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Abstract

Disease variants identified by genome-wide association studies (GWAS) tend to overlap with 

expression quantitative trait loci (eQTLs), but it remains unclear whether this overlap is driven by 

gene expression levels mediating genetic effects on disease. Here we introduce a new method, 

mediated expression score regression (MESC), to estimate disease heritability mediated by the cis-

genetic component of gene expression levels. We applied MESC to GWAS summary statistics for 

42 traits (average N = 323K) and cis-eQTL summary statistics for 48 tissues from the Genotype-

Tissue Expression (GTEx) consortium. Averaging across traits, only 11±2% of heritability was 

mediated by assayed gene expression levels. Expression-mediated heritability was enriched in 

genes with evidence of selective constraint and genes with disease-appropriate annotations. Our 

results demonstrate that assayed bulk-tissue eQTLs, though disease relevant, cannot explain the 

majority of disease heritability.

Introduction

In the past decade, genome-wide association studies (GWAS) have shown that most disease-

associated variants lie in noncoding regions of the genome1–3, leading to the hypothesis that 
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regulation of gene expression levels is the primary biological mechanism through which 

genetic variants affect complex traits, and motivating large scale expression quantitative trait 

loci (eQTL) studies4,5. Many statistical methods have been developed to integrate eQTL data 

with GWAS data to gain functional insight into the genetic architecture of disease. These 

methods include: colocalization tests, which have shown that many genes have eQTLs that 

colocalize with GWAS loci6–10; transcriptome-wide association studies, which have shown 

that many genes exhibit significant cis-genetic correlations between their expression and 

disease11–24; and partitioning of disease heritability, which has shown that eQTLs as a whole 

are significantly enriched for disease heritability25–28.

Despite these findings, it remains unclear the extent to which eQTLs from available studies 

capture mechanistic effects of gene expression on disease9,29–31. In particular, eQTLs from 

the largest available gene expression reference panels5,32 are measured in bulk tissues in 

steady-state cellular conditions, which may not reflect the specific cell types or cellular 

contexts in which gene expression is causal for disease33–35. In addition, several different 

causal scenarios can result in similar patterns of enrichment/overlap between GWAS loci 

and eQTLs, summarized in Figure 1a: (1) mediation, (2) pleiotropy, and (3) linkage. Of 

these three scenarios, only scenario (1) is informative of the SNP’s mechanism of action on 

disease, but existing methods are unable to consistently distinguish scenarios (2) and (3) 

from scenario (1). Colocalization tests can sometimes rule out linkage as an explanation for 

overlap between eQTLs and disease SNPs, but cannot rule out pleiotropy13,36. 

Transcriptome-wide association studies cannot rule out either pleiotropy or linkage13,29. 

Among the methods that partition disease heritability, some aim to rule out linkage through 

fine-mapping of eQTLs27, but none aim to rule out pleiotropy. Thus, it remains unclear 

whether enrichment/overlap between eQTLs and disease SNPs usually reflects mediation, or 

whether it more commonly reflects pleiotropy and/or linkage9,29. For example, in the case of 

autoimmune diseases, most instances of overlap between significant disease loci and 

immune cell eQTLs are driven by linkage9, suggesting that linkage may be more prevalent 

than mediation31.

In this study, we aim to quantify the proportion of disease heritability mediated in cis by 

assayed expression levels (scenario (1) from above). We first define expression-mediated 

heritability under a generative model featuring both mediated and non-mediated (including 

pleiotropic and linkage) effects of SNPs on the trait. This definition can accommodate 

assayed gene expression levels measured in a tissue or cellular context not necessarily causal 

for the disease. We introduce a method, mediated expression score regression (MESC), to 

estimate expression-mediated heritability from GWAS summary statistics, linkage 

disequilibrium (LD) scores, and eQTL effect sizes obtained from external expression panels. 

Intuitively, MESC distinguishes mediated from non-mediated effects in a set of genes via the 

idea that mediation (unlike pleiotropy and linkage) induces a linear relationship between the 

magnitude of eQTL effect sizes and disease effect sizes. We applied MESC to GWAS 

summary statistics for 42 diseases and complex traits and cis-eQTL data for 48 tissues from 

the GTEx consortium5 to quantify the proportion of disease heritability mediated by the 

expression levels of all genes as a whole, as well as by various functional gene sets.
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Results

Definition of expression-mediated heritability

We briefly define heritability mediated by the cis-genetic component of gene expression 

levels (ℎmed
2 ). Cis-eQTL effects multiplied by gene-trait effects form an expression-mediated 

component of each SNP effect on trait (Figure 1b). This component is then squared and 

summed across all SNPs to obtain ℎmed
2  (Figure 1c,d). Our definition of ℎmed

2  additionally has 

two forms: ℎmed; causal
2 , in which cis-eQTL effect sizes are hypothetically obtained in the 

causal cell types and contexts for the disease, and ℎmed; assayed
2 T , in which cis-eQTL effect 

sizes are obtained in a given set of assayed tissues T (e.g. from GTEx). ℎmed; assayed
2 T  and 

ℎmed; causal
2  are related by the formula ℎmed; assayed

2 T = rg2 T ℎmed; causal
2 , where rg2 T  is the 

average squared genetic correlation between expression in T and expression in the 

unobserved causal cell types/contexts for the disease. In practice, we only aim to estimate 

ℎmed; assayed
2 T , but it is useful to conceptualize this quantity in terms of ℎmed; causal

2  since 

ℎmed; causal
2  has a more direct mechanistic interpretation. For brevity, we refer to 

ℎmed; assayed
2 T  as simply ℎmed

2  for the remainder of the manuscript, where the set of tissues 

T is implicit.

We also define a quantity ℎmed
2 D  corresponding to the heritability mediated by the 

expression levels of gene category D, where D can be arbitrarily defined over any set of 

genes (e.g. genes in a specific molecular pathway). See Methods for a more detailed 

definition of ℎmed
2  and ℎmed

2 D .

Estimating expression-mediated heritability using MESC

In order to estimate ℎmed
2 , we propose an approach that involves regressing squared GWAS 

summary statistics on squared cis-eQTL summary statistics summed across genes (Figure 

1d). Differences in LD between SNPs are captured by conditioning on LD scores (Figure 

1e). In addition, to avoid bias (see below), we stratify the regression across both gene 

categories D and SNP categories C. The final regression equation used to estimate ℎmed
2  is

E χk
2 = N∑

c
τclk; c + N∑

d
πdℒk; d + 1

where χk
2 is the GWAS χ2 statistic of SNP k, N is the number of samples, τc is the per-SNP 

contribution to non-mediated heritability of SNPs in SNP category C, ℓk;c is the LD score2,37 

of SNP k with respect to SNP category C (defined as lk; c = ∑j ∈ C rjk
2 ), πd is the per-gene 

contribution to ℎmed
2 D , and ℒk;d is the expression score of SNP k with respect to gene 

category D (defined as ℒk; d = ∑i ∈ D ∑J
M rjk

2 βij
2 ). Here, rjk refers to the LD between SNPs j 

and k, while βij refers to the causal cis-eQTL effect size of SNP j on gene i. ℒk;d can be 

conceptualized as the total expression cis-heritability of genes in D that is tagged by SNP k.
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The above equation allows us to estimate πd and τc via computationally efficient multiple 

regression of GWAS chi-square statistics against LD scores and expression scores. In order 

for the equation to provide unbiased estimates of ℎmed
2 , two main effect size independence 

assumptions must be satisfied, of which violations can be addressed via careful partitioning 

of SNPs and/or genes (Methods; Supplementary Note).

