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Metabolic diseases including type 2 diabetes mellitus (T2DM), non-alcoholic fatty liver disease (NAFLD), and metabolic syndrome
(MetS) are alarming health burdens around the world, while therapies for these diseases are far from satisfying as their etiologies
are not completely clear yet. T2DM, NAFLD, and MetS are all complex and multifactorial metabolic disorders based on the interac-
tions between genetics and environment. Omics studies such as genetics, transcriptomics, epigenetics, proteomics, and metabo-
lomics are all promising approaches in accurately characterizing these diseases. And the most effective treatments for individuals
can be achieved via omics pathways, which is the theme of precision medicine. In this review, we summarized the multi-omics
studies of T2DM, NAFLD, and MetS in recent years, provided a theoretical basis for their pathogenesis and the
effective prevention and treatment, and highlighted the biomarkers and future strategies for precision medicine.
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Introduction
Abnormalities in energy metabolism can lead to conditions

such as type 2 diabetes mellitus (T2DM), non-alcoholic fatty

liver disease (NAFLD), and metabolic syndrome (MetS), which

have become alarming health problems worldwide. T2DM,

NAFLD, and MetS are three pathologic conditions that fre-

quently coexist, while the incidence of NAFLD and MetS often

parallels that of diabetes. T2DM is a complex disease character-

ized by chronic condition of hyperglycemia, insulin resistance,

and insulin secretion defect. The causes of T2DM are not

completely understood, but there are strong links of T2DM

with overweight, obesity, and increasing age, as well as with eth-

nicity and heredity. NAFLD is a multifactorial disease with the

biological basis of hepatocytic degeneration trigged by lipid me-

tabolism disorder. Patients with NAFLD often have other meta-

bolic disorders including obesity, T2DM, dyslipidemia, and

insulin resistant, which is a key pathogenic trigger. Of note,

MetS is not a disease per se but rather a term that

highlights traits in patients with an increased risk of

cardiovascular disease (CVD) and T2DM. MetS refers to a

group of clinical symptoms, including increased weight, insulin

resistance, dyslipidemia, and hypertension, while NAFLD can

be viewed as the hepatic manifestation of MetS (Figure 1).

Treatment for T2DM includes education, nutritional counsel-

ing, exercise, glucose monitoring, and anti-diabetic medications.

Doctors choose different therapeutics based on the classification

and clinical features of the patients (Kahn et al., 2014), follow-

ing an algorithmic sequence according to relevant guidelines.

However, not all choices are effective. Patient and clinical phe-

notypic characteristics such as sex, body mass index (BMI), age

at diagnosis, baseline HbA1c, degree of b-cell dysfunction, insu-
lin resistance, diabetes-associated antibodies, and specific muta-

tions were associated with the response to specific anti-diabetic

options (Jones et al., 2016; Dennis et al., 2018). Given this di-

versity, studies on modified therapies have either tried to stratify

patients according to disease progression and risk of diabetic

complications (based on phenotypic characteristics) (Ahlqvist et

al., 2018) or used multivariable models containing these contin-

uous clinical features to predict outcomes for individuals

(Dennis et al., 2019). Both approaches represent new attempts

toward precision medicine for diabetes. However, these
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strategies are non-etiological and highly dependent on the clini-

cal variables included, which restricts their clinical utility.

NAFLD can progress from simple steatosis to non-alcoholic

steatohepatitis (NASH) with variable degrees of fibrosis and cir-

rhosis. The management of patients with NAFLD should com-

prise treatment for the liver disease, as well as for the associated

metabolic co-morbidities (Chalasani et al., 2012). Similarly, thera-

pies for MetS targeting different metabolic abnormalities include

lifestyle-based treatment, aiming to prevent CVD, T2DM,

NAFLD, and other complications. As MetS is a group of meta-

bolic abnormalities, there is no effective drug treatment to manage

all of its components. Inflammation, gut microbiota, bile acid me-

tabolism, microelements, and circadian rhythm have all been

shown to play a role in NAFLD and MetS (Arrese et al., 2016;

Handa et al., 2016; Arab et al., 2017; Chu et al., 2018; Moszak et

al., 2020) and may represent novel targets for therapy.

Pathogenesis and treatment of T2DM, NAFLD, and MetS

are complex and multifactorial, involving genetic, transcrip-

tomic, epigenetic, proteomic, and metabolomic approaches.

The underlying mechanisms of the three metabolic disorders

overlap and interact, although their individual characteristics

are different. It is critical to characterize the major mechanisms

involved in these disorders, in order to implement targeted and

effective treatments. This remains the challenge in current treat-

ment strategies and is also the goal of precision medicine.

The concept of precision medicine was first put forward in

2008 and suggested that clinicians should make a diagnosis

based on molecular detection instead of clinical experience

(Katsnelson, 2013). In 2011, precision medicine was further

proposed by the National Institutes of Health to prescribe

personalized medical treatments tailored to the specific charac-

teristics of each patient (National Research Council (US)

Committee on A Framework for Developing a New Taxonomy

of Disease, 2011). Beyond traditional phenotypes, precision

medicine may characterize a patient’s condition using genetic,

epigenomic, transcriptomic, proteomic, and metabolic informa-

tion obtained from various omics approaches. As the power of

single-omics data is limited, combining multi-omics data may
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Figure 1 Internal relationships among T2DM, NAFLD, and MetS and their prevalence. (A) Relationships among T2DM, NAFLD, and MetS, and
their internal relations. T2DM, NAFLD, and MetS are three pathologic conditions that frequently coexist, and they are all risk factors for
CVD. (B) According to the 9th edition of the International Diabetes Federation Diabetes Atlas (https://diabetesatlas.org/en/), �463 million
people at the age of 20–79 years globally (i.e. 1 in 11 adults) had diabetes in 2019, with T2DM accounting for nearly 90% of diabetes cases
worldwide. China maintains the largest number of adult diabetes patients with 116.4 million cases, followed by India with 77.0 million,
and USA with 31.0 million cases. (C) The global prevalence of NAFLD is �24%, with the Middle East (32%) and South America (31%) having
the highest prevalence, followed by Asia (27%), USA (24%), and Europe (23%). The incidence of NAFLD among patients with T2DM is
55.5%, and patients with both diseases have a higher risk of NASH and liver fibrosis (Younossi et al., 2019). Evidence from a pooled popu-
lation perspective study revealed that NAFLD increases the risk of T2DM and MetS by �1.8 times (Ballestri et al., 2016). (D) Regarding
MetS, the diagnostic criteria are not unified among different regions, the prevalence estimates vary, and no global data exist. According to
previous researches, MetS is �3 times more common than diabetes (Saklayen, 2018); therefore, the global prevalence can be estimated to
be about one-quarter of the world population. According to a national survey covering 97098 adults over 31 provinces of mainland China in
2010, the prevalence of MetS in the general population is 33.9% (31.0% in males and 36.8% in females) (Lu et al., 2017).
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allow a more thorough and comprehensive summary of individ-

ual characteristics (Ritchie et al., 2015). A recent study (Chen et

al., 2020) reclassified six types of metabolic diseases into three

molecularly and clinically different groups based on metabolo-

mics, proteomics, peptidomics, and clinical information using a

multi-omics-based framework, in an attempt to unveil intra-

disease heterogeneity and inter-disease similarities. The results

can be used as a reference for data analysis of multi-omics inves-

tigations and precision medicine.

