesion exceeds 
a few millimeters in diameter, hypoxia and nutrient deprivation induce an “angiogenic switch” that facilitates tumor progression [4]. 
Therefore, modulation of the angiogenic process is recognized as an important approach for cancer treatment [5,6].

The vascular endothelial growth factor (VEGF)-vascular endothelial growth factor receptor (VEGFR) pathway is a fundamental 
mechanism influencing various stages of angiogenesis, including vascular permeability, endothelial cell survival, proliferation, mi-
gration, invasion into the neighboring tissue, and capillary-like tube formation [7,8]. A critical step in angiogenesis involves the 
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upregulation of pro-angiogenic growth factor receptors on endothelial cells, with VEGFR2 emerging as the most important factor in 
promoting angiogenesis. VEGFR2, which is a transmembrane tyrosine kinase receptor, undergoes abnormal activation or overexpres-
sion during cancer development [9,10]. By inhibiting the tyrosine kinase signaling pathway of VEGFR2, it is possible to disrupt and 
prevent angiogenesis during tumor proliferation [11]. Recently, VEGFR inhibitors have been extensively investigated as potential 
treatment options for metastasis. Several inhibitors, including axitinib, pazopanib, sorafenib, sunitinib, and tizanib, along with other 
drugs, have been shown to be effective against a variety of cancers, including breast, colorectal, and lung cancers [12–14]. Axitinib, 
a small molecule targeting VEGFR2, has demonstrated antitumor activity against various types of cancer cells, including those resis-
tant to conventional chemotherapy and targeted therapies. Clinical trials have revealed that axitinib significantly enhances overall 
and progression-free survival in patients with advanced renal cell carcinoma and hepatocellular carcinoma [15]. However, similar 
to most current tyrosine kinase inhibitors, axitinib has considerable side effects, such as the development of resistance mechanisms 
[16], off-target effects [17], and gastrointestinal toxicity [18,19].

The existing constraints associated with small- molecule inhibitors of VEGFR2 and the complexities inherent in their development 
underscore the necessity for innovative compounds capable of effectively targeting this key protein [20]. As computational resources 
and algorithmic techniques continue to progress, the integration of computational approaches into drug discovery has emerged as 
a promising tool to address this challenge, because virtual screening allows the rapid identification of potential lead compounds 
without the need for resource-intensive experimental screening [21]. As a result, computational methods allow researchers to assess 
the developability of drug candidates in the early stages, thereby facilitating the optimization of lead compounds and the development 
of safer and more efficacious drugs [22,23].

In general, the computational methodologies employed in drug discovery can be broadly categorized into two groups: data-driven 
approaches, which leverage big data, and data-driven techniques (e.g., artificial intelligence, deep learning, and machine learning) 
[24–27], and physics-based multiscale modeling methods [28], as demonstrated by tools such as Rosetta [24], molecular dynamics 
(MD) simulation [29,30], and molecular docking [31]. Within data-driven methods, particularly artificial-intelligence-driven drug 
discovery (AIDD), many machine learning algorithms are employed to analyze the vast amounts of data generated during the drug 
discovery process. These algorithms are effective at distinguishing intricate patterns and relationships that are challenging or not 
feasible for manual identification. For instance, AIDD uses machine learning algorithms to scrutinize databases containing chemical 
and biological information such as gene expression data, protein structures, and compound libraries [32]. This analytical approach 
facilitates the identification of potential drug targets and streamlines the initial stages of drug discovery. The AIDD algorithm is 
proficient in predicting the physical and chemical properties of molecules, including solubility, log P, and pKa values. This predictive 
capability helps in the optimization of lead compounds and the avoidance of synthesizing impractical candidates, identifying those 
with the most promising therapeutic potential. The other type is the physics-based multiscale modeling method, which can be termed 
structure-based drug design (SBDD) because it relies on structural information pertaining to drugs and their targets. SBDD employs 
computational methods to forecast the binding affinity between small molecules and protein targets, as well as other properties, such 
as stability. This approach enables the design of drugs that interact specifically with certain proteins, modulate their specificity to 
address the underlying disease mechanism, and reveal their developability [33].