Throughout this study, we present estimates of three quantities that are a function of ℎmed
2

and/or ℎmed
2 D : (1) the proportion of heritability mediated by expression (defined as 

ℎmed
2 /ℎg

2), (2) the proportion of expression-mediated heritability for gene category D (defined 

as ℎmed
2 D /ℎmed

2 ), and (3) the enrichment of expression-mediated heritability for D (defined 

as the proportion of expression-mediated heritability in D divided by the proportion of genes 

in D). We estimate standard errors and p-values for all quantities by jackknifing over blocks 

of SNPs2,37 (Methods). We have released open source software implementing our method 

(https://github.com/douglasyao/mesc).

Simulations assessing calibration and bias

We performed simulations to assess the calibration and bias of MESC in estimating ℎmed
2 /ℎg

2

and its standard error from simulated complex trait and expression data under a variety of 

genetic architectures (Methods). We performed all simulations using real genotypes from 

UK Biobank38 (NGWAS = 10,000 GWAS samples; NeQTL = 100–1000 expression samples, 

M = 98,499 SNPs from chromosome 1).

We evaluated the bias of MESC in estimating various values of ℎmed
2 /ℎg

2 in the following 

scenarios: (1) when varying expression panel sample size (Figure 2a), (2) when varying the 

proportion of SNPs and genes with nonzero effects (Figure 2b), (3) when simulating eQTL 

effect sizes in the gene expression panel that differ from those used to generate the complex 

trait phenotype, emulating the scenario in which assayed tissues differ from the causal 

tissue(s) for the disease (Figure 2c), (4) when using different methods to estimate expression 

scores (5 in total) (Supplementary Figure 1), (5) when varying total disease heritability 

(Supplementary Figure 2), and (6) when including rare variants and inducing an inverse 

relationship between eQTL/GWAS effect size magnitude and minor allele frequency 

(Supplementary Figure 3), consistent with negative selection acting on both gene 

expression39,40 and complex trait41,42. We observed that MESC produced unbiased or nearly 

unbiased estimates of ℎmed
2 /ℎg

2 across all simulated genetic architectures with expression 

panel sample size greater than 500 when using the best-performing method to estimate 

expression scores, LASSO with REML correction (Methods). We note that available 

expression panel sample sizes for individual tissues are typically smaller than 500, which 

necessitates meta-analysis across tissues to attain larger expression panel sample sizes 

(Methods). For scenario (3), we expect in theory that MESC will estimate the quantity 

rg2 T ℎmed; causal
2  when using expression scores from a non-causal tissue with average squared 

genetic correlation of expression rg2 T  with the causal tissue. Our simulation results support 

this theoretical expectation.
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Next, we assessed the bias of MESC in two biologically plausible scenarios corresponding 

to violations of the two main effect size independence assumptions (Methods), and we 

assessed how well partitioning genes and SNPs ameliorated this bias. The assumptions can 

be summarized as: (1) gene-eQTL independence, where eQTL and gene effect size 

magnitude are independent within each gene category, and (2) pleiotropy-eQTL effect size 

independence, where eQTL and SNP non-mediated effect size magnitude are independent 

within each SNP category. We simulated violations of (1) by inducing a negative correlation 

between eQTL and gene effect size magnitude across the genome. We observed that 

partitioning genes into 5 bins by the magnitude of their expression heritability enabled us to 

obtain approximately unbiased estimates of ℎmed
2 /ℎg

2  (Figure 2d). We simulated violations of 

(2) by inducing enrichment of eQTLs and non-mediated effects within the same SNP 

categories (e.g. coding regions, transcription start sites, or conserved regions). We observed 

that partitioning SNPs by the baselineLD model2,43 (a set of comprehensive functional SNP 

annotations) enabled us to obtain approximately unbiased estimates of ℎmed
2 /ℎg

2  (Figure 2e), 

even in extreme scenarios e.g. when 100% of mediated and non-mediated heritability were 

entirely concentrated in coding regions.

Finally, we performed simulations comparing MESC to other methods. To our knowledge, 

no published methods specifically aim to estimate heritability mediated by expression levels. 

The closest analogues are approaches that measure the genome-wide heritability enrichment 

of eQTLs25–28 using GCTA44 or stratified LD score regression (S-LDSC)2,43. In 

simulations, we found that S-LDSC detected significant heritability enrichment of a SNP 

category corresponding to the set of all eQTLs in the absence of any mediation 

(ℎmed
2 /ℎg

2 = 0), while MESC had a well-calibrated false positive rate for detecting 

significantly non-zero ℎmed
2 /ℎg

2 in this scenario (Figure 2f).

In summary, we show that MESC produces approximately unbiased estimates of ℎmed
2 /ℎg

2

and well-calibrated standard errors under a wide variety of simulated genetic and gene 

architectures for expression panel sample sizes > 500, whereas other methods cannot 

distinguish mediated from non-mediated effects. See Supplementary Note for more details 

on simulations in this section.

Estimation of ℎmed
2  for 42 diseases and complex traits

We applied MESC to estimate the proportion of heritability mediated by the cis-genetic 

component of assayed expression levels (ℎmed
2 /ℎg

2) for 42 independent diseases and complex 

traits from the UK Biobank38 and other publicly available datasets (average N = 323K; see 

Supplementary Table 1 for list of traits). In total, we produced three different types of 

expression scores: (1) expression scores for each individual GTEx tissue, (2) expression 

scores meta-analyzed within groups of GTEx tissues with common biological origin 

(Supplementary Table 2), and (3) expression scores meta-analyzed across all 48 GTEx 

tissues. Each type of expression score was used to estimate ℎmed
2 /ℎg

2 for each complex trait 

(Methods). To avoid biases, we partitioned genes by 5 expression cis-heritability bins and 

SNPs by the baselineLD model. We performed several analyses evaluating the robustness of 
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these SNP and gene categories, finding that our estimates of ℎmed
2 /ℎg

2 were similar with other 

reasonable choices of SNP and gene categories but very biased when not partitioning genes 

or SNPs at all (Supplementary Note).

Across all 42 traits, we observed an average ℎmed
2 /ℎg

2 of 0.11 (S.E. 0.02) from the all-tissue 

meta-analyzed expression scores. We did not observe a relationship between ℎmed
2 /ℎg

2 and ℎg
2

across traits (R2 = 0.004) (Extended Data 1). Of the 42 traits, 26 had ℎmed
2 /ℎg

2 estimates 

greater than 0 at nominal significance (p-value < 0.05), with 10 reaching Bonferroni 

significance (p-value < 0.05 / 42). In Figure 3a, we report ℎmed
2 /ℎg

2 estimates from all-tissue 

and tissue-group meta-analyzed expression scores for a representative set of 10 genetically 

uncorrelated traits (full results in Extended Data 2 and Supplementary Table 3,4). We 

observed consistently lower estimates of ℎmed
2 /ℎg

2 from individual-tissue expression scores 

than from meta-tissue expression scores, as well as a positive correlation between tissue 

sample size and magnitude of individual-tissue ℎmed
2 /ℎg

2 (R2 = 0.71) (Extended Data 3), 

suggesting downward biases in individual-tissue ℎmed
2 /ℎg

2 estimates due to low sample size.

As independent validation, we used cis-eQTL summary statistics from eQTLGen32 (NeQTL 

= 31,684 in blood only) to estimate ℎmed
2 /ℎg

2 for the same 42 traits we analyzed above. We 

obtained very similar ℎmed
2 /ℎg

2 estimates as GTEx all-tissue expression for blood/immune 

traits and lower ℎmed
2 /ℎg

2 for non-blood/immune traits (Extended Data 4, Supplementary 

Table 5), consistent with the fact that that eQTLGen only captures expression levels in blood 

while GTEx all-tissue meta-analysis captures expression levels across diverse tissues.

