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Large granular lymphocyte (LGL) leukemia, a rare hematologic malignancy, has long been
associated with rheumatoid arthritis (RA), and the diseases share numerous common
features. This review aims to outline the parallels and comparisons between the diseases
as well as discuss the potential mechanisms for the relationship between LGL leukemia
and RA. RA alone and in conjunction with LGL leukemia exhibits cytotoxic T-cell (CTL)
expansions, HLA-DR4 enrichment, RA-associated autoantibodies, female bias, and
unknown antigen specificity of associated T-cell expansions. Three possible
mechanistic links between the pathogenesis of LGL leukemia and RA have been
proposed, including LGL leukemia a) as a result of longstanding RA, b) as a
consequence of RA treatment, or c) as a driver of RA. Several lines of evidence point
towards LGL as a driver of RA. CTL involvement in RA pathogenesis is evidenced by
citrullination and granzyme B cleavage that modifies the repertoire of self-protein antigens
in target cells, particularly neutrophils, killed by the CTLs. Further investigations of the
relationship between LGL leukemia and RA are warranted to better understand causal
pathways and target antigens in order to improve the mechanistic understanding and to
devise targeted therapeutic approaches for both disorders.

Keywords: rheumatoid arthritis, cytotoxic T lymphocyte (CTL), citrullination, neutropenia, STAT3 (signal transducer
and activator of transcription 3), Felty syndrome
LGL LEUKEMIA CLINICAL PRESENTATION
AND EPIDEMIOLOGY

Large granular lymphocyte (LGL) leukemia, is a rare hematologic malignancy accounting for 2-5%
of lymphoproliferative disorders in North America and Europe (1). Recent population-based
studies place the incidence of LGL leukemia between 0.2-0.72 per million people (2, 3). There are
three major subtypes of disease that exhibit T-cell or natural killer (NK) cell phenotypic markers;
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85% of cases are categorized as T-LGL, 10-15% as a chronic
lymphoproliferative disorder of natural killer cells (CLPD-NK),
and rare cases are described as aggressive NK cell leukemia (4).
The median age of diagnosis is roughly 65 years (2–4).

Approximately 45-60% of patients with LGL leukemia require
treatment upon presentation, with neutropenia and anemia as
the main indica t ions for t rea tment . S ing le agent
immunosuppressive agents that are utilized include
methotrexate, cyclophosphamide, and cyclosporine (1, 3). A
“watch-and-wait” approach is appropriate in many indolent
LGL leukemia patients. Unfortunately, most patients will
eventually require treatment, and despite initial response,
many will relapse or need life-long therapy, thus highlighting a
need for continued research and new therapeutics. Reports vary
in terms of survival with one of the largest population-based
studies suggesting a median 9-year overall survival (3) and others
indicating that overall survival is similar to control populations
(2, 5). In patients requiring treatment, survival differed between
symptom type, with those affected by anemia showing a median
overall survival of 5.75 years and those with neutropenia
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exhibiting a median overall survival not yet reached 13 years
after initiation of the study (6). Together, these reports
demonstrate the heterogeneity of the patient population and
the relatively indolent nature of the disease.

T-LGL leukemia pathogenesis is likely initiated by antigenic
stimulation of cytotoxic T-cell expansion followed by somatic
mutational events that activate survival pathways, subvert
activation induced cell death, and drive clonal expansion
(summarized in Figure 1). An abundance of reported genetic
modifications and signaling changes point to a reliance on
inflammatory and JAK/STAT signaling in LGL leukemia. In
fact, nearly all patients show an increase in STAT3 activation (7–
9), suggesting a stimulatory role for cytokine signaling pathways.
The JAK/STAT signaling cascade is first initiated by cytokines
such as IL-6, IL-2, and IL-15 and following activation, leads to
transcription of STAT responsive genes that impact survival,
proliferation, and immune activation (10).

Furthermore, STAT3 somatic activating mutations are the
hallmark genetic lesion of LGL leukemia. Mutations were
initially reported in roughly 30-40% of patients (9, 11). The
FIGURE 1 | Overview of LGL leukemia pathogenesis and clinical presentation. 1. T-cell LGL leukemia is presumed to arise following antigenic stimulation of normal
T-cells. 2. Upon oligoclonal expansion of antigen reactive T-cells, somatic mutations are acquired in genes regulating key T-cell survival pathways as well as
epigenetic regulators. 3. The leukemic expansion is characterized by clonal T-cell receptor rearrangements, somatic variants (especially somatic activating mutations
in the STAT3 gene), and an activated cytotoxic T-cell phenotype with secretion of inflammatory cytokines and chemokines, such as sFasL. 4. Leukemic LGLs are
resistant to Fas-induced apoptosis and are characterized by activated cell survival pathways. Cytopenias, especially neutropenia and anemia, are a common disease
feature and the main indicators for treatment. Leukemic LGLs also invade spleen, marrow and other organs where they contribute to cytopenias and autoimmune
diseases. Created with BioRender.com.
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majority of mutations occur in the SH2 domain, the region that
mediates dimerization and activation of the STAT3 protein.
However, recent publications report mutations in additional
regions of the protein, such as the coiled-coil domain, some of
which exhibit an activating phenotype. Their inclusion yields
an overall STAT3 somatic mutation rate of >50% in LGL
leukemia (12–14).