Given the limitations associated with small-molecule inhibitors of VEGFR2, in this study, we propose a novel strategy for ef-
ficiently designing potential candidates targeting VEGFR2 using three-dimensional (3D) deep learning and structural modeling. A 
geometrically enhanced molecular representation learning method (GEM) model with a graph neural network (GNN) was employed 
as the underlying algorithm to predict the pharmacological activities of the candidates. For structural modeling, flexible docking was 
conducted to screen candidates with high affinity and to explore the efficacy pathways and safety profiles of the inhibitors. Small-
molecule compounds exhibiting consistently superior efficacy were identified based on the intersection of scores derived from both 
methods. Candidates selected using these two approaches were used to perform MD simulations to further validate their properties 
and efficacy.

2. Methods

2.1. Schematic of the proposed method

This study employed an integrated approach combining AIDD and SBDD to systematically screen and identify small-molecule drugs 
with specific targeting capabilities towards VEGFR2, as illustrated in Fig. 1. Initially, 11,521 compounds with documented biological 
activities and structural features were extracted from the BindingDB database. The construction of the GEM model, based on the GNN, 
served as the foundation for the VEGFR2 activity prediction algorithm used in this study to predict the activity of compounds within 
the database [34]. Next, the binding affinity of the candidate small-molecule compounds to VEGFR2 was evaluated using flexible 
docking. Candidates were then selected based on the combined outcomes of the GEM model and flexible docking results. Finally, 
the structures of the chosen candidates in complex with VEGFR2 were analyzed using MD. These candidates represent potential 
breakthroughs in cancer treatment. In the literature, axitinib was employed as a standard reference drug to assess the anti-tumor 
effects of prospective new drug candidates aimed at inhibiting VEGFR2 in numerous studies [35,36]. Consistent with established 
studies, axitinib was also adopted as a control compound to assess the viability of these candidates identified in this study.

2.2. Dataset preparation

In this study, the BindingDB and ChEMBL21 databases were selected for their extensive and meticulously curated datasets, pro-
2

viding abundant bioactivity data relevant to VEGFR2. BindingDB, a well-established repository specializing in the binding affinities 
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Fig. 1. A flowchart of the overall screening strategy.

of small molecules, was chosen for investigating drug-target interactions [37]. This database encompasses over 14,607 unique small 
molecule structures targeting VEGFR2, from which a subset of 11,521 small molecules with Ki (nM) values greater than zero were 
identified for further analysis.

Additionally, a comprehensive docking dataset from the ChEMBL21 database [38] was obtained, including 103,529 small molecule 
structures represented by both isomeric and canonical simplified molecular input line entry system (SMILES) (iso-SMILES and canon-
ical SMILES). ChEMBL21 is well-known for its extensive collection of bioactive molecules, including numerous FDA-approved drugs. 
This database is specifically tailored for drug discovery research, providing high-quality data that enhances the reliability of compu-
tational analyses.

These databases were preferred over alternatives such as DrugBank [39] or PubChem [40] due to their emphasis on bioactivity and 
binding affinity data, crucial for computational approach developed in this study. The curated nature of BindingDB and ChEMBL21 
ensures data reliability and relevance, significantly enhancing the data robustness of this study.

2.3. Structure preparation

The crystal structure of the human VEGFR2 kinase domain (PDB: 1VR2) was obtained from the Protein Data Bank [41]. The 
structure was prepared, protonated in 3D, and subjected to energy minimization using the Molecular Operating Environment (MOE) 
software. Due to its comprehensive suite of tools and demonstrated accuracy in docking studies, MOE has been widely utilized and 
validated in the literature [27,42]. MOE has been shown to achieve comparable results to other popular software packages such as 
Schrödinger and Autodock Vina. For instance, both MOE and Schrödinger’s Covalent Dock programs successfully predicted binding 
affinities in [42]. Therefore, MOE was chosen for this study to maintain consistency. The structure preparation involved the correction 
of gaps in the protein structure. Protonation in 3D includes the addition of hydrogen atoms, while considering the default ionization 
states. Flip options were applied to optimize the hydrogen-bonding networks involving amide, sulfonamide, and imidazole groups. 
All the water molecules were removed from the structure. The atom constraint strength was set to 10, and a flat-bottom constraint 
range of 0.25 was applied to prevent excessive positional deviation of the atoms. The protein conformation was optimized through 
energy minimization using the root mean square gradient (RMSG) method with a convergence threshold of 0.1 kcal/mol/Å.