Hopefully, precision medicine will enhance treatment tolera-

bility and effectiveness in individuals with metabolic diseases.

However, before it becomes common practice, there is still a

long way to go in multi-omics profiling assays and analyses. In

this review, we systematically summarize omics’ development,

biomarkers, and their applications in precision medicine for the

most prevalent metabolic disorders, including T2DM, NAFLD,

and MetS.

Genomics in metabolic diseases
Genomics mainly studies the structure, evolution, mapping,

editing, and function of an organism’s whole genome (Figure 2).

Genetic biomarkers for T2DM

Familial aggregation (Meigs et al., 2000), ethnic differences

(Kodama et al., 2013), and higher concordance rate of T2DM

in monozygotic than in dizygotic twins (Poulsen et al., 1999)

all indicate genetic contribution to T2DM. In the early 2000s,

peroxisome proliferator-activated receptor gamma (PPARG)

(Altshuler et al., 2000) and transcription factor 7-like 2

(TCF7L2) (Grant et al., 2006) were confirmed to be associated

with T2DM via linkage analyses and candidate approaches.

With the development of advanced next-generation sequencing

and extensive genome-wide association studies (GWAS), new

T2DM-associated loci including solute carrier 30 A8

(SLC30A8), CDK5 regulatory subunit associated protein 1-like

1 (CDKAL1), and insulin-like growth factor 2 mRNA binding

protein 2 (IGF2BP2) genes (Saxena et al., 2007; Scott et al.,

2007; Wellcome Trust Case Control Consortium, 2007) were

identified. The wave of GWAS was followed by meta-analyses

combining data from multiple GWAS (Prasad and Groop,

2015), making these candidate loci more convincing. Apart

from the organism’s genome, metagenome-wide association

studies (MGWAS) have linked gut microbiota dysbiosis with

T2DM based on deep shotgun sequencing of the gut microbial

DNA of 345 Chinese individuals (Qin et al., 2012). Thus, gut

microbiota becomes a target in diabetes classification and

therapy.

A single susceptible variant adds very little to the predictive

power of T2DM risk (Poveda et al., 2016). Genetic risk score

(GRS), the combined genetic information of multiple variants,

can increase the predicting power. Researchers constructed three

GRS containing different loci and explored the contribution of

the GRS to the incidence of T2DM during a >9-year follow-up

(Vaxillaire et al., 2014). Results showed that the two most inclu-

sive GRS were significantly associated with increased fasting

plasma glucose and increased incidence of impaired fasting
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Figure 2 Genomics of metabolic diseases. The linkage analyses and candidate approaches were first applied to diabetes study. With the
development of advanced next-generation sequencing technologies and extensive GWAS, more new associated loci were identified. The
wave of GWAS was then followed by meta-analyses combining data from multiple GWAS. And to improve the power in predicting the risk
of metabolic diseases, genetic variants are aggregated into GRS. Meanwhile, MGWAS also help to characterize disease from the ‘other
genome’, such as gut microbial. TZDs, thiazolidinediones.
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glycemia and T2DM. By varying the number of single-

nucleotide polymorphisms (SNPs) and their respective weights,

various versions of GRS were computed and tested in the

Estonian Biobank cohort. And the best-fitting GRS was chosen

for the subsequent analysis of T2DM incident (386 cases) (Läll

et al., 2017). The hazard for T2DM incident was 3.45 times

higher in the highest GRS quintile compared with the lowest

quintile. In addition, the proposed GRS would improve the ac-

curacy of T2DM risk prediction by improving continuous net

reclassification by 0.324 when added to the currently used set of

predictors. Compared with conventional risk factor-based mod-

els (CRM), predictive performance of genetic variants was more

powerful. A meta-analysis with 23 studies reported that the area

under the curve (AUC) for T2DM increased with the addition

of genetic information to CRM (median AUC was increased

from 0.78 to 0.79) (Bao et al., 2013).

Genetic biomarkers for NALFD and MetS

For NAFLD, there have been biochemical, imaging, genetic,

and other omics biomarkers for its staging and progression

(Wong et al., 2018). A strong heritability of NAFLD suscepti-

bility has been identified in epidemiological, family, and twin

studies (Dongiovanni and Valenti, 2016). The genetic compo-

nent of NAFLD has emerged in GWAS recent years. Some ge-

netic variants located in patatin-like phospholipase domain-

containing protein 3 (PNPLA3), transmembrane 6 superfamily

member 2 (TM6SF2), and membrane-bound O-acyltransferase

7-transmembrane channel like 4 (MBOAT7-TMC4) loci, re-

spectively, have been associated with NAFLD susceptibility

(Romeo et al., 2008; Kozlitina et al., 2014; Mancina et al.,

2016), among which rs738409 in PNPLA3 is representative

(Romeo et al., 2008). A meta-analysis showed that rs738409

exerts a strong influence on liver fat accumulation (Sookoian

and Pirola, 2011). Additionally, rs738409 might influent the

ability of weight loss to decrease liver fat and change insulin sen-

sitivity after lifestyle intervention or bariatric surgery (Krawczyk

et al., 2016). However, Kotronen et al. (2009) found that in-

cluding the genetic variant rs738409 only improved the accu-

racy of NAFLD prediction by <1%. The missense SNP

rs58542926 and the intronic SNP rs780094, located in

TM6SF2 and GCKR, respectively, are both associated with a

very modest risk, �2-fold (Pirola and Sookoian, 2015) and 1.2-

fold (Zain et al., 2015), respectively, for NAFLD progression.

The loci uncovered by GWAS to date only explain a small frac-

tion (<5%) of the total genetic heritability in NAFLD. Higher

NAFLD-associated GRS was associated with increased liver fat

accumulation in participants with lowest Mediterranean-style

diet score or Alternative Healthy Eating Index scores, but not in

those with stable or improved diet quality (Ma et al., 2018).

NAFLD-associated GRS could also predict the development

and prognosis of NAFLD. Three genetic variants including

PNPLA3 were combined into a GRS in 110761 individuals

from Copenhagen, Denmark, and 334691 individuals from the

UK Biobank (Gellert-Kristensen et al., 2020). A higher GRS

was associated with increased plasma alanine aminotransferase,

incidence of cirrhosis and hepatocellular carcinoma.

Genetic predisposition also contributes to MetS. Apart from

T2DM susceptibility genes, genes encoding low-density lipopro-

tein (LDL), apolipoprotein E (ApoE), melanocortin 4 receptor,

fat mass and obesity (FTO), and TCF7L2 have been associated

with other components of MetS, including obesity, dyslipidemia,

and hypertension (Taylor et al., 2013). However, GWAS have

identified few genetic loci that contribute to all MetS traits

(Abou Ziki and Mani, 2016), although the combined genetic

contribution to obesity and abdominal body fat distribution

may cause several MetS phenotypes (Emdin et al., 2017).

Pharmacogenomics of metabolic diseases
Pharmacogenomics is the branch of genetics that uses

genetic variants to predict treatment responses, helping to build

individualized therapies based on personal genetic

characteristics.