Cytopenias (neutropenia, anemia, and more rarely
thrombocytopenia), splenomegaly, and concomitant autoimmune
diseases are the most common clinical manifestations. One of the
most common symptoms of LGL leukemia is neutropenia. It is a
major health concern, putting patients at risk for infection,
pneumonia, or sepsis (11), especially in those with severe
neutropenia (<0.5 ×109/L) (15). Numbers vary between cohorts,
but as high as 80% of symptomatic patients suffer from a neutrophil
count lower than 1.5 × 109/L (16). Immune phenotype also
correlates with neutropenia, which is found almost exclusively in
CD8+ LGL leukemia (5). In one report, T-LGL leukemia patients
with a CD8+, CD3+, CD16+, CD56- phenotype were the most
likely to suffer from neutropenia (17). There have been several
mechanisms proposed to explain LGL leukemia symptomology
including: 1) LGL-secreted humoral factors, 2) LGL bone marrow
infiltration, and 3) LGL-mediated cytotoxicity (17). Mechanistic
drivers of neutropenia are discussed in more detail in later sections.
RHEUMATOID ARTHRITIS (RA)
ASSOCIATION WITH LGL LEUKEMIA

LGL leukemia is often associated with autoimmune disorders
including pure red cell aplasia, celiac disease, and others, but is
most commonly associated with rheumatoid arthritis (RA) (18–
20). LGL leukemia was first identified as a clonal disorder in 1985
(21). There were several descriptions of a few patients having RA
with LGL leukemia around this time; indeed one of the patients
in the original description of LGL leukemia was thought to have
Felty syndrome, which is characterized by RA, neutropenia, and
splenomegaly (22–24). RA is a systemic autoimmune disease
characterized by chronic inflammation of the synovial joints,
leading to pain, swelling, and destruction of the bone and
cartilage (25). RA most commonly becomes symptomatic
around 45–60 years of age, and women are two- to threefold
more likely to develop RA than men (26). As a standalone
clinical entity, RA occurs in ~1% of the world-wide
population. However, reports place the incidence of RA in
LGL leukemia patients as high as 36% (4, 18, 27). Of note, it is
much more commonly observed in patients with T-LGL
leukemia compared to those with NK-LGL leukemia (18). In
the majority of patients who manifest both T-LGL leukemia and
RA, the RA is diagnosed first. In a study of 56 patients with
concurrent T-LGL leukemia and RA from a single clinical center,
the median time that patients had RA prior to T-LGL leukemia
diagnosis was six years, with a range of 0-36 years (28). LGL
leukemia is rare in juvenile idiopathic arthritis (JIA) (29), likely
because JIA and RA are different pathogenic entities, and has not
be reported to have a relationship with late onset RA.
Frontiers in Oncology | www.frontiersin.org 3
Importantly, once a patient with RA is found to have LGL
leukemia, the patient is no longer classified as having RA.
Instead, the diagnosis and treatment are centered around the
LGL leukemia and the most serious complications associated
with the disease (i.e. neutropenia and anemia). In this situation,
the RA is considered associated with the LGL leukemia, rather
than a separate disease entity. There are no case series comparing
arthritis severity in canonical RA and LGL leukemia-associated
RA. However, based on case reports, the severity of the arthritis
in LGL leukemia appears to be similar to that occurring in
canonical RA. The joint damage in both diseases is
heterogeneous, with some individuals experiencing mild
symptoms, while others have severe erosive joint disease.

Systematic evaluation of the clinical, genetic, and
immunologic parallels between LGL leukemia and RA may
reveal common mechanisms responsible for the co-occurrence
of these two disorders.
PARALLELS AND COMPARISONS
BETWEEN T-LGL LEUKEMIA AND RA

Despite the striking association between T-LGL leukemia and
RA, the underlying mechanisms connecting the two disorders
remains unknown. There are numerous points of similarity
between the RA that develops in the presence and absence of
LGL leukemia including common genetic, serologic, and cellular
features. These features are discussed below and summarized
in Figure 2.

Cytotoxic T-Cells (CTLs) in LGL Leukemia
and RA
LGLs themselves are characterized by their large size, azurophilic
cytoplasmic granules, low nuclear to cytoplasmic ratio, and
round nucleus. In healthy populations, LGLs make up about
10-15% of peripheral blood mononuclear cells (PBMCs), but
patients with LGL leukemia can have levels as high as 2- to 40-
fold greater than their baseline (27). Diagnosis is supported by
increased cell counts of > 2×109/L or lower counts (0.4 – 2×109/L)
when the cells are clonal and the disease is paired with the
appropriate clinical features such as RA and hematological
parameters like cytopenias. Clonality assessment based upon T-
cell receptor (TCR) rearrangement in ab and gd TCR genes is used
to confirm diagnosis if the appropriate cell expansions are observed.
Histologically, bone marrow (BM) samples show interstitial
infiltrations of linear arrays of cytotoxic cells expressing CD8,
cytotoxic granules containing perforin and granzyme B, and/or
TIA-1 (30).