2.4. AIDD

2.4.1. The graph-based molecular representations

The use of graph models to represent molecular information offers several advantages. In contrast to text-based representations 
of molecular data, such as SMILES and InChI (International Chemical Identifier), graph models offer a more intuitive representation 
of molecular structures using nodes and edges to represent atoms and their bonds. Consequently, the chemical information of a 
molecule can be captured more accurately [34,43]. In this study, the molecular representation comprised two distinct graphs, namely, 
the bond-angle graph denoted as H and the atom-bond graph denoted as G. Graph G describes the correlation between atoms and 
chemical bonds, representing atoms as nodes and chemical bonds as edges connecting these nodes. In the bond-angle graph, the nodes 
represent chemical bonds, whereas the bond angles are regarded as graph edges. Each bond angle links two and three chemical bonds, 
resulting in a three-dimensional conformation of the molecule. Notably, unlike graph G, graph H captures the spatial arrangement of 
the molecular structure [44]. Both the atom-bond graph and bond-angle graph served as inputs to the geometry-based graph neural 
network (GeoGNN), contributing to a comprehensive analysis and understanding of molecular information within the context of 
3

graph neural networks [34]. More details for GeoGNN can be found in [34].
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2.4.2. Training settings and parameters

During the training process, a batch size of 256 was employed, the number of training epochs was 800, and validation evaluation 
metrics were adapted for early stopping. Adam was used as the optimizer with a weight decay of 0.0008. The cosine-annealing learning 
rate was employed for the schedule of the learning rates, with a specific learning rate of 0.001 and the maximum number of iterations 
(Tmax) set to 15. To predict the molecular properties, the dataset obtained from the BindingDB database was randomly split in an 
8:2 ratio to derive the training and testing datasets. The ReLU activation function was applied, and the loss functions were the root 
mean squared error (MSE), mean absolute error (MAE), and coefficient of determination (R2). Additionally, layer normalization, 
regularization, and graph normalization were considered in GeoGNN to enhance the predictive performance [45]. All experiments 
were conducted on a computing system equipped with an NVIDIA GeForce RTX 3090 GPU and a 256-core AMD EPYC 7742 CPU.

2.5. Molecule docking

Molecular docking experiments were performed using MOE software, employing a dataset of 103, 529 FDA-approved small-
molecule drugs. The structure of the kinase domain (PDB: 1VR2) of human VEGFR2 (KDR) was retrieved from the Protein Data 
Bank for the docking study [41]. After structure retrieval, structure preparation, 3D protonation, and energy minimization proce-
dures were performed using MOE. Specifically, the structure preparation phase repaired gaps in the protein structure, whereas 3D 
protonation added hydrogen atoms to the structure and completed protonation in the default ionization state. Water molecules were 
removed systematically. The atomic restraint strength was set to 10, and the extent of the flat-bottom restraint was set to 0.25 to pre-
vent excessive positional deviations of atoms. Energy minimization was performed with a root mean square gradient of 0.1 kcal/mol/Å 
to optimize the protein conformation. The binding site for VEGFR2 was identified based on complexes of existing small-molecular 
inhibitors, and VEGFR2 (PDB: 1Y6A, 1YWN, 3CPC, 4AG8, 3WZE).

Molecular docking was performed using the method specifically designed for high-throughput docking, as shown in Eq. (1). The 
docking outcomes were ordered based on the dock score, which is a scoring metric primarily contingent on the interaction energy 
between ligands and the VEGFR2 protein. Additionally, the binding free energy of the docking outcomes underwent assessment 
through the generalized Born/volume integral/weighted surface area (GBVI/WSA) dG scoring method, introduced by Corbeil et al. 
[46], as follows:

Δ𝐺 ≈ 𝑐 + 𝛼

[2
3
(Δ𝐸𝐶𝑜𝑢𝑙 +Δ𝐸𝑠𝑜𝑙) + Δ𝐸𝜈𝑑𝑊 + 𝛽Δ𝑆𝐴𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑

]
(1)

This method incorporates various terms, including the average gain and loss of rotation and translation entropy (c), a constant 
(𝛼.𝛽) determined during the function training process, a Coulomb electrostatic term (ECoul), a solvation electrostatic term calculated 
using the GB/VI solvation model (Esol), a van der Waals contribution (EvdW), and the surface area weighted according to the exposed 
area (SAweighted).