T2DM

For T2DM, glycemic control varies among patients who re-

ceive similar anti-diabetic regimens. This variability may be at-

tributed to biological and non-biological factors. Biological

factors include genetic and non-genetic factors involved in phar-

macokinetics and pharmacodynamics. Pharmacogenomics

mainly concentrates on genetic polymorphisms that exert effects

on pharmacodynamics and pharmacokinetics. Many studies

have discovered key genetic polymorphisms responsible for the

different efficacies of diabetic drugs, which is beneficial for pre-

cise medicine through identification of genetic markers. Genetic

variants regulating genes encoding proteins involved in drug

transport or metabolism are plausible candidates in pharmaco-

genomics of T2DM. The pharmacogenomics of different anti-

diabetic drugs are summarized in Table 1.

NAFLD and MetS

Considering that, apart from extrinsic factors such as diet, en-

vironmental chemicals, alcohol, and drug–drug interactions, ge-

netic factors also contribute greatly to the development of

NAFLD and MetS (Dongiovanni and Valenti, 2016), pharma-

cogenomics studies for putative drugs for NAFLD and MetS

are ongoing for personalized treatment. Currently, there is no

approved therapy specific for NAFLD and MetS. Statins are

candidate agents for lowering LDL-cholesterol levels, and dysli-

pidemia is a common comorbidity in NAFLD and a common

trait in MetS. The pharmacogenomic studies of statins are also

shown in Table 1.

Although pharmacogenomics studies aiming new perspectives

on precision medicine are flourishing, they remain in early stages

due to the complex etiology of metabolic diseases. Large cohorts

with well-defined phenotypes and genomic data are essential to

tailor the most appropriate treatment for metabolic diseases.
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Transcriptomics in metabolic diseases
Environmental and other factors influence the expression of

genes, thus affecting an individual’s phenotype and risk of meta-

bolic disease. Current transcriptomics studies for metabolic dis-

ease have mostly focused on islets and peripheral tissues,

including the liver, skeletal muscle, and adipose tissue.

T2DM

Oligonucleotide microarrays were among the first tools to

study transcriptome changes in T2DM patients. And RNA-

sequencing (RNA-seq) has greatly improved knowledge on gene

expression in T2DM. Given the variability in islet cell type com-

position, single-cell RNA-seq has been an important break-

through to detect cell type-specific transcriptomic features.

Studies have identified transcriptional differences in islets, liver,

muscle, adipose tissue, and peripheral blood using these techni-

ques, which are shown in Table 2.

NAFLD and MetS

To date, transcriptomics studies on NAFLD mainly focus on

the liver (Table 2). A differential expression analysis in severe

vs. non-severe NAFLD and normal liver (Baselli et al., 2020)

showed 320 genes differentially expressed in severe NAFLD. Of

these, 16 genes were deregulated in PNPLA3 rs738409 variant

carriers. The authors also identified a higher expression of genes

involved in hepatic fibrogenesis, among which interleukin 32

(IL-32) was the most robustly upregulated in severe NAFLD,

together with suppressor of cytokine signaling 1 (SOCS1) and

aldo-keto reductase family 1 member B10 (AKR1B10). In an-

other study (Suppli et al., 2019), liver transcriptome profiles of

healthy normal-weight individuals and obese individuals cluster

together and are clearly separated from NAFLD/NASH

patients. Gene regulation in patients with NAFLD and NASH

was found to be associated with stimulated synthesis of fatty

acids and cholesterol, increased lipoprotein activity, impaired in-

sulin function, increased farnesoid X receptor (FXR) signaling,

modulation of monocyte differentiation and recruitment, in-

flammation signaling, proapoptotic activity, and stimulated col-

lagen formation (Suppli et al., 2019). Although these

transcriptomic studies on NAFLD are observational, they have

offered some clues for the treatment of NAFLD, which is bene-

ficial for precision medicine. As to MetS, most current studies

have focused just on specific traits, while few study covers all the

aspects of MetS.

Epigenomics in metabolic diseases
Regulatory mechanisms of gene expression, such as epige-

netics, may influence disease susceptibility more than genetics.

Epigenetic regulation includes multiple layers, including DNA

methylation, histone modifications, higher-order chromatin

structure, and non-coding RNAs such as microRNAs

(miRNAs), which can regulate cell differentiation, cell-specific

gene expression, parental imprinting, X chromosome inactiva-

tion, as well as genomic stability and structure.

Table 1 Pharmacogenomics of metabolic diseases.

Disease Drugs Genes References

T2DM Metformin ATM, SLC2A2, SLC22A1, SLC22A2,

SLC47A1

Becker et al. (2009a, b); DeGorter and Kim (2009);

ZHou et al. (2011, 2016); Duong et al. (2013); Dujic

et al. (2015); Mahrooz et al. (2015)

Sulfonylureas/glinides PSMD6, CYP2C9, TCF7L2, ABCC8,

KCNJ11, IRS1, CYP2C8

Niemi et al. (2003); Holstein et al. (2005); Ragia et al.

(2009); Chen et al. (2015); Song et al. (2017);

Mannino et al. (2019)

Thiazolidinediones PSMD6, PPARG Chen et al. (2015); Mannino et al. (2019)

DPP-4 inhibitors/GLP-1 receptor agonists GLP-1R Mannino et al. (2019)

SGLT-2 inhibitors: empagliflozin SLC5A2 Zimdahl et al. (2017)

NAFLD and MetS Statins APOE, SLCO1B1, PNPLA3 Link et al. (2008); Postmus et al. (2014); Dongiovanni

et al. (2015)

Table 2 Transcriptomics in metabolic diseases.

Disease Transcripts Tissue Change References

T2DM HNF4a, IRS2, AKT2, IGFBP2, FXYD2 Islets Downregulated Gunton et al. (2005); Marselli et al. (2010);

Segerstolpe et al. (2016); Lawlor et al.

(2017)

DLK1, DGKb Islets Upregulated Segerstolpe et al. (2016); Lawlor et al. (2017)

ANK1 Skeletal muscle Upregulated Scott et al. (2016)

ST6GAL1, THBS2 Adipose tissues Upregulated Saxena et al. (2019)

IRS1, WFS1, KCNQ1 Peripheral blood

mononuclear cells

Downregulated Li et al. (2016)

NAFLD Liver Upregulated Suppli et al. (2019); Baselli et al. (2020)
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T2DM

As a disease affecting multiple organ systems, the decline of

pancreatic b-cell function and insulin resistance in insulin target

organs, such as skeletal muscle, liver, and adipose tissue, are all

important factors in T2DM development. The tissue-specific

epigenetic changes are shown in Table 3. These studies identi-

fied epigenetic changes in T2DM patients, and the regions were

also associated with differential expression of genes. Further

studies are needed to identify causal epigenetic changes that

were responsible for T2DM and related traits.

miRNAs have also been intensely investigated as potential

biomarkers for T2DM. They are small RNA molecules ranging

from 18 to 22 nucleotides in size; they regulate gene expression

by binding to target mRNAs at 3
0 untranslated regions, target-

ing them for cleavage or translational repression (Bartel, 2004).