Genes with low expression heritability explain more ℎmed
2

To investigate the relationship between expression cis-heritability (ℎcis
2 ) and amount of 

complex trait heritability mediated by those genes, we looked at the proportion of ℎmed
2

(defined as ℎmed
2 D /ℎmed

2  for gene category D) mediated by genes stratified into 10 equally-

sized bins by their ℎcis
2 . Across 26 traits with ℎmed

2  significantly greater than 0, we observed 

an inverse relationship between meta-tissue ℎcis
2  and proportion of ℎmed

2  across gene bins 

(Figure 4, Supplementary Table 6), with 32% of ℎmed
2  explained by the lowest 2 bins (mean 

meta-tissue ℎcis
2 = 0.014) and only 3% of ℎmed

2  explained by the highest 2 bins (mean meta-

tissue ℎcis
2 = 0.30). This result implies that genes with less heritable expression (i.e. weaker/

fewer eQTLs) have substantially larger causal effect sizes on the complex trait.

We considered several reasons why genes with less heritable expression might have larger 

causal effects on the complex trait. One explanation is that negative selection purifies out 

strong eQTLs for genes with large effect on complex traits5,45. Alternatively, genes with low 

meta-tissue ℎcis
2  may consist of genes with tissue-specific eQTLs, which have been shown to 

be enriched for disease heritability5,27,28. In support of the first explanation, we observed 

Yao et al. Page 6

Nat Genet. Author manuscript; available in PMC 2020 November 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



that the probability of being loss-of-function intolerant46 (i.e. pLI) and the level of selection 

against protein-truncating variants47 (i.e. shet) were both inversely correlated with meta-

tissue ℎcis
2  (Spearman’s ρ = −0.23 and −0.21 respectively) (Extended Data 5). We did not 

observe strong evidence for the second hypothesis (Supplementary Note).

ℎmed
2  enrichment in functional gene sets

To gain insight into the distribution of expression-mediated effect sizes across various 

functional gene sets, we estimated ℎmed
2  enrichment, defined as (proportion of ℎmed

2 ) / 

(proportion of genes), for these gene sets. We analyzed 827 gene sets from three main 

sources: (1) 10 gene sets reflecting various broad metrics of gene essentiality; (2) 780 gene 

sets reflecting specific biological pathways, including gene sets from the KEGG48, 

Reactome49, and Gene Ontology (GO)50 pathway databases; and (3) 37 gene sets 

comprising genes specifically expressed in 37 different GTEx tissues51 (Methods; see 

Supplementary Table 7 for list of gene sets). We restricted our analyses to large gene sets 

with at least 200 genes, since we observed large standard errors in ℎmed
2  enrichment 

estimates for gene sets with 200 or fewer genes (Supplementary Figure 4).

Out of 21,502 gene set-complex trait pairs (827 gene sets × 26 complex traits), we observed 

226 gene set-complex trait pairs (comprising 117 unique gene sets) with FDR-significant 

ℎmed
2  enrichment (q-value < 0.05 accounting for 21,502 hypotheses tested). Significant ℎmed

2

enrichment estimates ranged from 1.5x to 51x across gene-set complex trait pairs. The full 

list of ℎmed
2  enrichment estimates for all 21,502 gene set-complex trait pairs is reported in 

Supplementary Table 8.

In Figure 5a, we show ℎmed
2  enrichment estimates for all 10 broadly essential gene sets meta-

analyzed across 26 complex traits (individual trait results in Extended Data 6). We observed 

Bonferroni-significant meta-trait ℎmed
2  enrichment (p < 0.05 / 10) for 8 gene sets, including 

ExAC loss-of-function intolerant genes46 (3.9x enrichment; p = 2.3 × 10−25), FDA-approved 

drug targets52 (5.2x enrichment; p = 2.0 × 10−5), genes essential in mice53–55 (4.0x 

enrichment; p = 1.1 × 10−10), and genes nearest to GWAS peaks56 (3.9x enrichment; p = 5.0 

× 10−46).

Of the 780 pathway gene sets, we observed that 97 had a significant ℎmed
2  enrichment (q-

value < 0.05) in at least one of the 26 complex traits. In Figure 5b, we show the ℎmed
2

enrichment estimates of a representative set of 140 gene set-complex trait pairs (full results 

in Extended Data 7). Most gene sets exhibited highly trait-specific patterns of enrichment 

that were consistent with the known biology of the trait, including fragile X mental 

retardation protein (FMRP)-interacting genes for schizophrenia57,58, Wnt signaling for bone 

density59, and hemostasis for platelet count60.

Finally, we investigated whether genes specifically expressed in 37 different GTEx tissues51 

were enriched for ℎmed
2 . We found significant ℎmed

2  enrichment (q-value < 0.05) of genes 

specifically expressed in brain tissues for brain-related traits (schizophrenia and years of 
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education) (Figure 5c), demonstrating that the complex trait heritability of SNPs near genes 

specifically expressed in causal tissues (at least for the two traits here) is in part mediated by 

the expression of those genes.

Given that MESC can be used to prioritize disease-relevant gene sets based on the 

magnitude of their ℎmed
2  enrichment, it falls alongside a large class of methods that aim to 

perform gene set enrichment analysis from GWAS data61–67. We compared results from 

MESC to two other popular gene set enrichment methods applied to the same GWAS 

summary statistics we analyzed, MAGMA64 and DEPICT63. We observed that MESC 

highlighted both broadly concordant and unique gene sets compared to these other methods 

(Supplementary Note; Extended Data 8; Supplementary Table 9).

Discussion

We have developed a new method, mediated expression score regression (MESC), to 

estimate complex trait heritability mediated by the cis-genetic component of assayed 

expression levels (ℎmed
2 ) from GWAS summary statistics and eQTL effect sizes estimated 

from an external expression panel. Our method is distinct from existing methods that 

identify and quantify overlap between eQTLs and GWAS hits (including colocalization 

tests6–10, transcriptome-wide association studies11–14,16, and heritability partitioning by 

eQTL status25–28) in that it specifically aims to distinguish directional mediated effects from 

non-directional pleiotropic and linkage effects. Moreover, our polygenic approach does not 

require individual eQTLs or GWAS loci to be significant and is not impacted by the sparsity 

of eQTL effect sizes, so unlike other approaches9–13,27 we do not exclude genes or SNPs 

from our analyses based on any significance thresholds. We applied our method to summary 

statistics for 42 traits and eQTL effect sizes estimated from 48 GTEx tissues. We show that 

across traits, a significant but modest proportion of complex trait heritability (0.11±0.02) is 

mediated by the cis-genetic component of assayed expression levels. Though many previous 

approaches have hypothesized that SNPs impact complex traits by directly modulating gene 

expression levels, our results provide concrete genome-wide evidence for this hypothesis. 

On the other hand, the fact that our ℎmed
2 /ℎg

2 estimates are low for most traits suggests that 

eQTLs estimated from steady-state expression in bulk post-mortem tissues from GTEx do 

not capture most of the mediated effect of complex trait heritability, motivating additional 

assays to better identify molecular mechanisms impacted by regulatory GWAS variants.