2.6. Molecular dynamics simulations

MD simulations were conducted using GROMACS 2020.05 software [47]. The SwissParam server was used to generate topology 
files for the ligands [48]. The system was prepared by placing protein-ligand complex structures in periodic cubic boxes with a 
boundary size of 1.2 nm. NaCl was added at a concentration of 0.15 mol/L for charge neutralization. An energy minimization 
procedure was performed using a maximum descent algorithm, with up to 5,000 steps employed to optimize the system structure. 
Pre-equilibration phases, including 1 ns of a constant number of particles, volume, and temperature (NVT) and 1 ns of a constant 
number of particles, pressure, and temperature (NPT) were performed. The system temperature was maintained at 310 K, and the 
pressure was set to 1 bar using the V-rescale [49] and Parrinello-Rahman algorithms [50]. The formal simulation duration was 100 
ns, with a time step of 2 fs. The CHARMM36 force field was applied to all simulations [51].

Following the simulations, the stability of protein-small molecule drug binding was assessed by analyzing the RMSD of the in-
teractions within the simulation trajectories. The truncation distances for van der Waals and Coulomb interactions were set to 1
nm. GROMACS was employed for trajectory analysis, including structural clustering, based on the RMSD of the atomic coordinates. 
Clusters were identified by comparing the mean RMSD of the largest cluster with those of other structures. Mean square displacement 
(MSD) calculations reflect the diffusion constants of molecules, offering insights into conformational changes in protein complexes 
and their functional implications. The binding stability of the complex was evaluated by calculating the root mean square fluctuation 
(RMSF), which reflects the magnitude of the fluctuation of the protein complex around its equilibrium position. Solvent-accessible 
surface areas (SASAs) provide information about the different regions of a molecule exposed to the solvent environment, aiding the 
understanding of small molecules or proteins binding to specific sites on the protein surface and their impact on protein function [52]. 
Energy calculations provide insights into the stability of the complex and how it is influenced by various factors, such as temperature, 
pressure, or the presence of ligands.

3. Results

3.1. Prediction of protein-ligand affinity

The prediction of protein-ligand affinity is of vital significance in the field of computational drug design. Prior to the training phase, 
4

the Morgan fingerprint was computed using RDKit and the high-dimensional Morgan fingerprint data underwent dimensionality 
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Fig. 2. The distribution of molecules is illustrated in both the three-dimensional space (A) and two-dimensional space (B). The dataset underwent an 80/20 split for 
training and validation purposes. T-SNE, t-distributed stochastic neighbor embedding.

Fig. 3. The predictive performance of the geometry-based graph neural network in estimating Ki values as compared to the observed Ki values sourced from DrugBank. 
The dashed line represents the identity line (y = x). Evaluation metrics encompassing 𝑅2, mean absolute error (MAE), and root mean squared error (RMSE) values 
served as the indicators of the accuracy and predictive efficacy of the model.

reduction through t-distributed stochastic neighbor embedding. This reduction facilitates the visualization and analysis of molecular 
distributions in both 3D and 2D spaces. Potential outlier molecules were identified by measuring the distances from each data point 
to the centroid in the 3D space. Outliers were defined as data points with distances exceeding three times the standard deviation of 
the mean distance. The identified outliers were removed from the dataset to improve data quality.

The distributions of molecules in both 3D and 2D spaces are illustrated in Fig. 2. The data points are color-coded based on the labels 
for informative representation. The molecular dataset exhibited strong clustering behavior, indicating that the extracted molecular 
features and dimensionality reduction techniques employed effectively captured the underlying structure within the dataset. This 
data processing procedure is expected to be advantageous for subsequent training processes.

The predicted results, 𝑅2, mean absolute error (MAE), and root mean square error (RMSE) are shown in Fig. 3. It can be seen that 
the predicted results and observed results were highly correlated, which indicates that the GeoGNN had a good predictive capability 
since the R2 and RMSE were larger than 0.7 (𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 0.001 for 𝑅2, indicating a highly statistically significant correlation) and 
the MAE was below 0.6. Therefore, the model used in this study can learn the molecular structure-affinity relationship well.