The T-LGL leukemia phenotype is typically CD3+, TCRab+,
CD8+, CD16+, CD45RA+, and CD57+, and cells are CD4−,
CD5dim, CD27−, CD28−, CD45RO−. Leukemic CD3+, CD8+
LGLs frequently exhibit relatively equal proportions of CD57-
and CD57+ cells, which are proposed to represent progenitor and
mature populations, respectively (31, 32). At the phenotypic and
transcriptional level, these cells resemble chronically stimulated
terminally differentiated cytotoxic T lymphocytes (CTLs), such as
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those found in the setting of viral infection (33). Additionally,
granzymes A, B, H, and K have been shown to be upregulated in
LGL leukemia (34). The re-expression of CD45RA, as is observed
on T-LGLs, is a feature of a sub population of effector CD8s referred
to as “T effector memory cells re-expressing CD45RA” (TEMRA)
cells (35). While this suggests that leukemic T-LGLs may derive
from TEMRA cells (36), further comparisons using single cell
approaches are needed to precisely define this relationship.

Clonal CD8+ T cell expansions have also been observed in the
blood of RA patients, in the absence of known T-LGL leukemia,
more frequently than in healthy controls (45% vs. 25%,
respectively) (37), suggesting that antigen-driven expansion of
clonal CTL populations is occurring in RA. In fact, examination of
a large cohort of over 500 RA patients revealed clonal expansions
in 3.6% of patients. Only 42% of patients with clonal expansions
had counts above the threshold of 500 cells/µL typically considered
for initial diagnosis of LGL leukemia (38). However, most patients
with these clonal T-cell populations had previously been exposed
to antirheumatic immunosuppressive treatments (also common
treatments for LGL leukemia), which may blunt the progression
along a potential continuum between RA and LGL leukemia.
Given that over a million people in the US suffer from RA, these
findings suggest that clonal T-cell populations are more common
than the currently documented incidence of T-LGL leukemia.

As in T-LGL leukemia, the CTLs found in the synovium of
RA patients are classified as effector memory or TEMRA cells
(39). These cells are clonally expanded and express CD80, CD86,
PD-1, and Ki67, indicating an activated and chronically
stimulated phenotype (39, 40). They can persist in the joint for
years, and CD3+ CD57+ cells accumulate with disease duration
(41, 42). Moreover, similar to T-LGL leukemia, synovial CTLs in
Frontiers in Oncology | www.frontiersin.org 4
RA express perforin and granzymes (43). Indeed, an active role
of degranulating CTLs in RA pathogenesis is supported by the
findings that granzymes A, B and M are elevated in RA synovial
fluid (44, 45), and serum levels of granzyme B correlate with
disease activity and joint erosion (46). The accumulation of
antigen-experienced clonally expanded CTLs in the RA
synovium and evidence of active degranulation, implicates
these cells in the pathogenesis of RA, but their precise role
remains undefined.

Somatic Mutations in T-LGL
Leukemia and RA
STAT3 mutations are the predominant somatic variants in T-
LGL leukemia and have been associated with a variety of clinical
markers of disease pathogenesis and outcome. A 2019
retrospective study of one of the largest LGL leukemia cohorts
to date revealed that STAT3 mutations were associated with low
hemoglobin and lower overall survival, as well as severe
neutropenia (47). Another recent study confirmed higher rates
of neutropenia, severe neutropenia, and cases requiring
treatment in STAT3 mutated samples (48). STAT3 mutations
are generally found almost exclusively in CD8+ rather than
CD4+ patients (5), and more specifically, CD8+ CD16+ CD56-
T-LGL leukemia patients exhibit more STAT3 mutations (49).