In T2DM, the first study to reveal a plasma miRNA signature

for T2DM was performed in a large population-based cohort in-

volving 822 individuals from the Bruneck study (Zampetaki et

al., 2010). The initial microarray screening and quantitative po-

lymerase chain reaction assessment revealed lower plasma levels

of miR-20b, miR-21, miR-24, miR-15a, miR-126, miR-191,

miR-197, miR-223, miR-320, and miR-486 in prevalent diabe-

tes, but a modest increase in miR-28-3p levels. Importantly, the

observed reductions in miR-15a, miR-29b, miR-126, and miR-

223 levels and elevated increases in miR-28-3p levels antedated

the manifestation of the disease. Interestingly, 91/99 (92%) con-

trols and 56/80 (70%) diabetes cases were correctly classified us-

ing expression profiles of the above five most significant

miRNAs.

NALFD

High-fat diet (HFD) can induce modifications in the chroma-

tin structure, thereby contributing to metabolic disease (Leung

et al., 2014). FAIRE-seq was performed in the livers of C57BL/

6J mice induced by HFD and control diet, which identified

28484 open chromatin sites in control and 28253 sites in high-

fat livers. The regions of greatest variation are targeted by liver

transcription factors, including HNF4a, CCAAT/enhancer-

binding protein a (CEBP/a), and forkhead box A1 (FOXA1)

(Leung et al., 2014). These altered chromatin accessibility fac-

tors further changed gene expression, including that of Lpin1,

which contains transcriptional factor combining sites. HFD

leads to chromatin remodeling in mouse liver tissue to change

lipid metabolism, which elucidates regulatory mechanisms asso-

ciated with metabolic disorders such as obesity and hepatic

steatosis.

miR-122 is the most abundantly expressed miRNA in hepato-

cytes, representing 70% of the total miRNA content. Its down-

regulation has been robustly validated in metabolic disorders,

including liver steatosis and fibrosis, both in vivo and in vitro,

and shown to be involved in the upregulation of fibrotic path-

ways by inducing hypoxia-inducible factor-1a and mitogen-

activated protein kinase 1 (Csak et al., 2015; Pirola et al.,

2015). Increasing evidence suggests that miR-21 and miR-34a

regulate hepatic lipogenesis, lipid secretion, and glucose metabo-

lism deficits in the pathogenesis of NAFLD (Xu et al., 2015;

Calo et al., 2016). These promising results indicate that

miRNAs may be useful tools for early prediction of NAFLD.

However, because of different study designs, insufficient sample

size, and different miRNA measurements, the current findings

show minimal replication.

MetS

Certain epigenetic changes were identified in different tissues

according to previous tissue-specific DNA methylation analyses.

The related epigenetic modifications in MetS are also shown in

Table 3. In addition, several other miRNAs, including miR-

126, miR-24, miR-181b, and miR-150, have been associated

Table 3 Epigenomics of metabolic diseases.

Disease Epigenomics Cell or tissue type Change References

T2DM INS, PDX1, PPARGC1A, ADCY5,

FTO, HHEX, IRS1, KCNQ1,

PPARG, TCF7L2, GLP1R

Pancreatic islets DNA methylation Ling et al. (2008); Yang et al. (2011,

2012); Hall et al. (2013); Dayeh et al.

(2014)

MALT1 Whole blood DNA methylation Yuan et al. (2014)

PPARG, KCNQ1, TCF7L2, IRS1 Adipose tissue DNA methylation Nilsson et al. (2014)

PDGFA Liver DNA methylation Abderrahmani et al. (2018)

PPARGC1A promoter Skeletal muscle DNA methylation Brøns et al. (2010)

H2K9me2 sites in the PTEN and IL-

1A promoter region

Peripheral blood mononuclear

cell

Histone modifications Miao et al. (2007); Hou et al. (2011);

Paneni et al. (2015)

NAFLD SREBF2, FASN, AGPAT3, ESR1 Liver DNA methylation Bruce et al. (2009)

HNF4a, CEBP/a, FOXA1 Liver Chromatin structure

modifications

Leung et al. (2014)

MetS FTO, HIF3A, IRS1 Adipose tissue DNA methylation Almén et al. (2012, 2014); Aslibekyan et

al. (2015)

IL-18 and MECP2 Skeletal muscle DNA methylation Barrès et al. (2012); Ling and Rönn

(2019)

ABCG1, CD38, CPT1A Blood DNA methylation Aslibekyan et al. (2015); Ling and Rönn

(2019)

PPARG promoter region Adipose tissue Chromatin structure

modifications

Huang et al. (2018)
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with obesity and metabolic disorders (Sun et al., 2016; Ying et

al., 2016). MetS is considered to be a heterogeneous disease,

and obesity is a central component of the disease. Current re-

search supports a role of BMI in epigenetic changes and disease

pathogenesis. Further studies are required to illustrate the bio-

logical meaning of epigenetic variability.

Epigenetic modification is an important mechanism linking

the environment with gene expression changes for metabolic dis-

eases. However, their targets and underlying mechanisms are

still unclear, and further exploration is needed to link these epi-

genetic changes to precision medicine in T2DM, NAFLD, and

MetS.

Proteomics of metabolic diseases
Over the past decades, technical advances in proteomics and

improved tools in bioinformatic analysis have driven remarkable

progress in proteomics science.

T2DM

Proteomics can be applied to disease biomarker discovery and

the exploration of disease pathogenesis. T2DM is usually diag-

nosed by fasting glucose, 2-h glucose, or HbA1c concentrations.

In addition, serum insulin concentrations are used to calculate

the homeostasis model assessment index to evaluate insulin re-

sistance. However, there are still limitations in the assessment of

the occurrence, development, and prognosis of diabetes, espe-

cially of the process from pre-diabetes to diabetes. There are sev-

eral proteins associated with incidence and progression of

T2DM, which are shown in Table 4. The approach of construct-

ing a model comprising multiple serum biomarker seemed to be

promising and critical for the detection, diagnosis, and progno-

sis of T2DM (Kolberg et al., 2009); however, relevant findings

have not been routinely used in clinical laboratory tests.

Moreover, it is challenging to characterize the broad and dy-

namic spectrum of serum proteins, especially in the case of low-

abundance proteins. Thus, more large-scale prospective follow-

up studies are needed to explore and verify the sensitivity, valid-

ity, reliability, and reproducibility of T2DM biomarkers.

NAFLD

In the case of NAFLD, the first study on serum protein pro-

files used surface-enhanced laser desorption/ionization time of

flight mass spectrometry on 98 obese patients (91 were diag-

nosed with NAFLD; seven obese participants without NAFLD

served as study controls), revealing 12 significantly different

protein peaks (Younossi et al., 2005). ApoE and lymphocyte cy-

tosolic protein 1 (LCP1) were significantly upregulated, while

IGFBP3 and vitamin D-binding protein were downregulated in

patients with NASH compared with healthy subjects (Miller et

al., 2014). In addition, growing evidence indicates that mito-

chondrial abnormalities may be involved in the pathogenesis of

NAFLD (Rector et al., 2010). Carbamoyl phosphate synthetase

1, as a specific mitochondrial enzyme, regulates the urea cycle; it

is deacetylated by sirtuin 5 in the mitochondrial matrix during

caloric restriction (Nakagawa et al., 2009). This mechanism

could potentially explain why patients with NAFLD have higher

serum uric acid concentrations (Sirota et al., 2013).