3.2. Molecular docking

Docking tests were performed using the 103, 529 small molecules. The GBVI scoring function [53] was employed to estimate the 
free energy associated with ligand binding, considering a specified molecular posture. This scoring function served as a metric for 
evaluating the docking posture. Successful docking and scoring were achieved for 88, 785 small molecules, resulting in the identi-
fication of the top 5, 000 compounds. The intersection of the prediction score Ki and the docking result score S of the top 5, 000
compounds in the AI model and the 10 screened compounds, as detailed in Supplementary Table S1, with better composite scores 
are shown in Figs. 4 and 5, respectively. Although these compounds are structurally diverse, it is important to note that the nature 
of protein-ligand interactions and the intrinsic properties of the binding pockets enable structurally diverse molecules to selectively 
5

bind to specific pockets, as demonstrated by studies in the literature [54–56].
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Fig. 4. The intersection of the top 5,000 compounds based on the AI model prediction score (Ki) and the docking result score (S) is depicted. The red dots represent 
data points corresponding to the 10 compounds exhibiting superior composite scores.

Table 1

Predicted oral rat 𝐿𝐷50 for the 10 compounds screened and the positive con-
trol compound axitinib from the nearest neighbor method.

Compounds Oral rat 𝐿𝐷50 -Log10 (mol/kg) Oral rat 𝐿𝐷50 mg/kg

1 2.58 1582.17
2 4.02 72.40
3 1.70 11991.17
4 3.14 290.89
5 1.42 18778.73
6 1.42 18778.73
7 2.85 874.82
8 2.03 4230.54
10 2.77 1084.92
11 1.12 29337.37

axitinib 2.45 1373.50

Given that toxicity assessment is a critical part of the drug discovery process, the United States Environmental Protection Agency 
(EPA)’s Toxicity Estimation Software Tool (TEST) [57], which was widely employed in the literature for toxicity analysis [58–60], was 
employed to estimate the toxicity of the 10 compounds screened and the positive control compound axitinib. During the estimation 
process, the nearest neighbor method was used to estimate the oral rat 𝐿𝐷50, which is the lethal dose for half of a group of 10 or 
more laboratory white rats when administered orally as a single dose. The results are shown in Table 1.

3.3. MD

AIDD focused on assessing the binding affinity of small-molecule compounds to VEGFR2, whereas docking experiments concen-
trated on evaluating the stability of the docking poses assumed by these compounds in relation to VEGFR2. A combination of results 
from both methods was used to select small-molecule compounds for subsequent MD simulations. Specifically, the top 5% (5,000) 
of intersections derived from the outcomes of the AIDD and docking analyses were selected. Notably, 100-ns MD simulations were 
performed for the top 10 small-molecule compounds within this intersection set, alongside the positive control axitinib.

Examination of the structures at 100 ns revealed that no small-molecule compounds detached from the binding pocket. The long 
chains of the small-molecule compounds showed robust and stable binding within the pocket (Supplementary Figure MD_frame). 
Compounds 1, 2, and 10 were partially exposed to the solvent environment and were unable to maintain a stable binding conformation, 
as depicted in A, B and I in the Supplementary Figure MD_frame. In contrast, compounds 3, 4, 6, 7, 8, and 11 at 100 ns and their 
intermediate (cluster) structures were essentially the same, suggesting their capacity for more secure binding to VEGFR2 (see C, D, 
F, G, H, and J in the Supplementary Figure MD_frame). Consequently, the six small-molecule compounds, along with the control, 
underwent further detailed analysis.

The results of the 11 compounds as representative examples of the MD analysis are shown in Fig. 6. The RMSD, a metric for 
gauging the average positional alteration of all atoms between two structures, was employed in the analysis. The RMSD calculations 
based on the initial structure revealed a notable phase of increased values at approximately 5 ns for all ligands. However, except for 
compounds 3, 8, and 10, the ligands converged to stable states in the middle of this period. Specifically, compounds 4, 7, 11, and the 
control compound exhibited relatively constant RMSD values throughout the simulation process. A comparison of the RMSD values 
among the 11 simulated complexes revealed that the control compound, compound 11, and compound 2 exhibited smaller values 
and a stabilizing trend. Notably, when the RMSD of compound 11 stabilized, its value was the smallest among the 10 compounds, 
6

suggesting minimal postural changes during the simulation (see J in Supplementary Figure RMSD).
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Fig. 5. The 10 compounds screened and the positive control compound axitinib.