Numerous studies have associated STAT3 mutations with
moderate and severe neutropenia in LGL leukemia (5, 9, 14, 48,
50, 51). STAT3 is a driver of soluble Fas ligand (sFasL)
expression in LGLs (52), and sFasL is present at high levels in
LGL leukemia patient serum (53). LGLs are resistant to FasL-
induced apoptosis due to widespread activation of a network of
survival signals (54). However, patient serum is sufficient to
FIGURE 2 | Mechanistic parallels between T-LGL leukemia/RA and canonical RA. (A) CD8+ T cell expansion: T-LGL leukemia-associated RA (T-LGLL/RA) and
canonical RA (RA) are characterized by the expansion of CD8+ T cells. The CD8+ T cell expansion is oligoclonal/monoclonal in T-LGLL/RA, whereas it is polyclonal in
canonical RA. (B) Proposed model for CTL-induced hypercitrullination: In this model, clonally expanded CD8+ T cells (CTLs) targeting neutrophils release cytotoxic
granules containing perforin and granzymes, inducing leukotoxic hypercitrullination (LTH). Perforin forms pores in the neutrophil membrane, allowing for calcium (Ca2
+) influx and activation of intracellular PAD enzymes, inducing neutrophil hypercitrullination. In parallel, granzyme B (GrB) cleavage of neutrophil antigens creates
neoepitopes. As a result of the disrupted cell membrane, the neutrophils lyse, releasing autoantigens, including citrullinated and GrB-cleaved proteins. Dendritic cells
(DCs) engulf these antigens and present them both to CD8+ and CD4+ T cells. The stimulated CD8+ T cells clonally expand and drive a feedforward cycle of
neutrophil damage. Stimulated CD4+ T cells provide B cell help, giving rise to antibody-secreting cells producing anti-citrullinated protein antibodies (ACPAs). (C)
Genetic predisposition to ACPA production: ACPA production is facilitated by the presentation of citrullinated antigens via HLA-DRs (e.g., HLA-DR4) encoded by RA-
associated HLA-DRB1 susceptibility alleles. The requirement of specific RA-associated HLA-DRs for ACPA production likely explains why, despite having CTL
expansion and neutrophil lysis, only a subset of patients with LGL leukemia develop RA. (D) Autoantibodies: Circulating APCAs are found in patients with T-LGLL/RA
and canonical RA providing a serological record of the breach of immunologic tolerance to citrullinated antigens in both diseases. Created with BioRender.com.
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activate cell death in normal neutrophils in vitro (Figure 1). A
blocking anti-Fas monoclonal antibody rescued neutrophils
from this fate (53). In addition, LGL patients with neutropenia
have higher sFasL levels when compared to either healthy donor
serum or serum from LGL leukemia patients with normal
neutrophil counts. Furthermore, successful treatment has been
associated with lower levels of sFasL (17), with methotrexate
specifically inducing lower sFasL, and relapsed patients
exhibiting increased sFasL (53). Thus, several lines of evidence
implicate sFasL as a humoral mediator of neutropenia in LGL
leukemia. Further discussion of direct LGL cytotoxic effects on
neutrophils is presented below.

Interestingly, T-LGL leukemia patients with STAT3
mutations are more likely to have RA than those without (9,
50, 55–58). Whole exome sequencing in a large T-LGL leukemia
cohort identified additional genes with recurrent somatic
variants as well as frequent co-mutations of chromatin
modifying genes in STAT3-mutant T-LGLs (14). Further
studies are needed to define additional molecular events that
correlate with RA co-occurrence in LGL leukemia.

Recent efforts identified 30 somatic mutations in clonally
expanded CTLs of a small cohort of RA patients who did not
have a diagnosis of T-LGL leukemia (40). Using a combination of
gene targeted and exome sequencing approaches, mutations were
identified in immune-related genes, proliferation-associated
genes, as well as in other genes (40). Notably, these mutations
were all found in clonally expanded CD8+ effector memory T cell
populations, suggesting that CD8+ T cells that acquire these
somatic mutations may clonally expand and play a pathogenic
role in RA. However, it is important to note that somatic
mutations were only found in 5/25 patients studied, and most
mutations were only found in a single patient. While these data
are intriguing, further studies on larger cohorts are needed to
identify whether CTL mutations in RA are causal or an effect of
the disease and to draw any meaningful parallels between the
mutational CTL landscapes in RA and T-LGL leukemia.

Sex Bias
Although LGL leukemia generally occurs equally in males and
females, with some studies showing a slightly increased incidence
in males (2), the development of RA in patients with T-LGL
leukemia is highly skewed toward females. One study of 56
patients with T-LGL leukemia and RA found that 73% were
female (28). This parallels what has been observed in canonical
RA for decades, a 3:1 female:male ratio (59, 60). While much
more needs to be learned about the mechanism behind this sex
bias, the increased risk of RA development in females with T-
LGL leukemia suggests parallel mechanisms with canonical RA.

Immunogenetic Associations
RA is associated with a specific group of HLA-DRB1 alleles
termed the “shared epitope” alleles, so named due to the presence
of a common amino acid motif (QKRAA) in the peptide binding
groove of the encoded protein (61). The HLA-DRB1 gene
encodes the HLA-DRb chain of the MHC class II molecule,
HLA-DR, which serve as scaffolds for antigen presenting cells to
display exogenously derived peptide antigens to CD4+ T helper
Frontiers in Oncology | www.frontiersin.org 5
cells. The HLA-DRB1 locus is highly polymorphic in humans
and confers the highest genetic risk for RA development (62).
While the risk for RA was initially attributed to HLA-DRB1*04
allelic variants (63), it was later appreciated that a larger group of
alleles encoding for the “shared epitope” are collectively
associated with RA (61). The most common RA-associated
shared epitope alleles include HLA-DRB1*01:01, 01:02, 04:01,
04:04, 04:05, 10:01, and 14:02 (64).