There are two possible explanations for our low ℎmed
2 /ℎg

2 estimates:

1. The proportion of complex trait heritability mediated by the cis-genetic 

component of gene expression levels is in fact high in causal cell types/contexts 

for the trait, but eQTL data from bulk assayed tissues from GTEx is a poor proxy 

for eQTL data in causal cell types/contexts, causing ℎmed
2 /ℎg

2 to be low. In other 

words, ℎmed; causal
2  is high, while rg2 T  is low. Low rg2 T  may be addressed by 

larger assays measuring context-specific expression33,35 and/or single-cell 

expression34.
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2. The proportion of complex trait heritability mediated by the cis-genetic 

component of gene expression levels is low even in causal cell types/contexts for 

the trait. In particular, complex trait heritability may be mediated in ways other 

than through gene expression levels in cis, including through protein-coding 

changes, splicing, or expression levels in trans. In these scenarios, additional 

assays such as splicing68, histone mark4, chromosome conformation69, and 

trans-eQTL32 assays can potentially be informative for probing other molecular 

mechanisms impacted by GWAS variants. We note that much larger gene 

expression assays than currently available are necessary to estimate heritability 

mediated by gene expression levels in trans using MESC (Supplementary Note). 

We anticipate that MESC can be used to estimate the proportion of disease 

heritability mediated by future QTL studies beyond cis-eQTLs.

We considered several other explanations for our low ℎmed
2 /ℎg

2 estimates and justify that they 

do not apply to our analysis. Our low ℎmed
2 /ℎg

2 estimates are not related to the fact that 

expression cis-heritability ℎcis
2  is also low, since the level of environmental/stochastic noise 

in gene expression measurements does not affect our ℎmed
2 /ℎg

2 estimates (Supplementary 

Note). Moreover, our ℎmed
2 /ℎg

2 estimates are not biased by rare variant effects on gene 

expression39,40, since we only aim to estimate the proportion of common disease heritability 

mediated by gene expression levels (Supplementary Note).

We observed that expression scores meta-analyzed across tissues gave us higher estimates of 

ℎmed
2 /ℎg

2 than individual-tissue expression scores. This result is consistent with previous 

studies that reported higher heritability enrichment of cis-eQTLs meta-analyzed across all 

GTEx tissues compared to individual tissues27, higher prediction accuracy for imputed 

expression using joint prediction from multiple tissues compared to individual tissues70, and 

high cis-genetic correlations of expression between tissues overall71,72.

We observed a strong inverse relationship between proportion of ℎmed
2  and expression cis-

heritability across genes, suggesting that genes with low expression cis-heritability have 

large effects on complex traits. This result suggests that integrative association tests that 

prioritize genes based on probability of colocalization between eQTLs and GWAS hits6,8,9 

and/or significance of genetic correlation between expression and trait11–13 may not detect 

the most mechanistically important genes, since these methods have lower power for genes 

with weaker eQTLs. Instead, our result suggests that genes with weaker eQTLs should be 

prioritized, and it motivates the implementation of larger eQTL studies and/or cell-type 

specific assays to more accurately detect these weak eQTLs.

There are several limitations to our method. First, our method makes the assumptions that 

the magnitude of eQTL effect sizes is uncorrelated with the magnitude of both gene-trait 

effect sizes and non-mediated effect sizes within each SNP and gene category included in 

the model. Although we have evaluated the robustness of our choice of SNP and gene 

categories in both simulations and real data, these assumptions may still be violated. Second, 

our method relies on the accurate estimation of expression scores from external expression 
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panel samples. In order for our method to be well-powered, it requires large expression 

panel sample sizes that can only be obtained through meta-analysis across individual tissues 

at current sample sizes. Third, the quantity that our method estimates in practice (i.e. 

heritability mediated by assayed gene expression levels) can potentially be much smaller 

than the theoretical quantity of heritability mediated by expression levels in causal cell 

types/contexts if assayed gene expression levels do not adequately capture expression levels 

in causal cell types/contexts. Fourth, our method can only provide reliable ℎmed
2  enrichment 

estimates for large gene sets on the order of 200 or more genes, so smaller gene pathways or 

individual genes cannot be prioritized using our method. Fifth, our method does not capture 

non-additive effects of SNPs on gene expression or gene expression on trait.

Despite these limitations, our method provides a novel framework to distinguish mediated 

effects from pleiotropic and linkage effects and will be useful for quantifying the 

improvement of new molecular QTL studies over existing assays in capturing regulatory 

disease mechanisms. Moreover, partitioning mediated heritability can provide insight into 

regulatory effects mediated by specific gene sets or pathways.

Methods

Definition of ℎmed
2

We model trait y for N individuals as follows:

y = Xγ + XBα + ϵ (1)

where y is an N-vector of phenotypes (standardized to mean 0 and variance 1), X is an N × 

Mgenotype matrix for M SNPs (standardized to mean 0 and variance 1), γ is an M vector of 

non-mediated SNP effect sizes on the trait (including pleiotropic, linkage, and trans-eQTL-

mediated effects), B is an M × G matrix of cis-eQTL effect sizes in the causal cell types/
contexts for G genes, α is a G-vector of causal gene expression effect sizes on the trait, and 

ϵ is an N-vector of environmental effects. We treat all variables as random. We define 

ℎmed; causal
2  as follows:

ℎmed; causal
2 = V ar XBα

Under the assumption that α and β are independent of each other, we can rewrite this as 

follows:

ℎmed; causal
2 = EB, α V ar XBα ∣ B, α +V arB, α E XBα ∣ B, α

                 = EB, α ∑
i

G
∑
j

M
βij2 αi2

                 = GE α2 E ℎcis2
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where E[α2] is the average squared per-gene effect of expression on trait and E ℎcis
2  is the 

average cis-heritability of expression across all genes. The second line above follows the 

first because E[XBα | B, α] = 0. We define ℎnonmed;causal
2  in a similar fashion:

ℎnonmed;causal
2 = V ar Xγ

                         = ME γ2

where E[γ2] is the average squared per-SNP effect on trait that is not mediated by gene 

expression. We consider additional expression causality scenarios, such as reverse 

mediation, cis-by-trans mediation, and mediation by unobserved intermediaries 

(Supplementary Figure 8), and we justify that these scenarios do not compromise our 

definition of ℎmed;causal
2  (Supplementary Note).

In practice, expression levels in causal cell types/contexts for the complex trait are likely not 

assayed. Given a set of assayed tissues T (which may or may not be causal for the complex 

trait), we define ℎmed;assayed
2 (T ) as follows:

ℎmed; assayed
2 T = rg2 T ℎmed; causal

2

while we define ℎnonmed;assayed
2 T  as ℎnonmed;causal

2 + 1 − rg2 T ℎmed; causal
2 . Here, 

rg2 T = 1
G ∑i

G Cov βi2, βi′2

V ar βi2 V ar βi′2
 and denotes the average squared genetic correlation between 

expression in assayed tissues T vs. in causal cell types/contexts, where βi
′ represents cis-

eQTL effect sizes on gene i in T. Note that β′ can refer to either single tissue or meta-tissue 

cis-eQTL effect sizes, depending on whether T contains one or multiple tissues.

Unstratified MESC

For illustrative purposes, we walk through a derivation for MESC in the idealized scenario 

that we know 1. the true eQTL effect sizes, β, of each SNP on each gene and 2. the true 

phenotypic effect sizes, ω, of each SNP on y.