MetS

In the exploration of the mechanism underlying MetS, proteo-

mics has enabled significant advances. Evidence indicates that

hyperglycemia induces metabolic changes in b cells that mark-

edly reduce mitochondrial metabolism and adenosine triphos-

phate (ATP) synthesis (Haythorne et al., 2019). A study using

phospho-proteomics revealed the glycogen synthase kinase 3–

pancreatic and duodenal homeobox 1 axis as a key pathogenic

signaling node in insulin secretion (Sacco et al., 2019). Insulin

resistance is the main pathophysiological mechanism of MetS as

well as diabetes. Another study showed that the increased abun-

dance in protein heat shock protein A5, HSP90AB1, and colla-

gen type VI a1 chain was indicative of increased cellular stress,

while the downregulation of ATP synthase-subunit and creatine

kinase B pointed toward perturbations in ATP synthesis and mi-

tochondrial metabolism in T2DM (Højlund et al., 2003). This is

consistent with studies on mitochondrial oxidation dysfunction

in the skeletal muscle of obese individuals and patients with

T2DM (Mootha et al., 2003; Giebelstein et al., 2012). Hittel et

al. (2005) proposed that increased protein and enzymatic activ-

ity of adenylate kinase 1 (AK1) is representative of a

Table 4 Proteomics of metabolic diseases.

Disease Proteomics Cell or tissue type Change References

T2DM MASP Plasma Elevated von Toerne et al. (2016); Krogh et al.

(2017); Huth et al. (2019)

Leptin, t-PA, Renin, 1L-1ra, HGF, Cathepsin

D, FABP4

Plasma Elevated Nowak et al. (2016)

Fetuin-A Plasma Elevated Ix et al. (2008); Sujana et al. (2018)

NAFLD ApoE, LCP1 Serum Upregulated Miller et al. (2014)

IGFBP3, vitamin D-binding protein Serum Downregulated Miller et al. (2014)

MetS HMGCoA synthase, HMGCoA reductase,

DHCR7

Pancreatic islets Upregulated Haythorne et al. (2019)

ATP synthase-subunit, creatine kinase, brain

isoform, MRLC2-A

Skeletal muscle Downregulated Højlund et al. (2003)

Phosphoglucomutase-1, HSP90b, GRP78,

MRLC2-B, a1(VI) collagen

Skeletal muscle Upregulated Højlund et al. (2003)
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compensatory glycolytic drift to counteract reduced mitochon-

drial function. Furthermore, studies have discovered potential

phosphorylation sites indicative of abnormalities in mitochon-

drial oxidative metabolism and reduced AK1 content in obesity

and T2DM (Højlund et al., 2003, 2010). Hepatic tissue proteo-

mics analysis using various animal models, including the db/db

mice (Guzmán-Flores et al., 2018), T2DM rhesus macaque (Du

et al., 2017), insulin receptor-knockout mice (Capuani et al.,

2015), and insulin-resistant Akt1þ/�/Akt2�/� mice (Pedersen et

al., 2015), have revealed differentially expressed proteins in-

volved in biological processes such as glucose metabolism (gly-

colysis/gluconeogenesis), lipid metabolism (fatty acid

metabolism), mitochondrial function, and oxidative stress in

various abnormal metabolic statuses.

The adipose tissue proteins identified in proteomic studies

addressing diabetes and insulin resistance mainly participate in

energy and metabolism, immune response/inflammation, oxida-

tive stress, cytoskeleton, and apoptosis/cell cycle (Murri et al.,

2013, 2014; Kim et al., 2014; Gómez-Serrano et al., 2016;

Alfadda et al., 2017). Changes in mitochondrial protein expres-

sion during adipogenesis also indicate that mitochondrial bio-

genesis and remodeling are key events in white adipocyte

differentiation (Wilson-Fritch et al., 2003). However, due to

the high lipid content in complex adipose tissue cell lysates, ap-

propriate separation techniques prior to analysis are needed to

avoid masking the detection of low-abundance proteins. Since

the discovery of leptin, adipocyte-secreted proteins are of par-

ticular interest when examining adipocyte dysfunction. DPP-4

was identified as a novel adipokine via comprehensive proteo-

mic profiling of the primary human adipocyte proteome

(Lamers et al., 2011). Neu-related lipocalin, a novel adipokine

identified by high-throughput proteomics (Chen et al., 2005),

has been demonstrated to participate in energy metabolism,

glucose and lipid homeostasis, and insulin resistance (Law et

al., 2010). These proteomics-based studies on adipose tissue or

adipocytes provide important insight on the link between adi-

pose dysfunction with obesity and MetS.

With the development of mass spectrometers and the im-

provement of information technology, including tools and data-

bases for data availability, the field of proteomics has greatly

expanded. Thus, translation medicine combined with metabolic

characteristics and protein analysis in tissue biopsies will help

make substantial progress in understanding the mechanisms un-

derlying the pathogenesis and progression of metabolic diseases.

Pharmacoproteomics of metabolic diseases

Pharmacoproteomics is the application of proteomics to phar-

macological issues, which is useful in characterizing drug mode of

action, side effects, toxicity, and resistance. In an early pharmaco-

proteomic study, the liver tissue from obese diabetic mice (ob/ob)

was used to examine the effects of the well-characterized highly se-

lective PPARa agonist—WY14 643 (Edvardsson et al., 1999).

And 14 proteins affecting the peroxisomal fatty acid synthesis

were identified (Edvardsson et al., 2003). Proteomics studies using

the liver, white and brown adipose tissue, and muscle showed that

rosiglitazone affected protein expression involved in fatty acid and

carbohydrate metabolism (Sanchez et al., 2003). Rosiglitazone

has been found to bind to and activate PPAR-c1 in adipocytes

and PPAR-c2 in hepatocytes of lep/lep mice and 11 polypeptides

were significantly modulated by rosiglitazone treatment of the

obese mice (Sanchez et al., 2003). A differential analysis of se-

creted proteins released from rat adipocytes in the conditioned me-

dium treated with and without insulin revealed the changes that

occur in adipokines (Chen et al., 2005). These studies focused on

the changes in protein secretion on drug therapy, providing early

insights into the pharmacoproteomics approaches on metabolic

disorders. Besides, bioinformatic solutions for proteomic data

management are also urging.

Metabolomics in metabolic diseases
Located on the downstream of other omics, metabolomics

provides an integrated profile of pathophysiological status and a

complement to other omics analyses. Metabolomics has been

used to evaluate metabolite changes in humans, animals, plants,

and other systems to assess their status and search for bio-

markers for pathogenesis, therapeutic responses, and prognosis

of diseases. Metabolic diseases including T2DM, NAFLD, and

MetS comprise a series of metabolic disturbance in carbohy-

drates, lipids, and proteins; therefore, metabolomics is quite fea-

sible for studying these disorders (Figure 3).

T2DM

Circulating metabolite patterns, including inhibited lysophos-

pholipids, altered composition of the bile acid pool, and reduced

branched-chain amino acid (BCAA) concentration, are predic-

tive for T2DM, according to a prospective cohort study (Zeng

et al., 2019). These metabolite patterns can monitor T2DM risk

>10 years prior to disease onset. Several other studies have also

revealed that the altered metabolism of amino acids, lipids, bile

acids, and carbohydrates is associated with the incidence of

T2DM (Fall et al., 2016; Qiu et al., 2016). Among these metab-

olites, circulating BCAA concentrations can be elevated up to

1.5-fold in patients with T2DM than in healthy subjects

(Guasch-Ferré et al., 2016), and thus have been used as markers

for the development of insulin resistance (Würtz et al., 2013).