Patients with concurrent T-LGL leukemia and RA are also
enriched in HLA-DRB1*04 alleles associated with RA (65, 66).
One study showed that 9/10 patients (90%) with T-LGL
leukemia and RA expressed HLA-DRB1*04, whereas only 4/12
(33%) of patients with T-LGL leukemia alone expressed HLA-
DRB1*04 (66). Two important caveats of these studies are that
only HLA-DRB1*04 was evaluated, not other shared epitope
alleles, and that individual allelic variants of HLA-DRB1*04 were
not considered. This is important since some HLA-DRB1*04
variants are associated with RA (i.e. HLA-DRB1*04:01, 04:04,
and 04:05), while others have been found to be protective against
RA development and severity (i.e. HLA-DRB1*04:02). Although
additional studies are needed to precisely compare the
immunogenetic similarities between T-LGL leukemia and RA,
the enrichment of RA-associated HLA-DRB1*04 alleles in
patients with T-LGL leukemia who develop RA suggests the
presence of a shared immunogenetic scaffold.

Antigen Specificity
Despite the observed clonal expansion and antigen-experienced
phenotype, the antigen-specificity of the clonally expanded
TEMRA cells in T-LGL leukemia and canonical RA remains
largely unknown. One study observed close contact between LGL
cells and dendritic cells (DCs) in bone marrow biopsies from
patients with LGL leukemia (67). In ex vivo experiments, LGLs
could be stimulated to proliferate when cultured with autologous
bone marrow-derived, but not peripheral blood-derived, DCs,
suggesting that these cells are actively responding to an antigen
present in the bone marrow microenvironment. More recently,
seroreactivity to human T-cell leukemia virus (HTLV-1/2) and
human immunodeficiency virus (HIV-1) retroviral epitopes was
identified in a subset of LGL leukemia as well as the clinically
normal family members of reactive patients (68). There was no
evidence of retroviral infection in reactive patients. While this
viral seroreactivity has been identified in a subset of LGL
leukemia, no unifying antigenic driver has been identified, and
this represents a key knowledge gap in the disease.

In RA, one study has shown that RA patients have a
population of CTLs that are autoreactive against epitopes from
apoptotic cells that are cross-presented by dendritic cells, termed
“apoptotic epitopes.” These epitopes include those from
vimentin and actin (69). This is interesting given that
citrullinated vimentin and actin are both known targets of
anti-citrullinated protein antibodies (ACPAs) in patients with
RA (70, 71). In RA patients that do not respond to anti-TNF
therapy, these CTLs display a TEMRA phenotype and are able to
kill Tregs in vitro after stimulation with apoptotic epitopes, via a
NKG2D-dependent mechanism. In addition, immunofluorescence
imaging of the synovium of these patients has shown that CTLs
May 2022 | Volume 12 | Article 869205
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interact with Tregs, some of which express cleaved caspase-3,
suggesting that these CTLs can kill Tregs in vivo (72). Much is
still unknown about the epitopes recognized by CTLs in T-LGL
leukemia and canonical RA. The definition of the target cells and
antigens in these diseases is critical for understanding
disease pathogenesis.

Serologic Profile
A hallmark feature of canonical RA is the formation of high titer
autoantibodies targeting a defined set of self-proteins, making
them powerful diagnostic biomarkers (73). There are two main
autoantibodies that are analyzed clinically: 1) autoantibodies
recognizing the Fc-portion of IgG, termed rheumatoid factor
(RF); and 2) autoantibodies targeting proteins containing the
post translational modification citrulline, termed anti-
citrullinated protein antibodies (ACPAs). Each antibody
specificity is present in approximately 70% of patients with RA
and can co-occur in the same patient as well as exist separately
(74). While both RF and ACPAs have high sensitivity for a
diagnosis of RA, ACPAs are more specific, suggesting
dysregulated protein citrullination and a breach of tolerance to
these antigens as key processes in RA. ACPAs are a collection of
antibodies targeting a diverse set of proteins in which arginine
residues have been post-translationally deiminated by the
peptidylarginine deiminase (PAD) enzymes, generating the
non-classical amino acid citrulline (75). These antibodies are
detected clinically using synthetic cyclic-citrullinated peptides
(CCP). In addition, the development of ACPAs is associated with
HLA-DRB1 shared epitope alleles (76), implicating this common
genetic scaffold in the development of immune responses to
citrullinated proteins.