Under the generative model (1), the total effect of SNP k on the complex trait is

ωk = ∑ 
i

G
βikαi + γk

Given conditional independence of α and γ given β, upon squaring ωk we have

E ωk
2 ∣ β1k…βik = ∑

i

G
E αi2 ∣ β1k…βik βik

2 + E γk
2 ∣ β1k…βik
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Assuming unconditional independence of α and γ (which requires that we make additional 

effect size independence assumptions involving β; see “Model assumptions”), this simplifies 

to

E ωk
2 ∣ β1k…βik = E α2 ∑

i

G
βik

2 + E γ2 (2)

We use equation (2) to estimate E[α2] by regressing ω2 for all SNPs on ∑i
Gβi

2 and taking the 

slope, while we estimate E[γ2] by taking the intercept. See Figure 1d for a plot illustrating 

this approach. E[α2] can be multiplied by GE ℎcis
2  to obtain ℎmed; causal

2 , while E[γ2] can be 

multiplied by M to obtain ℎnonmed;causal
2 .

When we perform this regression using eQTL effect sizes obtained from non-causal tissues 

T with squared genetic correlation rg2 T  with the causal tissue(s), we obtain an estimate of 

the quantity ℎmed; assayed
2 T  rather than ℎmed; causal

2  (Supplementary Note). Moreover, in 

practice we perform this regression using GWAS and eQTL summary statistics, in which 

case we account for differences in LD between SNPs with an LD score covariate (see 

Supplementary Note for derivation and regression equation).

Model assumptions

The two main effect size independence assumptions that are needed to derive equation (2) 

are:

1. Across all genes, the magnitude of gene effect sizes is uncorrelated with the 

magnitude of eQTL effect sizes (i.e. Cov(α2, β2) = 0). We refer to this 

assumption as gene-eQTL effect size independence.

2. Across all SNPs, the magnitude of non-mediated SNP effect sizes is uncorrelated 

with the magnitude of eQTL effect sizes (i.e. Cov(γ2, β2) = 0). We refer to this 

assumption as pleiotropy-eQTL effect size independence.

Violations of either of these two assumptions will result in biased estimates of ℎmed
2 , where 

the direction of bias is the same as the direction of correlation between eQTL effect size 

magnitude and gene or non-mediated effect size magnitude. See Supplementary Note for a 

discussion of realistic scenarios in which these assumptions might be violated, as well as an 

illustration of how conditioning on SNP- and gene-level annotations can ameliorate any 

resulting bias.

Stratified MESC

In this section, we extend unstratified MESC to estimate ℎmed
2  partitioned over groups of 

genes. Note that stratified MESC can be viewed as a special form of stratified LD score 

regression2 (Supplementary Note). Given D potentially overlapping gene categories D1, …, 

DD, we define ℎmed; causal
2  partitioned over gene categories as follows:
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ℎmed; causal
2 Dd = ∑

i ∈ Dd
αi2∑

j

M
βij2

                        = Dd ⋅ E αi2 i ∈ Dd ⋅ E ℎi; cis2 i ∈ Dd

where ℎmed; causal
2 Dd  is the heritability mediated in cis through the expression of genes in 

category Dd, Dd  is the number of genes in Dd, E[αi2 | i ∈ Dd] is the average squared causal 

effect of expression on trait for genes in Dd, and E[ℎi; cis
2 | i ∈ Dd] is the average cis-

heritability of expression of genes in Dd. Similar to our definition of ℎmed; causal
2 , the second 

line above relies on an independence assumption between α and β, namely that αi ⊥ βi | i∈ 
Dd.

For gene i, we model the variance of gene effect size αi as

V ar αi = ∑
d: i ∈ Dd

πd

If gene categories Dd form a disjoint partition of the set of all genes, we have

πd =
E ℎmed; causal

2 Dd
Dd E[ℎi; cis2 i ∈ Dd]

On the other hand, if gene categories are overlapping, then πd can be conceptualized as the 

contribution of annotation Dd to ℎmed; causal
2  conditional on contributions from all other gene 

categories included in the model.

Given C potentially overlapping SNP categories C1, …, CC, we define ℎnonmed;causal
2

partitioned over SNP categories as follows:

ℎnonmed;causal
2 Cc = ∑

j ∈ Cc
γj2

                              = Cc ⋅ E[γj2 j ∈ Cc]

where ℎnonmed;causal
2 Cc  is the non-mediated heritability of SNPs in category Cc, Cc  is the 

number of SNPs in Cc, and E[γj2 | j ∈ Cc] is the average squared non-mediated effect size of 

SNPs in Cc.

For SNP j, we model the variance of non-mediated effect size γj as follows:
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V ar γj = ∑ 
c: j ∈ Cc

τc

If SNP categories Cc form a disjoint partition of the set of all SNPs, we have

τc =
E ℎnonmed;causal

2 Cc
Cc

On the other hand, if SNP categories are overlapping, then τc can be conceptualized of as the 

contribution of annotation Cc to ℎnonmed;causal
2  conditional on contributions from all other 

SNP categories included in the model.

The equation for stratified MESC is

E χk
2 = N∑

c
τclk; c + N∑

d
πdℒk; d + 1 (3)

where χk
2 is the GWAS χ2-statistic of SNP k, N is the number of samples, ℓk;c is the LD 

score of SNP k with respect to SNP category Cc (defined as lk; c = ∑j ∈ Ccrjk
2 ), and ℒk;d is 

the expression score of SNP k with respect to gene category Dd (defined as 

ℒk; d = ∑i ∈ Dd ∑j
M rjk

2 βij
2 ). Here, rjk refers to the LD between SNPs j and k. See 

Supplementary Note for a derivation of this equation. Analogous to unstratified MESC, 

when we perform this regression using expression scores in assayed tissues T rather than 

expression scores in causal cell types/contexts, we will estimate 

ℎmed; assayed
2 T , Dd = r2 T , Dd ℎmed; causal

2 Dd , where r2(T, Dd) is the average squared 

genetic correlation of expression between T and causal cell types/contexts for genes in Dd.

Estimation of expression scores

In order to carry out the regression described in equation (3), we must first estimate 

expression scores ℒk;d (where ℒk; d = ∑i ∈ D ∑j
M rjk

2 βij
2 ) from an external expression panel. 

We estimate ℒk;d from either eQTL summary statistics or individual-level genotypes and 

expression measurements, where the latter provides less noisy estimates of ℒk;d given that it 

is available. In our case, we use the first procedure to estimate expression scores from 

eQTLGen data (since only eQTL summary statistics are provided), whereas we used the 

second procedure for GTEx data.

eQTL summary statistics.—We can estimate ℒk;d from eQTL summary statistics using 

the following formula: ℒk; d = ∑i ∈ Dβ ik sumstat
2 − D

Nexp
, where β ik sumstat

2  is the marginal 

OLS eQTL effect size estimate of SNP k on gene i, |D| is the number of genes in gene 

category D, and Nexp is the number of expression panel samples. The right-hand side of the 

formula is in expectation equal to ℒk;d (Supplementary Note).
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Individual-level genotypes and expression data.—We estimate ℒk;d by first using 

LASSO73 to obtain regularized estimates of causal eQTL effect sizes (βLASSO), then 

multiply βLASSO
2

 by the element-wise squared LD matrix R2 as follows: 

ℒk; d = ∑i ∈ Dci∑j
M rjk

2 β ij LASSO
2 . Here, ci is a scaling factor we apply to βLASSO so that 

ci∑j
M β ij LASSO

2 = ℎi; cis
2

, where ℎi; cis
2

 is the restricted maximum likelihood (REML) 

estimate of expression cis-heritability for gene i. We observed that scaling our estimates in 

this manner reduces noise and bias compared to unscaled estimates (Supplementary Figure 

9). We obtain approximately unbiased estimates of the squared LD between two SNPs using 

the formula radj
2 = r2 − 1 − r2

N − 2 , where r2 denotes the standard biased estimator of r2. We refer 

to this overall procedure as “LASSO with REML correction” and show that it provides the 

best performance in simulations compared to other methods (Supplementary Note).