The MD results for the best-performing compound, compound 11, and the MD data for the control drug, axitinib, are shown in 
Fig. 7. Notably, RMSD analysis revealed that compound 11 displayed greater stability than axitinib after 80 ns, with a reduction in 
relative atom displacement. MSD analysis revealed that compound 11 exhibited significant protein and ligand positional changes at 
50 ns. Importantly, at 50 ns post-stabilization, the trend and magnitude of the positional changes in compound 11 aligned with those 
observed for axitinib.

4. Discussion

MD analysis revealed a notable observation that the control ligand exhibited a change in RMSD during the later stages of the 
simulation. This finding suggests a potential ongoing alteration in the binding conformation of the control ligand, while compound 
7

11 remained more stable. The MSD was employed to scrutinize the positional alterations in the proteins and ligands. Prior to 80 ns, 
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Fig. 6. Mean and standard deviation of the root mean square deviation (RMSD) (A), mean square displacement (MSD) (B), and solvent-accessible surface area (SASA) 
(C) for 10 representative compounds and the control compound axitinib at 50 ns post-stabilization after the simulation.

the MSD values for both the control compound and compound 7 remained notably stable. Notably, compounds 3, 6, and 11, and 
the control compound displayed similar trends in MSD values for the proteins and ligands, whereas other compounds demonstrated 
considerable variation in MSD values (see Supplementary Figure MSD). Such discrepancies may contribute to larger relative displace-
ments between the proteins and ligands, leading to diminished stability. Gyrate, is a metric reflecting molecular volume and shape, 
with an increased value indicating an expanded system. Specifically, the gyrations of compounds 2, 5, 6, 7, and 11 and the control 
compound demonstrated greater stability than the other two molecules (see Supplementary Figure gyrate_ligand). Moreover, the 
linear structures of compounds 2, 5, 7, and 11 and the control compound were evidenced by lower X-axis components, with gyrations 
primarily stemming from the planes where the Y- and Z-axes reside. Conversely, the gyrations of compounds 3, 4, and 8 exhibited 
sustained variability throughout the simulation, maintaining alterations in the three-axis components within a varied range (see Sup-
plementary Figure gyrate_ligand). Compound 11 and the control compound showed similar changes in the three-axis components, 
with changes in the X-axis maintained at relatively larger intervals. Eleven compounds, excluding compound 3, exhibited a stable 
trend in gyration throughout the simulation (see Supplementary Figure gyrate_protein). Notably, compounds 6, 7, 8, and 10 exhibited 
a volumetric change at approximately 40 ns and stabilized thereafter, suggesting a ligand-driven conformational adjustment towards 
increased affinity.

The RMSF reflects the average positional change amplitude of the residual atoms in 100 ns. The distribution of the RMSF among 
the protein residues across all 11 compounds exhibited a similar pattern, as illustrated in Supplementary Figure RMSF. Compound 
3 showed a higher RMSF value, indicating reduced binding stability to the ligand, whereas the control compound displayed a lower 
RMSF value, suggesting enhanced binding stability. The residues at positions 880–920 and 1,025–1050 exhibited a reduced RMSF 
value. This region corresponds to the binding pocket, signifying the enhanced stability attributed to ligand interactions with the 
residues at this site. During the simulation, the SASA values for compounds 4, 8, and 11, and the control compound consistently dif-
fered from the remaining seven compounds, displaying lower values and a steadier trend, suggesting a more constrained conformation 
(Supplementary Figure SASA). Additionally, the SASA value, calculated based on protein composition, showed an enhanced stability 
trend for compounds 4 and 8 (refer to D and H in Supplementary Figure SASA). All 10 compounds exhibited lower total energy than 
the control compound (Supplementary Figure energy). The total energy fluctuations of compounds 6, 7, and 11 closely resembled 
those of the control compound (refer to F, G, and J in Supplementary Figure energy). In particular, compound 11 demonstrated a 
performance similar to that of axitinib in MD simulations, making it a promising VEGFR2 inhibitor.