Interestingly, RA-associated autoantibodies are also detected
at high levels in individuals with T-LGL leukemia. In a study of
27 patients with T-LGL, 15 (55.6%) were positive for RF, four of
whom did not have a diagnosis of RA (77). In a study of 56 T-
LGL leukemia and RA cases, 82% were RF positive and 88% were
positive for anti-CCP antibodies (28). In a small study
comparing ACPA positivity in T-LGL leukemia patients with
and without RA, 95% (18/19) of T-LGL leukemia patients with
RA had ACPAs, compared to none (0/15) of the patients without
RA (78). Importantly, while the data suggest that seropositivity
for classic RA autoantibodies may be higher in T-LGL leukemia
patients with RA compared to the general RA population, further
head-to-head studies are needed to define the serologic overlap
between the two disease entities. Together, these data highlight
the serological similarity between patients with RA in the
presence and absence of T-LGL leukemia, and support the
hypothesis that dysregulated protein citrullination is a key
pathogenic process both in RA and T-LGL leukemia/RA.

Treatment
Most patients with LGL leukemia eventually need treatment
because of severe or symptomatic neutropenia, anemia, or
associated autoimmune conditions. Because LGL leukemia is
such a rare disease, most clinical evidence for drug selection is
derived from retrospective studies that indicate the efficacy of
three main immunosuppressive treatments: methotrexate
Frontiers in Oncology | www.frontiersin.org 6
(MTX), cyclophosphamide, and cyclosporine A (27).
Interestingly, these therapies have significant parallels with
treatments for canonical RA. MTX is a first-line therapy for
RA, and oral cyclophosphamide and cyclosporine A are also
useful to control RA (79, 80), although the use of
cyclophosphamide is limited because of toxicity and
cyclosporine A is reserved for refractory RA. Therefore, LGL
leukemia with or without RA is usually treated as a single entity
without the need for using additional therapies to treat the
concomitant RA, unless joint symptoms persist. Importantly,
considering that LGL leukemia is the potential driver of RA in
this group of patients, in principle, any treatment controlling the
leukemia should be effective in controlling RA.

Similarly, therapies introduced to treat the RA in patients
with LGL leukemia have shown benefit in improving
hematological parameters associated with the leukemia,
including cytopenias and LGL expansion. In particular,
rituximab, a monoclonal antibody therapy targeting CD20, has
been shown to induce a remarkable 100% hematological
response rate (either complete or partial leukemia remission)
in small case series and case reports of refractory LGL leukemia
with RA (81–84), and in one case of refractory LGL leukemia
without RA (85). The JAK3 inhibitor tofacitinib has also been
shown to induce hematological improvement in some patients
with refractory LGL leukemia and RA (86). The finding that
similar therapies are useful in treating both canonical RA and
LGL leukemia supports the notion that these diseases share
common pathogenic pathways.
Interrelationship Amongst T-LGL
Leukemia, RA and Felty Syndrome
Felty Syndrome (FS) is a rare disorder occurring in 1-3% of RA
patients and is defined by the presence of splenomegaly and
neutropenia (87). Given its symptomatic overlap with LGL
leukemia, there is considerable debate about whether FS and
LGL leukemia are distinct or related entities. FS has long been
associated with LGL leukemia (88, 89), and LGL leukemia may
co-occur in as high as 40% of FS patients (18). Past reports have
also observed a high prevalence of HLA-DRB1*04 alleles in both
diseases (86.7% in FS; 82.8% in LGL leukemia/RA patients;
31.4% in LGL leukemia patients, which is similar to control
population rates) (66) as well as response to methotrexate
therapy in both diseases (90). Moreover, FS, LGL leukemia and
RA share elevated levels of the cytokines IL-6, HGF, CDCP1 and
CXCL10, and the latter correlates with more severe disease
activity in RA (91, 92).

Recent studies have applied advanced molecular analyses to
further define the relationship between the two diseases. A 2018
analysis of 14 FS patients found that 43% had STAT3 mutations
in the SH2 domain as detected by deep amplicon sequencing.
Regardless of mutational status, a majority of bone marrow
samples exhibited elevated phospho-STAT3 levels. Many of
these patients had a high percentage of lymphocytes, but this
did not necessarily equate to overall lymphocytosis. On average,
these FS patients had smaller clone sizes than the average T-LGL
leukemia patient (91). In 2021, Gorodetskiy et al. stratified FS
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patients by presence or absence of clonal T cell expansion,
classifying those patients with expansions as LGL leukemia/RA
(n=56) and the remainder as FS alone (n=25). Interestingly, in
contrast to patients with FS, LGL leukemia/RA patients exhibited
increased LGL counts >2 x 10e9/L (21% vs. 0% in FS) and STAT3
mutations (39% vs. 0% in FS) (28). This STAT3 mutation
prevalence in the LGL leukemia/RA group is similar to the
frequency in previously published studies in LGL leukemia
(9, 93). These data suggest that the extent of clonal T-cell
expansion may distinguish LGL leukemia/RA from FS. It
remains to be determined if FS patients classified in this
manner will later acquire somatic activating mutation in
STAT3 and/or progress to LGL leukemia/RA. LGL leukemia/
RA and FS both exhibited CD3+CD8+ T-cells with CD57, CD16
and CD5-/dim expression (28). Notably, T-cell clonality and
STAT3 mutations were detected more frequently in spleen
samples than peripheral blood or bone marrow from ten
atypical LGL leukemia/RA patients with lymphopenia, severe
neutropenia, and marked splenomegaly, emphasizing the
potential for LGL leukemia misdiagnosis as FS (94).