Meta-analysis of expression scores

Given our method of computing expression scores from individual-level genotypes and 

expression data outlined above, we meta-analyze expression scores across tissues as follows. 

We first obtain meta-tissue expression cis-heritability (ℎcis
2 ) estimates for each gene by 

averaging individual-tissue ℎcis
2  estimates across tissues. We scale individual-tissue LASSO-

predicted causal eQTL effect sizes to the meta-tissue ℎcis
2  (see above), then average the 

scaled causal eQTL effect sizes across tissues. Finally, we multiply the averaged causal 

eQTL effect sizes by the element-wise squared LD matrix to obtain expression scores. In 

simulations, we show that this method of meta-analyzing expression scores produces nearly 

unbiased estimates of ℎmed
2 /ℎg

2 at 5 tissues × 200 samples per tissue (Supplementary Figure 

10), which is comparable to the number expression panel samples in given tissue group 

(Supplementary Table 2).

Simulations

All simulations were conducted using genotypes from UK Biobank38 restricted to HapMap 

3 SNPs74 on chromosome 1 (M = 98,499 SNPs). All simulations followed the same overall 

procedure outlined below in chronological order. See Supplementary Note for specific 

parameters used in each simulation.

1. Simulation of expression data. We simulated 1–5 eQTLs each for G = 1,000 

genes, with effect sizes drawn from a normal distribution and locations randomly 

selected in a 1 Mb window around the gene. Total ℎcis
2  was fixed at 0.05 for all 

simulations. We then simulated expression phenotypes for 100–1,000 expression 

panel samples (genotypes randomly selected from UK Biobank) using an 

additive generative model with normally distributed environmental noise added, 

representing an expression panel.

2. Simulation of GWAS data. We simulated non-mediated SNP effect sizes and 

gene-trait effect sizes from normal or point-normal distributions for all SNPs and 

genes corresponding to various levels of ℎmed
2 /ℎg

2. Total ℎg
2 was fixed at 0.5 for all 
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simulations (other than for Supplementary Figure 2, in which we varied ℎg
2). 

Together with the eQTL effect sizes simulated in the previous step, we used these 

effect sizes to simulate trait phenotypes using an additive generative model with 

normally distributed environmental noise added for 10,000 GWAS samples 

(genotypes randomly selected from UK Biobank and distinct from the expression 

panel samples). We then produced GWAS summary statistics from this simulated 

data set using ordinary least squares.

3. Estimation of expression scores. We estimated expression scores from the 

expression panel samples using LASSO with REML correction (see “Estimation 

of expression scores” above). For computational ease, we did not actually use 

REML to predict expression cis-heritability for each gene in each simulation; we 

instead took the true expression cis-heritability of the gene and added noise 

drawn from N(0, 0.012) to simulate REML prediction error, which is consistent 

with empirical standard error estimates produced by GCTA (Supplementary 

Figure 11).

4. Estimation of ℎmed
2 /ℎg

2. We estimated ℎmed
2 /ℎg

2 using MESC with the previously 

estimated expression scores, in-sample LD scores (computed from the 10,000 

GWAS samples), and GWAS summary statistics.

Data and quality control

Genotypes

For MESC, we used European samples in 1000G75 as reference SNPs to compute LD 

scores. Regression SNPs were obtained from HapMap 374. Notably, by restricting regression 

SNPs to HapMap 3 SNPs, we estimate common disease heritability mediated by gene 

expression levels (see Supplementary Note for discussion of rare vs. common variant ℎmed
2 ). 

SNPs with GWAS χ2 statistics > max{80, 0.001N} (where N is the number of GWAS 

samples) and in the major histocompatibility complex (MHC) region were excluded. See 

Supplementary Note of ref.2 for justification of these procedures.

For computing expression scores, we downloaded genotypes derived from sequencing data 

for GTEx v7 from the GTEx Portal (Data Availability) as described in ref.5. We retained 

SNPs that were from HapMap 374.

Expression data

We obtained processed and quantile normalized gene expression data for GTEx v7 from the 

GTEx Portal (Data Availability) as described in ref.5. For each tissue, the following 

covariates were included in all analyses: 3 genetic principal components, sex, platform, and 

14–35 expression factors76 as selected by the main GTEx analysis.

Estimation of expression scores from GTEx data

We used REML as implemented in GCTA44 to estimate the expression cis-heritability for 

each gene in each individual GTEx tissue. We then used LASSO as implemented in 
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PLINK77 (with the LASSO tuning parameter set as the estimated expression cis-heritability 

of the gene) to estimate eQTL effect sizes for each gene in each individual GTEx tissue. In 

all procedures, we excluded gene-tissue pairs for which LASSO did not converge when 

predicting effect sizes. For Figure 3 and Extended Data 2, we obtained causal eQTL effect 

size estimates in three different ways:

Meta-analysis across all tissues.—For each gene, we averaged the expression cis-

heritability estimates across all 48 tissues. Within each tissue, we scaled the LASSO-

predicted eQTL effect sizes to the averaged cis-heritability value. We then averaged the 

scaled eQTL effect sizes for each gene across all tissues. Genes were retained if they had a 

LASSO-converged eQTL effect size in at least one tissue.

Meta-analysis in tissue groups.—Of the 48 tissues, we grouped together 37 of them 

into 7 broad tissue groups: adipose, blood/immune, cardiovascular, CNS, digestive, 

endocrine, and skin (Supplementary Table 2). Within each tissue group, we averaged the 

expression cis-heritability estimates for each gene and scaled the LASSO-predicted eQTL 

effect sizes to the averaged cis-heritability value. We then averaged the scaled eQTL effect 

sizes for each gene across the tissues for each tissue group. Genes were retained in each 

tissue group if they had a LASSO-converged eQTL effect size in at least one tissue within 

that tissue group.

Individual tissues.—For each individual tissue, we scaled the LASSO-predicted eQTL 

effect sizes to the within-tissue-group averaged cis-heritability estimates.

The final eQTL effect sizes were then multiplied by the element-wise squared LD matrix 

(estimated from 1000G75) order to obtain expression scores (see “Estimation of expression 

scores”).

Set of 42 independent traits

Analogous to previous studies27,78, we initially considered a set of 34 traits from publicly 

available sources and 55 traits from UK Biobank for which GWAS summary statistics had 

been computed using BOLT-LMM v2.379,80 (see Data Availability). We restricted our 

analysis to 47 traits with z-scores of total SNP heritability above 6 (computed using 

stratified LD-score regression). The 47 traits included 5 traits that were duplicated across 

two datasets (genetic correlation of at least 0.9). For duplicated traits, we retained the data 

set with the larger sample size, leaving us with a total of 42 independent traits. When meta-

analyzing estimates across traits, we performed random effects meta-analysis using the R 

package rmeta.

BaselineLD categories

In all our analyses, we stratified SNPs by 72 functional categories specified by the 

baselineLD model v2.02,43 (Data Availability). These annotations include coding, conserved, 

regulatory (e.g., promoter, enhancer, histone marks, transcription factor binding sites), and 

LD-related annotations. The original baselineLD model v2.0 contains 76 total categories; we 

removed 4 categories corresponding to QTL MaxCPP annotations27 because the information 
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contained in these annotations is redundant with the eQTL effect size information contained 

in expression scores.