While compounds 2, 4, 7, and 10 showed lower oral rat 𝐿𝐷50 values, indicating higher toxicity compared to the estimated toxicity 
of axitinib, compounds 1, 3, 5, 6, 8, and 11 exhibited lower toxicity, as evidenced by the toxicity assessment results shown in Table 1. 
8

Notably, compound 11 demonstrated the lowest estimated toxicity. Moreover, the experimental data for compound 11 included in 
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Fig. 7. (A) 1.: Root mean square deviation (RMSD) of the complex, VEGFR2 and the Compound 11. (A) 2.: RMSD of the complex, VEGFR2 and the AXI. (B) 1.: Mean 
square displacement (MSD) of the VEGFR2 and Compound 11 in the complex. (B) 2.: MSD of the VEGFR2 and AXI in the complex. (C) 1.: Gyrate of the Compound 
11 in the complex. (C) 2.: Gyrate of the AXI in the complex. (D) 1.: Gyrate of the VEGFR2 in the compound 11 complex. (D) 2.: Gyrate of the VEGFR2 in the AXI 
complex. (E): Root mean square fluctuation (RMSF) of the VEGFR2 in the compound 11 complex and the AXI complex. (F) 1.: Solvent-accessible surface area (SASA) 
of the VEGFR2 and the Compound 11 in the complex. (F) 2.: SASA of the VEGFR2 and the AXI in the complex. (G) 1.: The Compound 11 complex structures at 0ns, 
cluster and 100ns. (G) 2.: The AXI complex structures at 0ns, cluster and 100ns. (H) The total energy of the Compound 11 complex and the AXI complex.

TEST revealed an oral rat 𝐿𝐷50 value of 17011.96 𝑚𝑔∕𝑘𝑔 [57], further supporting its lower toxicity compared to the estimated toxicity 
of axitinib.

5. Conclusion

The outcomes of the Gyrate and SASA analyses in the comparative assessment of compound 11 and the control compound axitinib 
demonstrated substantial consistency. In contrast, axitinib exhibited a lower RMSF value and lower energy, indicative of higher 
stability in the binding interaction between the drug molecule axitinib and the receptor over the course of 100 ns. The structures at 
0 ns, clusters, and 100 ns also visually reflected the more stable binding characteristics of axitinib to VEGFR2. Thus, compound 11 
and the existing drug axitinib exhibit distinct advantages. Compound 11 emerged as a promising lead compound with the potential 
for subsequent drug development endeavors aimed at targeting VEGFR2.

One limitation of this study is the lack of experimental validation. Although promising, the proposed strategy may face challenges 
in translating the findings into clinical settings. In 𝑣𝑖𝑡𝑟𝑜 and in 𝑠𝑖𝑙𝑖𝑐𝑜 predictions do not fully capture the dynamic and multifaceted 
nature of human physiology and pathology, potentially leading to discrepancies between predicted and actual outcomes in clinical 
trials. In the future, more robust experiments, including studies involving cell lines and animals, will be employed to further validate 
the compounds identified in this study. Nevertheless, the computational approach used in this study contributed significantly to 
cost reduction and time savings in the drug-design process. Another limitation of this study is that the results relied solely on the 
software MOE. Although MOE was chosen for its comprehensive suite of tools and proven accuracy in docking studies, future studies 
could benefit from integrating results obtained from multiple software platforms for docking studies. This approach would further 
enhance the reliability and justification of the screened compounds. Moreover, this study solely utilized the well-known axitinib 
as a benchmark drug to substantiate a proof-of-concept, demonstrating the viability of our methodology. In the future, further and 
more recent FDA-approved drugs aimed at targeting VEGFR2 will be assessed and compared in a follow-up study. Finally, potential 
adverse immune reactions that these compounds might induce were not considered at this stage. In the future, integrated in vitro and 
in vivo studies to evaluate the immunogenicity of the lead compounds will be crucial for understanding their potential in therapeutic 
9
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Another potential direction for future research could involve integrating multi-omics data (genomics, transcriptomics, and pro-
teomics) to enhance the predictive power of the models, thus providing a more comprehensive understanding of the molecular 
landscape associated with VEGFR2 inhibition and facilitating the identification of more precise drug candidates. Additionally, con-
sidering potential off-target effects, conducting molecular docking simulations in the future to predict the binding affinity of inhibitors 
to proteins other than VEGFR2, especially those with structures similar to VEGFR2, will aid in identifying potential off-target effects of 
the identified molecules. Furthermore, as drug stoichiometry analysis plays a critical role in drug discovery, integrating experiments 
with computational predictions in the future will facilitate further investigation into the effectiveness of protein binding.

In conclusion, this study introduced a novel approach using 3D deep learning and structural modeling for the design of potential 
VEGFR2 inhibitors. Employing a geometric-enhanced molecular representation learning method and flexible docking, this study 
identified candidate compounds with more favorable properties than the FDA-approved drug axitinib.
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