Further studies are needed to refine the diagnostic criteria to
distinguish between LGL leukemia and FS, if they are indeed
distinct diseases. However, substantial challenges remain to the
routine application of sensitive molecular methods to
uncommon specimens such as bone marrow and spleen
material. Increased utilization of T-cell clonality and STAT3
mutational profiling may lead to increased diagnosis of LGL
leukemia within RA and FS patient populations, yet these events
are likely detectable in all three diseases with ultrasensitive
detection methods.

In summary, canonical RA and the subset of patients with
LGL leukemia and RA exhibit an abundance of shared and
overlapping demographic, immunologic, serologic, and genetic
features. These parallels are unlikely to be fortuitous but evoke a
common mechanism for RA development. The following section
provides some considerations to explain the connection between
these two diseases.
PROPOSED MECHANISMS FOR THE
RELATIONSHIP BETWEEN T-LGL
LEUKEMIA AND RA

Different models have been proposed for the co-occurrence of T-
LGL leukemia and RA. Since RA is generally documented several
years before LGL leukemia is diagnosed, it has been questioned
whether T-LGL leukemia is a consequence of long-standing RA,
whether the leukemia develops as a consequence of RA treatment
(38), or whether the clonal expansion of pathogenic CTLs is
indeed the driver of RA in these patients. Evidence for these three
options will be discussed in detail below, and it is important to
note that there may be no single model that can explain all cases
of RA occurring in the setting of T-LGL leukemia.
Understanding the mechanistic relationship between RA and
T-LGL leukemia is critical for understanding disease
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pathogenesis and identifying effective preventive and treatment
strategies for both disorders.

LGL Leukemia as a Consequence
of RA
Clonal CD8+ T cell expansions have been observed in RA, which
is not surprising given the chronic autoantigen driven nature of
this disease. One possibility for the co-occurrence of RA and T-
LGL leukemia is that the clonal expansion of CD8+ T cells in RA
may result in the acquisition of STAT3 and other somatic
mutations, T cell transformation, and the development of
leukemia. While more frequent clonal CD8+ T cell expansions
have been observed in RA compared to healthy controls (45% vs.
25%, respectively), the same study found that the two groups had
a similar degree of clonality, and some individuals in both the RA
and healthy control groups exhibited expansions comprising
~40% of their CD8+ T cell pool (37). This suggests that
although CD8+ T cell expansions are common in RA, they
alone cannot explain the concomitant development of RA and
LGL leukemia. In addition, T-LGL leukemia can occur in the
absence of RA, demonstrating that RA is not a prerequisite for
the development of leukemic T-LGLs. Thus, while it may be
tempting to speculate that RA is the driver of T-LGL leukemia
based on the frequent diagnosis of RA before T-LGL leukemia, it
is equally likely that occult low frequency LGL clones initiate the
breach of immune tolerance to self-antigens prior to the
development of neutropenia and clinical discovery of T-LGL
leukemia (see “Pathogenic CTLs as the driver of RA” section).

LGL Leukemia as a Consequence of RA
Treatment
Another possible explanation for the co-occurrence of LGL
leukemia and RA is that LGL leukemia develops as a result of
the immunomodulating therapies used to treat RA, namely
treatment with tumor necrosis factor (TNF) inhibitors. In one
study, clonal expansions of LGL cells expressing CD3, CD56, and
gd TCRs were observed in 3.6% (19/529) of RA patients and were
found to positively correlate with exposure time to TNF blocking
agents (38). However, it is important to note that this
phenomenon is not unique to RA. Similar clonal expansions of
LGL cells with gd TCRs have been observed in association with
TNF inhibitor use in patients with ankylosing spondylitis (SpA)
and psoriatic arthritis (PsA) (95). In addition, a relationship
between anti-TNF use for the treatment of irritable bowel disease
and the development of hepatosplenic T-cell lymphoma
(HSTCL) (96), has been suggested by a literature review study
that found 11% (22/200) of HSTCL cases reported in the
literature were associated with IBD treatment (97). It remains
to be determined if such LGL cell clonal expansions are
associated with progression to LGL leukemia in any of the
individuals in whom they were detected, and whether
treatment may drive or expand an existing pathogenic LGL
pool present in these patients. Regardless of the mechanism for
their development, the lack of specificity of these clonally
expanded LGL cells for RA or LGL leukemia suggests that
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anti-TNF inhibitor therapy is not likely to be the mechanistic
link between RA and T-LGL leukemia.