Furthermore, the causal role of BCAA metabolism in T2DM

and insulin resistance has been verified via Mendelian randomi-

zation analysis (Mahendran et al., 2017). All these studies prompt

that BCAA may lie on the pathway from insulin resistance to

T2DM. In isolated rat b cells, lysophosphatidylcholine promotes

insulin secretion via an orphan G protein-coupled receptor (Soga

et al., 2005), prompting that lysophospholipid metabolism may

be associated with insulin secretion. Both FXR and the G

protein-coupled bile acid receptor 1, also known as TGR5, are

prominent signaling molecules mediating bile acid signaling

(Chiang, 2017). In mouse models, activation of FXR represses

the expression of gluconeogenic genes, decreases serum glucose,
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and improves insulin sensitivity (Zhang et al., 2006). Activation

of TGR5 stimulates GLP-1 release from enteroendocrine L cells

(Thomas et al., 2009). These functional studies indicate that bile

acids are important metabolic regulators of glucose metabolism,

therefore suggesting that both FXR and TGR5 may be targets

for diabetes therapy. Carbohydrate metabolite alterations are

mainly due to the dysregulation of glucose, as well as glycolipid

and glycoprotein biosynthesis and degradation. Metabolites such

as 1,5-anhydroglucitol (1,5-AG), the 1-deoxy form of glucose in

circulation, are currently used as a monitor of short-term glycemic

control in patients with diabetes (McGill et al., 2004).

Metabolomic profiles, including amino acids, phosphatidylcho-

line, and hexose, are associated with HbA1c levels in T2DM

(Yun et al., 2019).

NAFLD and MetS

Besides T2DM, many of the identified metabolites associated

with insulin resistance, lipids, and bile acid metabolism are also

tightly connected with NAFLD and MetS. Fasting plasma

BCAA levels correlate with NAFLD severity in women accord-

ing to a cohort study (Grzych et al., 2020). Polyunsaturated

fatty acid metabolites are distinct between NAFLD and NASH,

thus offering potential biomarkers for the non-invasive diagno-

sis of NASH (Loomba et al., 2015). Gut microbiota profiling is

also associated with NAFLD (Del Chierico et al., 2017).

Multiple metabolites were found to be associated with the histo-

logical severity of NAFLD in a study using a multiplatform

metabolomics approach (Ioannou et al., 2020); among them,

spermidine levels were 2-fold lower in advanced than in early fi-

brosis, supporting spermidine’s protective role against NAFLD

progression. Another study showed that the primary to second-

ary bile acid ratio is higher in patients with NASH than in

healthy controls (Mouzaki et al., 2016). Jiao et al. (2018)

reported an elevation in bile acid production in patients with

NAFLD, consistently supported by the hepatic gene expression

pattern and gut microbiome composition in these patients.

Moreover, the levels of deoxycholic acid, an antagonist of FXR,

which is a key molecule in bile acid metabolism, were shown to

be increased in NAFLD, whereas those of the FXR agonist che-

nodeoxycholic acid were decreased. These results suggest that

FXR signaling and the gut microbiome are promising targets

for NAFLD interventions.

MetS is characterized by several metabolite changes in the

plasma, reflecting abnormalities in several metabolic pathways.

Multiple investigations have revealed changes in amines,

amino acids, and lipids in the setting of MetS. Gut-derived me-

tabolite trimethylamine-N-oxide (TMAO) was found to be

positively associated with BMI, visceral adiposity index, insu-

lin resistance, and MetS (Barrea et al., 2018). BCAAs, includ-

ing isoleucine, leucine, and valine, were shown to play an

important role in the development of metabolic disease

(Newgard, 2012). Moreover, tyrosine and isoleucine levels

were significantly elevated in patients with nascent

MetS without T2DM and CVD, indicating that they might be

early biomarkers for MetS (Reddy et al., 2018).

Phosphatidylcholine 34:2 was also shown to be significantly el-

evated in nascent MetS and correlated with waist circumfer-

ence, plasma glucose, serum lipids, and pro-inflammatory

markers, suggesting that it may participate in MetS via the

inflammatory pathway (Ramakrishanan et al., 2018).

Collectively, these findings suggest that metabolic changes are

tightly connected with MetS, and such metabolites may be

used as potential biomarkers or therapeutic targets in MetS.

Pharmacometabolomics of metabolic diseases

Metabolomics offer a better characterization of individuals

beyond traditional classification, which is beneficial for the per-

sonalized treatment of metabolic disorders (Jacob et al., 2019).

Metabolic phenotypes, as the direct reflection of the effects of

environmental factors (such as nutritional status, gut bacteria,

age, concomitant disease, and drug use) on the organism, are

key determinants of individual pharmacokinetics (Navarro et

al., 2016), drug metabolism (Clayton et al., 2009), efficacy

(Trupp et al., 2012), and adverse responses (Weng et al., 2016).

The application of metabolomics in pharmacology gave rise to a

new field called ‘pharmacometabolomics’, the basic aim of

which is to determine the effects of drug treatment on the body’s

metabolic scenario. It is also used to identify specific metabolic

pathways responsible for drug-mediated outcomes and for de-

veloping new drugs (Kaddurah-Daouk and Weinshilboum,

2014). A cohort study of 22 patients with T2DM showed urine

NAFLD MetS

T2DM
Lysophospholipid
Lysophosphatidylcholine
Amino acids
Hexose
1,5-AG

Phosphatidylcholine

PUFA
Spermidine
Deoxycholic acid
Chenodeoxycholic acid 

BCAA
Bile acid metabolism
TMAO

Phosphatidylcholine

Metabolites

EnvironmentGene
Gut 

microbiota 

Figure 3 Metabolomics of metabolic diseases. Metabolites are the
interactions of genes, environment, and gut microbiota, and they
can enable a better characterization of individuals beyond tradi-
tional classification, which is beneficial for precision medicine.
Many of these metabolites are tightly connected with T2DM, NAFLD,
and MetS, which are associated with insulin resistance, bile acid,
and lipid metabolism. Among these metabolites, BCAA, bile acid
metabolism, and TMAO are associated with T2DM, NAFLD, and
MetS. Phosphatidylcholine is associated with T2DM and MetS.
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metabolic differences between metformin responders and non-

responders, with three metabolites, citric acid, myoinositol, and

hippuric acid, identified as predictive of metformin response

(Park et al., 2018). Another post hoc analysis found that the lev-

els of metabolites such as valine, tyrosine, carnitine, and leucine/

isoleucine are associated with metformin treatment but not pre-

dictive of the glucose-lowering effect of metformin (Safai et al.,

2018).

Based on the fact that NAFLD and MetS are affected by gut

microbiota (Ji et al., 2019; Moszak et al., 2020), administration

of prebiotics or probiotics is beneficial for metabolic disorders

via increasing the gut microbiota (Santos-Marcos et al., 2019).