Gene set analyses

In order for us to obtain to unbiased estimates of ℎmed
2  enrichment for the gene sets in our 

analysis, we must ensure that the gene-eQTL effect size independence assumption holds 

within each gene set (see “Model assumptions” above). Thus, in order to capture potential 

correlations between the magnitude of eQTL effect sizes and gene-trait effect sizes within 

gene sets, we partitioned each gene set into three equally-sized bins based on the magnitude 

of their expression cis-heritability relative to other genes in the gene set. We then estimated 

ℎmed
2 (D) for each individual bin and aggregated these values together to estimate the overall 

ℎmed
2  enrichment of the gene set.

Broad gene sets

We obtained gene sets corresponding to all coding genes, genes near significant GWAS hits 

in the NHGRI GWAS catalog56, genes essential in mice53–55, genes essential in cultured cell 

lines81, genes with any disease association in ClinVar82, and genes that are FDA-approved 

drug targets52 from the Macarthur lab GitHub page (Data Availability). We obtained an 

additional gene set for genes essential in cell lines83, genes depleted for protein-truncating 

mutations46,47, and genes depleted for missense mutations84 from the supplementary data of 

the respective papers.

Pathway gene sets

We initially considered a set of 7,246 gene sets from the “canonical pathways” and “GO 

gene sets” collections from the Molecular Signatures Database85 (Data Availability), 

consisting of gene sets from BioCarta, Reactome, KEGG, GO, PID, and other sources. We 

restricted our analysis to 780 gene sets for which the number of genes with LASSO 

estimates of eQTL effect sizes that converged in individual GTEx tissues was at least 100 

when averaged across all individual tissues. Note that this roughly corresponds to gene sets 

with greater than 200 total genes; see Supplementary Table 7.

Tissue specific expression gene sets

We initially considered the full set of 48 GTEx tissues. We restricted our analysis to 37 gene 

sets for which the focal tissue belonged to one of the 7 main tissue groups we defined in our 

previous analyses (Supplementary Table 2). From ref.51, we obtained the set of 10% most 

specifically expressed genes in each of the 37 tissues.

Data Availability

GWAS summary statistics for 42 diseases and complex traits can be found at https://

data.broadinstitute.org/alkesgroup/sumstats_formatted/. Genotypes for 1000 Genomes Phase 

3 data can be found at ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502. GTEx v7 

data can be found at https://www.gtexportal.org/home/datasets, though to access genotypes 

one is required to have an approved application. eQTLGen data can be found at https://
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www.eqtlgen.org/cis-eqtls.html. BaselineLD v2.0 annotations can be found at https://

data.broadinstitute.org/alkesgroup/LDSCORE/. Gene sets can be found from the Macarthur 

lab, https://github.com/macarthur-lab/gene_lists, and Molecular Signatures Database, http://

software.broadinstitute.org/gsea/msigdb/collections.jsp. S-LDSC software can be found at 

https://github.com/bulik/ldsc. BOLT-LMM software can be found at https://

data.broadinstitute.org/alkesgroup/BOLT-LMM/downloads/.

Code Availability

Software implementing MESC can be found at https://github.com/douglasyao/mesc.

Extended Data
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Extended Data Fig. 1. Relationship between ℎmed
2 /ℎg

2 and ℎg
2.

ℎmed
2 /ℎg

2 estimates were obtained using all-tissue meta-analyzed expression scores. ℎg
2

estimates were obtained using stratified LD-score regression. Error bars represent jackknife 

standard errors.
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Extended Data Fig. 2. ℎmed
2 /ℎg

2 estimates for all diseases and expression scores.

Same as Figure 3a, but containing ℎmed
2 /ℎg

2 estimates for all 42 traits from all three types of 

expression scores: “All tissues” (expression scores meta-analyzed across all 48 GTEx 

tissues), “Best tissue group” (expression scores meta-analyzed within 7 tissue groups), and 

“Best tissue” (expression scores computed within individual tissues). Here, “best” refers to 

the tissue/tissue group resulting in the highest estimates of ℎmed
2 /ℎg

2 compared to all other 

tissues/tissue groups. Error bars represent jackknife standard errors.
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Extended Data Fig. 3. Relationship between individual tissue sample size and magnitude of 
ℎmed

2 /ℎg
2.

ℎmed
2 /ℎg

2 estimates from expression scores estimated in each of 48 individual GTEx tissues 

were meta-analyzed across 42 complex traits, then plotted against the number of samples in 

each tissue. We use the following abbreviations: adipose visceral, adipose visceral omentum; 

brain ACC, brain anterior cingulate cortex BA24; brain CBG, brain caudate basal ganglia; 

brain CH, brain cerebellar hemisphere; brain FC, brain frontal cortex BA9; brain NABG, 

brain nucleus accumbens basal ganglia; brain PBG brain putamen basal ganglia; cells CETL, 

cells EBV-transformed lymphocytes; cells TF, cells transformed fibroblasts; esophagus GJ, 

esophagus gastroesophageal junction; heart AA, heart atrial appendage; heart LV, heart left 

ventricle; skin NSES, skin not sun exposed suprapubic; skin SELL, skin sun exposed lower 

leg; small intestine, small intestine terminal ileum.
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Extended Data Fig. 4. ℎmed
2 /ℎg

2 estimates for 42 diseases and complex traits using data from 
eQTLGen.
We estimated expression scores for all SNPs using cis-eQTL summary statistics from 

eQTLGen (N = 31,684 blood samples), then estimated ℎmed
2 /ℎg

2 using GWAS summary 

statistics for the same 42 traits analyzed in the main text. Expression cis-heritability 

estimates for eQTLGen data were obtained using LD-score regression. For sake of 

comparison, we also display ℎmed
2 /ℎg

2 estimates obtained from expression scores from GTEx 

all-tissue meta-analysis and GTEx whole blood only. (a) ℎmed
2 /ℎg

2 estimates for 42 individual 

traits, organized into blood/immune and non-blood/immune traits. Error bars represent 

jackknife standard errors. (b) Results from a meta-analyzed across traits. Error bars 

represent standard errors from random-effects meta-analysis. Note that low estimates of 

ℎmed
2 /ℎg

2 for GTEx whole blood expression scores are caused by the small sample size of the 

GTEx whole blood data set (N = 369).
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Extended Data Fig. 5. Relationship between expression cis-heritability and metrics of gene 
essentiality.
For each gene, pLI (probability of loss-of-function intolerance) was obtained from Lek et al. 

2016 Nature and shet (selection against protein-truncating variants) was obtained from Cassa 

et al. 2017 Nature Genetics.
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Extended Data Fig. 6. ℎmed
2  enrichment estimates for all 10 broadly essential gene sets across all 

26 complex traits.

Same as Figure 5a, but showing ℎmed
2  enrichment estimates for individual traits rather than 

meta-analyzed estimates.
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Extended Data Fig. 7. ℎmed
2  enrichment estimates for 97 pathway-specific gene sets across all 26 

complex traits.
Same as Figure 5b, but plotting all pathway-specific gene sets (out of 780 total) with FDR-

significant ℎmed
2  enrichment in at least one of the 26 complex traits. For ease of display, we 

grouped together related traits and gene sets.
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Extended Data Fig. 8. Comparison between gene set enrichment estimates from MESC, 
MAGMA, and DEPICT.
See Supplementary Note for details on these analyses. (a) Venn diagram showing the overlap 

between significantly enriched trait-gene set pairs (FDR < 0.05) identified by the three 

methods. (b) Scatterplots of -log10 enrichment p-values from MESC vs. MAGMA (left), 

MESC vs. DEPICT (middle), and MAGMA vs. DEPICT (right). Each point represents a 

trait-gene set pair. (c) List of all 32 gene sets-complex traits pairs detected as significant by 

MESC (FDR q-value < 0.05) that are not detected as significant by MAGMA or DEPICT. 