LGL Leukemia as the Driver of RA
While not all factors contributing to RA development are known,
accumulating evidence suggests a central role for CTLs in RA
pathogenesis, both as effectors perpetuating tissue damage and as
generators of RA autoantigens (Figure 2). This latter role may be
the key to linking T-LGL leukemia to RA development. We
postulate that, in people with T-LGL leukemia and concomitant
RA, the resulting autoimmunity represents a paraneoplastic
syndrome caused by the expanded T-LGL clones. Moreover,
parallel CTL-driven mechanisms may contribute to the
development of RA in people without T-LGL leukemia.

This hypothesis is supported by the finding that a subset of
RA patients have evidence of killer cell pathway activation in
their joints in association with a form of lytic neutrophil cell
death, termed leukotoxic hypercitrullination (LTH) (98, 99).
LTH has been found to be unique among cell death and
activation stimuli tested to date in its ability to hyperactivate
the intracellular calcium-dependent peptidyl arginine deiminase
(PAD) enzymes, leading to widespread protein citrullination in a
pattern similar to that found in cells of the RA joint. LTH can be
triggered by both host and pathogen-derived pore forming
proteins, which allow the influx of extracellular calcium into
the cell and hyperactivation of the intracellular PAD enzymes
(98–100). In the subset of RA patients with LTH-associated
hypercitrullination in the joint, the pore forming protein
perforin was identified as the causative factor in the ability of
killer cells to induce hypercitrullination in target neutrophils
(98). The physiologic role of perforin is to form pores in the
membrane of target cells to facilitate the delivery of granzymes,
which subsequently cleave intracellular proteins, including
caspases, to induce apoptosis via the extrinsic pathway. The
observation that hypercitrullination was found in synovial fluid
cells from a subset of patients with activation of the extrinsic
apoptosis pathway, implicates CTL killing of neutrophils in the
generation of citrullinated autoantigens in a subset of
individuals (98).

A recent study on target cells engineered to express PAD2 or
PAD4, two key citrullinating enzymes strongly implicated in RA
pathogenesis and highly expressed by neutrophils, demonstrated
a combinatorial effect of perforin and granzymes on the creation
of autoantigens recognized by sera from RA patients (101). It has
been hypothesized that a potential consequence of granzyme-
mediated cleavage of self-proteins during the induction of target
cell apoptosis is the generation of neoepitopes that may lead to
the breach of immunologic tolerance and development of
autoimmunity (102). The serine protease granzyme B has been
most heavily studied in this regard after it was shown that the
majority of autoantigens targeted across the spectrum of
systemic autoimmune diseases are substrates for this protease.
It was observed that a different pattern of protein fragments was
generated when these antigens were cleaved by granzyme B
compared to the effector caspase, caspase 8, which has a
similar preference for cleaving substrates after aspartic acid
residues (103). Together, these studies suggest that CTLs have
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the potential to modify the autoantigen pool in target cells, both
by inducing hypercitrullination in PAD-expressing cells and by
granzyme B-mediated cleavage of target cell proteins.

A review of granzyme B-cleaved autoantigens in systemic
autoimmunity further revealed that granzyme B cleavage sites
and autoreactive B and/or T cell epitopes tend to co-cluster
within proteins, suggesting a causal relationship (104). This was
demonstrated experimentally for PAD4, which is both a
citrullinating enzyme and a target autoantigen in a subset of
RA patients with the most destructive joint disease (105–108). In
this study, cleavage of PAD4 by granzyme B was found to induce
discrete changes in the PAD4 protein structure in regions
adjacent to and remote from the granzyme B cleavage site
(109). These structural changes were associated with increased
presentation of peptide epitopes derived from these regions by an
RA-associated HLA-DR allele. Furthermore, the granzyme B-
enhanced epitopes were able to stimulate CD4+ T cell responses
in patients with RA, suggesting that this process may occur in
vivo. The findings that citrullination and granzyme B cleavage
have the capacity to modify the repertoire of self-proteins present
in target cells killed by CTLs coupled with the longstanding
observation that RA is present in a subset of patients with T-LGL
leukemia, supports the model that T-LGLs are drivers of RA
development in individuals with concurrent leukemia and RA.
UNANSWERED QUESTIONS AND FUTURE
RESEARCH DIRECTIONS

As detailed above, there are numerous clinical, genetic, and
therapeutic overlaps between LGL leukemia and RA
(Figure 2). It remains to be determined if the clonal CTL
expansions detected in a subset of RA patients represent the
early stages of a continuum between RA and LGL leukemia. If so,
they may represent a biomarker of leukemic risk that warrants
increased testing and monitoring. In addition, the cause of the
classically observed neutropenia that is prominent in T-LGL
leukemia remains unknown, but one hypothesis is the active
killing of neutrophils by pathogenic CTL clones. It will be
important to determine if direct CTL killing of neutrophils is a
uniting feature of both disorders, as it could be responsible for
the neutropenia observed in LGL leukemia and be a potent
inducer of citrullinated and granzyme B-cleaved autoantigens in
both diseases. Future study on the mechanistic parallels between
T-LGL leukemia and RA will be critical to elucidate causal
pathways and target antigens, in order to develop novel
mechanism-guided treatments for these related disorders.
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