As endotoxin-induced cytokines play a role in NAFLD, admin-

istration of rifaximin, a non-absorbable antibiotic for Gram-

negative bacteria, appears to be effective in NAFLD treatment

(Gangarapu et al., 2015). However, insulin resistance and

NAFLD were more severe in mice that received lifelong sub-

therapeutic antibiotic treatment, possibly due to microbiome

perturbation caused by the antibiotics (Mahana et al., 2016).

Therefore, the role of different microbiota in body metabolism

should be further investigated. Besides microbiota, it is also

revealed that bile acids and their derivatives are useful in MetS

treatment (ani�c et al., 2018). As FXR signaling plays a role in

metabolic diseases, an FXR agonist was found to ameliorate in-

sulin resistance and metabolic abnormalities in a rabbit model

of MetS (Maneschi et al., 2013); however, its role in human

MetS remains unknown.

Metabolomics will undoubtedly play a determinant role in

accelerating the understanding of pathogenesis, effective

prevention, treatment of T2DM, NAFLD, and MetS; how-

ever, most metabolic studies are in the discovery stage, and the

role of the identified metabolites in pathogenesis needs further

certification. More mature technologies, new analytical meth-

ods, and the integration of different omics are also

indispensable.

Integrating multi-omics
Interpretation of omics studies at a multi-omics level is essen-

tial for the comprehensive analysis of metabolic diseases, impor-

tant for prediction, diagnosis, and treatment (Figure 4). Rapidly

evolving technologies have offered unparalleled opportunities to

assess and integrate individual omics data, which has helped

capture biological variation to facilitate specific clinical

treatment.

T2DM

T2DM has been the focus of most multi-omics studies. In an

analysis of 1622 non-diabetic participants, the combination

of genetics, metabolomics, and clinical factors improved the pre-

diction of future T2DM (Walford et al., 2014). Specifically, a

62-variant GRS showed an AUC of 64%; the addition of

metabolites increased the AUC to 82%, while the combination

of genetics, metabolomics, and clinical factors achieved an AUC

of 88%.

Besides using multi-omics for T2DM prediction, recent stud-

ies have also combined multiple data sources with treatment

responses, paving the way for future precision medicine in

T2DM and other metabolic diseases. Clinical management of

T2DM mainly focuses on reducing plasma glucose level and

lowering the risk of diabetic complications. However, significant

variability exists in responses to even the same intervention.

Thus, a better understanding of the underlying causes of differ-

ent pharmacological responses is necessary to catalyze the devel-

opment and implementation of the most accurate intervention

strategy based on a patient’s unique characteristics. This is the

foundation of integrated multi-omics data that allows for imple-

menting precision medicine for T2DM. For example, research-

ers have combined information collected by genomics,

metabolomics, proteomics, and microbiome analyses in an inte-

grated framework to develop personalized dietary interventions

for T2DM (Price et al., 2017). Moreover, studies have inte-

grated data on dietary intake, biomarkers, physical activity,

sleep, anthropometric variables, and gut microbiota using an

appointed algorithm, reporting that nutritional interventions

based on this algorithm are more effective than traditional die-

tary advice in reducing postprandial blood glucose (Zeevi et al.,

2015). GWAS have also been integrated with high-throughput

metabolomic profiling to provide biological insights into how

genetic variation influences metabolism and how such metabolic

differences in plasma can help to identify relevant genes within

genomic regions associated with T2DM (Shin et al., 2014).

Besides, deep learning methods, which can identify highly com-

plex patterns in large datasets, have been shown to be useful in

disease predictive models and biological mechanism prediction

(Zou et al., 2019). Taken together, these findings suggest that a

multi-omics approach provides complementary information for

the prediction and clinical treatment of T2DM. In the near fu-

ture, deep learning methods can also be applied in multi-omics

studies on T2DM.

NALFD

In the case of NAFLD, the combination of genetic and meta-

bolic parameters has been reported to improve the accuracy of

diagnosis without requiring the implementation of liver biopsy.

Moreover, the combination of the extended fatty liver index, cal-

culated based on the oral glucose tolerance test-derived fold

change in plasma triglycerides, along with 2h blood glucose and

the rs738409 C>G SNP in PNPLA3 was shown to improve the

predictive power in NAFLD diagnosis (Kantartzis et al., 2017).

Additionally, Perakakis et al. (2019) designed a non-invasive

model consisting of lipids, glycans, and hormones that could di-

agnose the presence of NAFLD with very high accuracy

(>90%). Pirola and Sookoian (2018) performed an integrative

analysis by selecting a list of genes associated with NAFLD and

metabolites known to be altered in NAFLD and NASH. The
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authors identified two pathways involved in NAFLD patho-

physiology: ABCC and SLC transporters pathways.

Challenges in integrating multi-omics data into precision

medicine

Despite these advances, integrating multi-omics in metabolic

diseases is still in its infancy, and more efforts are needed before

multi-omics can be used for precision medicine in clinical prac-

tice. First, there is a lack of robust and reproducible omics data.

Cutting-edge omics technologies have not yet delivered reliable

and stable biomarkers for predicting metabolic diseases nor

have they captured enough biological variation to enable the

construction of sensible and discrete categories and to facilitate

specific clinical treatment. For example, when biomarkers iden-

tified by GWAS and metabolomics studies were added to a risk

prediction model of traditional risk factors, the model showed

only a modest improvement in predicting the risk of T2DM

(Walford et al., 2014). Second, data by themselves are not useful

unless they are analyzed, interpreted, and acted on. Therefore,

attention has to be allocated to high-dimensional data analyses.

Third, larger sample sizes are also needed when joint analysis of

multi-omics data is performed. Currently, there are several com-

mon analysis methods, including matrix factorization (Zhang et

al., 2012), correlation-based analysis (Chen and Zhang, 2016),

multiple kernel learning, and multi-step analysis (Ritchie et al.,

2015). New bioinformatics tools for data analysis are imperative

given the large volume and complexity of available data. Last

but not least, the high cost of omics technologies is probably a

barrier in the application of multi-omics in precision medicine.

Therefore, to achieve multi-omics integration and application

to precision medicine in metabolic diseases, it is important to

address the current challenges by establishing a solid evidence

base. This can be accomplished through more rigorous study

designs, integration of high-dimensional data from various

sources, development of computational approaches to large

amounts of data, and reduction in cost of omics analyses.

Biomarkers and their application in metabolic diseases
Regardless of whether a single- or multi-omics approach is

used, the ultimate goal is to accurately evaluate physiological

processes and body states and identify better biomarkers that

can serve in metabolic disease prevention, mechanistic studies,

and precise treatment. A biomarker is defined as ‘a characteristic

that is objectively measured and evaluated as an indicator of

normal biological processes, pathogenic processes or pharmaco-

logic responses to therapeutic intervention’ (Biomarkers

Definitions Working Group, 2001). As shown in Figure 5, bio-

markers may be genetic factors, which have been covered in pre-

vious sections; they can also be non-genetic factors such as

metabolites, lipids, proteins, and chemicals applied in disease di-

agnosis, progression, therapy, and outcomes.