See Supplementary Table 9 for enrichment estimates for all gene set-complex traits pairs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Schematic of MESC
(a) Three possible causal scenarios explaining enrichment/overlap between GWAS loci and 

eQTLs. GE, gene expression levels. (b) SNP effect sizes are modeled as the sum of a 

mediated component (defined as causal cis-eQTL effect sizes β multiplied by gene-trait 

effect sizes α) and a non-mediated component γ. (c) Heritability mediated by the cis-genetic 

component of gene expression levels (ℎmed
2 ) is defined as the squared mediated component 

of SNP effect sizes summed across all SNPs (assuming that genotypes and phenotypes are 

standardized). ℎmed
2  can be rewritten as the product of the number of genes G, the average 

expression cis-heritability E ℎcis
2 , and the average gene-trait effect size E[α2] (d) The basic 

premise behind MESC is to regress squared GWAS effect sizes on squared eQTL effect 

sizes. Non-directional non-mediated effects are captured by the intercept, while directional 

mediated effects are captured by the slope, which equals E[α2] given appropriate effect size 

independence assumptions (see Methods). (e) In practice, MESC involves regressing 

squared GWAS summary statistics on squared eQTL summary statistics. Differences in the 

level of LD between SNPs are captured by an LD score covariate. In the figure, we show a 

simplified LD architecture with two discrete levels of LD.
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Figure 2. Simulation results.
We simulated expression and complex trait architectures corresponding to various levels of 

ℎmed
2 /ℎg

2. GWAS sample size was fixed at 10,000 and ℎg
2 was fixed at 0.5. Error bars 

represent mean standard errors across 300 simulations. (a) Impact of expression panel 

sample size on ℎmed
2 /ℎg

2 estimates. Expression scores were estimated from simulated 

expression panel samples using LASSO with REML correction. (b) Impact of sparse 

genetic/eQTL architectures on ℎmed
2 /ℎg

2 estimates. (c) ℎmed
2 /ℎg

2 estimates with rg2 T < 1. (d) 

ℎmed
2 /ℎg

2 estimates in the presence of a negative correlation between the magnitude of eQTL 

effect size and gene effect size (constituting a violation of gene-eQTL independence). 

Results are shown with and without stratifying genes by 5 expression cis-heritability bins. 

See Supplementary Figure 5 for ℎmed
2 (D)/ℎg

2 estimates of individual bins. (e) ℎmed
2 /ℎg

2

estimates when 100% of eQTL effects and non-mediated effects lie within coding regions 

(constituting a violation of gene-eQTL independence). Results are shown stratifying SNPs 

by the baselineLD model and a version of the baselineLD model with the coding annotation 

removed. See Supplementary Figure 6 for additional similar simulations. (f) With ℎmed
2 /ℎg

2

fixed at 0, we varied the heritability enrichment of three eQTL-enriched SNP categories 

(coding, TSS, and conserved regions) from 2.5x to 10x. In the figure, we show the 

proportion of simulations in which the null hypothesis that ℎmed
2 /ℎg

2 = 0 is rejected by 

MESC, and the proportion of simulations in which the null hypothesis of no ℎg
2 enrichment 

for the set of all eQTLs is rejected by stratified LD-score regression (S-LDSC).
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Figure 3. Estimates of proportion of heritability mediated by expression from GTEx.
(a) Estimated proportion of heritability mediated by the cis-genetic component of assayed 

gene expression levels (ℎmed
2 /ℎg

2) for 10 genetically uncorrelated traits (average N = 339K). 

See Supplementary Note for procedure behind selecting these 10 traits and Extended Data 2 

for estimates of ℎmed
2 /ℎg

2 for all 42 traits. Error bars represent jackknife standard errors. For 

each trait, we report the ℎmed
2 /ℎg

2 estimate for “All tissues” (expression scores meta-analyzed 

across all 48 GTEx tissues) and “Best tissue group” (expression scores meta-analyzed within 

7 tissue groups). Here, “best” refers to the tissue group resulting in the highest estimates of 

ℎmed
2 /ℎg

2 compared to all other tissue groups. (b) ℎmed
2 /ℎg

2 estimates meta-analyzed across all 

42 traits (average N = 323K). Error bars represent standard errors from random-effects meta-

analysis. Here, “Best tissue” refers to the individual tissue resulting in the highest estimates 

of ℎmed
2 /ℎg

2 compared to all other tissues. BMI, body mass index; CNS, central nervous 

system.
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Figure 4. Low heritability genes explain more expression-mediated disease heritability.

(a) Estimated proportion of expression-mediated heritability (ℎmed
2 (D)/ℎmed

2 ) for 10 gene bins 

stratified by magnitude of expression cis-heritability. Results are meta-analyzed across 26 

traits with nominally significant ℎmed
2 . Error bars represent standard errors from random 

effects meta-analysis. Results for individual traits can be found in Supplementary Table 6.
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Figure 5. Expression-mediated heritability enrichment estimates for functional gene sets.
For all plots, x axis represents complex traits and y axis represents gene sets. P-values for 

ℎmed
2  enrichment are obtained using a two-tailed z-test using jackknife standard errors for 

ℎmed
2  enrichment. (a) ℎmed

2  enrichment estimates for 10 broadly essential gene sets meta-

analyzed across 26 complex traits. ℎmed
2  enrichment estimates for individual traits can be 

found in Extended Data 6. Error bars represent standard errors from random-effects meta-

analysis. (b) For ease of display, we report ℎmed
2  enrichment estimates for a representative set 

of 14 pathway-specific gene sets across 10 complex traits. ℎmed
2  enrichment estimates for 

additional complex traits and gene sets can be found in Extended Data 7 and Supplementary 

Table 8. (c) ℎmed
2  enrichment estimates for 37 gene sets corresponding to specifically 

expressed genes in 37 GTEx tissues. Brain tissues (13 total) are indicated as so in the figure. 

ℎmed
2  enrichment estimates for additional complex traits, with individual GTEx tissues 

labelled, can be found in Supplementary Figure 7. LoF, loss of function.

Yao et al. Page 36

Nat Genet. Author manuscript; available in PMC 2020 November 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Results
	Definition of expression-mediated heritability
	Estimating expression-mediated heritability using MESC
	Simulations assessing calibration and bias
	Estimation of hmed2 for 42 diseases and complex traits
	Genes with low expression heritability explain more hmed2
	hmed2 enrichment in functional gene sets

	Discussion
	Methods
	Definition of hmed2
	Unstratified MESC
	Model assumptions
	Stratified MESC
	Estimation of expression scores
	eQTL summary statistics.
	Individual-level genotypes and expression data.

	Meta-analysis of expression scores
	Simulations

	Data and quality control
	Genotypes
	Expression data
	Estimation of expression scores from GTEx data
	Meta-analysis across all tissues.
	Meta-analysis in tissue groups.
	Individual tissues.

	Set of 42 independent traits
	BaselineLD categories
	Gene set analyses
	Broad gene sets
	Pathway gene sets
	Tissue specific expression gene sets

	Data Availability
	Code Availability
	Extended Data
	Extended Data Fig. 1
	Extended Data Fig. 2
	Extended Data Fig. 3
	Extended Data Fig. 4
	Extended Data Fig. 5
	Extended Data Fig. 6
	Extended Data Fig. 7
	Extended Data Fig. 8
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.