Non-genetic biomarkers for T2DM

Non-genetic factors such as endocrine factors, metabolic fac-

tors, and gut microbiota also are promising as biomarkers in the

diagnosis and treatment of metabolic disorders. The fibroblast

growth factor (FGF) family comprises 22 polypeptides involved

in many biological functions, including cell growth and

Barriers

1. Robust and reproducible omics data

2. High-dimensional data analyses

3. High cost of omics technologies
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Figure 4 Integrating multi-omics. Genomics contains all genetic information. Proteins are the ultimate executors to complete biotic activi-
ties and the determinants of different biological statuses. Metabolomics is a reflection of current biological events or processes, while
epigenetics and transcriptomics suggest how these changes (proteins and metabolites) are generated. Therefore, interpretation at multi-
omics levels is beneficial for a comprehensive analysis of metabolic diseases, which is important in predicting, diagnosing, and treating.
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differentiation, angiogenesis, embryonic development, wound

healing and repair, as well as metabolic regulation (Beenken and

Mohammadi, 2009). Endocrine FGFs (FGF19 and FGF21)

differ from other FGFs, acting as circulating hormones (Itoh,

2010), participating in metabolic homeostasis, and regulating

bile acid, glucose, and lipid metabolism (Coskun et al., 2008;

Song et al., 2009; Xu et al., 2009). Important insights into the

potential roles of FGF21 in human disease are rapidly emerg-

ing. The ability of FGF21 to regulate glucose homeostasis has

been widely verified in both gain- and loss-of-function studies in

animals and humans (Gaich et al., 2013). Further studies have

indicated that FGF21 ameliorates insulin and leptin resistance,

enhances fat oxidation, and suppresses de novo lipogenesis in

the liver, as well as activates futile cycling in adipose tissue

(Coskun et al., 2008), thus providing novel insights regarding

treatments for T2DM, obesity, and fatty liver disease.

LY2405319, a variant of FGF21 identified in drug discovery

studies, was the first FGF21 analog to reach a phase I clinical

trial, achieving comparable reductions in plasma glucose, insu-

lin, and body weight in patients with obesity and T2DM (Gaich

et al., 2013; Degirolamo et al., 2016). Moreover, LY2405319

was found to significantly reduce LDL-cholesterol and increase

high-density lipoprotein-cholesterol concentrations in obese

patients and those with T2DM, suggesting the potential of

FGF21-based therapies to prevent recurrent cardiovascular

events in patients with metabolic disorders (Gaich et al., 2013).

The gut microbiome can affect host metabolism, aid in diges-

tion, and contribute to normal immune function. It has been

revealed that three major fuel sources (carbohydrates, lipids, and

proteins) were all associated with T2DM (Ferrannini et al., 2013).

Among these metabolites, 3-methyl-2-oxovalerate, the

degradation product of BCAA, is the most predictive biomarker

of T2DM according to a population-based cohort (Menni et al.,

2013).

Non-genetic markers for NALFD

Another FGF family member, FGF19, binds to the FGFR4–

b-klotho receptor complex, thus repressing the activation of cho-

lesterol-7a-hydroxylase, sterol regulatory element-binding pro-

tein 1C, and cAMP-response element-binding protein, when

induced by bile acids or FXR agonists to suppress the synthesis

of bile acids, triglycerides, and glucose, respectively (Song et al.,

2009; Potthoff et al., 2011; Degirolamo et al., 2016). An engi-

neered analog of FGF19 (NGM282), devoid of tumorigenesis

activity from FGFR4 but fully reserving bile acid regulatory

function, was used in clinical trials (Modica et al., 2012).

Moreover, in animal studies, NGM282 was shown to protect

from liver injury caused by intrahepatic and extrahepatic chole-

stasis. In healthy subjects, NGM282 decreased bile acid synthe-

sis (Luo et al., 2014; Degirolamo et al., 2015). NGM282 is now

investigated in patients with diabetes and primary biliary cirrho-

sis (Luo et al., 2014; Degirolamo et al., 2015). As promising

therapeutic approaches for the treatment of a variety of chronic

diseases, FGFs-based therapies have been endorsed for glucose

and bile acid metabolism.

In a double-blinded study of patients with different stages of

NAFLD, a panel of 20 plasma metabolites such as glycerophos-

pholipids, sphingolipids, sterols are associated with NAFLD

progression based on the liver biopsy, which can be used to as

potential differential biomarkers between NASH and steatosis

(Gorden et al., 2015). Apart from lipid metabolites,
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inflammatory markers and mediators, such as C-reactive pro-

tein, tumor necrosis factor, IL-6 and IL-8, IL-1 receptor antago-

nist protein, and CXC-chemokine 10 (CXCL10), are also non-

invasive diagnostic markers for NASH (Ajmera et al., 2017).

Serum ferritin is also an independent predictor of advanced he-

patic fibrosis among patients with NAFLD (Kowdley et al.,

2012).

Biomarkers for MetS

Based on the mechanism of MetS, metabolites associated with

central obesity, insulin resistance, hypertension, and lipid and glu-

cose metabolism are all its promising biomarkers. Among these

biomarkers, the high molecular weight (HMW) adiponectin may

be the most reliable biomarker for MetS (Falahi et al., 2015), al-

though the role of HMW adiponectin needs further certification.

As we mentioned earlier, microbiota can affect host metabolism,

alter gut microbiota profile, and contribute to the progression of

T2DM, NAFLD, and MetS through influencing lipid and bile

acid metabolism (Anand et al., 2016). Bacteroides was found to

be independently associated with NASH, while Ruminococcus

was associated with significant fibrosis in NAFLD progression

(Boursier et al., 2016). Furthermore, gut-derived metabolite

TMAO is an early biomarker of adipose dysfunction, NAFLD,

and MetS (Barrea et al., 2018).

Summary

By integrating numerous biological measurements, data

analysis strategies could offer novel insights for the integrative

physiology of metabolic disorders, caused by an interplay of

multiple genetic variants, lifestyle, and environmental factors.

More and more genetic and non-genetic biomarkers have been

identified and used in clinical practice; however, there is still a

long distance to cover between the discovery of biomarkers and

precise treatment. Nevertheless, efforts should be continued to

translate research on biomarkers to clinical applications, to im-

prove treatment capabilities for patients.

Conclusions
Facing the existing severe burden of metabolic disorders, nu-

merous studies are trying to find most effective treatments;

therefore, precision medicine is urgently needed. For polygenic

diseases such as T2DM, NAFLD, and MetS, genetics is the

foundation of phenotypes, though environmental factors, age,

sex, disease subtypes, and gut microorganisms also exert a sig-

nificant influence. The future direction of precision medicine

relies on the combination of multi-omics technologies and corre-

sponding analyses. While how to combine and analyze the data

from multi-omics technologies is the key knowledge gap yet

filled, it is also the main challenge of precision medicine in iden-

tification and implementation of these multi-omics data based

on the clinical practice. The answer to this question will depend,

to some extent, on the interactions between the clinical

characteristics and the underlying biology of the disease. We can

define etiological subgroups of these diseases based on the physi-

ological features characterized by multi-omics technologies, and

then analyze the subgroup features with the clinical characteris-

tics based on the laboratory parameters and imaging data from

computed tomography/magnetic resonance imaging. Machine

learning might be useful in analyzing these interactions.

Precision medicine is bound to face these challenges, and the

way scientists deal with these challenges determines the future

direction of precision medicine.
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