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Abstract: The advanced and high-functional activities of magnesium oxide and copper oxide nanopar-
ticles encourage the extensive use of these metal oxides as remarkable electroactive materials in
electrochemical and sensing detections. The current study described a comparative sensing activity
and selectivity of modified coated wire membrane sensors enriched with magnesium oxide and
copper oxide nanoparticles for quantifying the breast cancer medication letrozole (LTZ) in its phar-
maceutical form and human plasma. The fabricated sensors were based on the incorporation of LTZ
with phosphomolybdic acid (PMA) to form the electroactive complex letrozole-phosphomolybate
(LTZ-PM) in the presence of o-nitrophenyloctyl ether (o-NPOE) as a solvent mediator. Under op-
timum conditions, the modified sensors LTZ-PM-MgONPs and LTZ-PM-CuONPs demonstrated
linear relationships of 1.0× 10−8–1.0× 10−2 and 1.0× 10−10–1.0× 10−2 mol L−1, respectively. Least
square equations were calculated as EmV = (56.4 ± 0.7) log [LTZ] + 569.6 and EmV = (58.7 ± 0.3)
log [LTZ] + 692.6 for LTZ-PM-MgONPs and LTZ-PM-CuONPs, respectively. The conventional type
LTZ-PM showed a potential response EmV = (53.3 ± 0.5) log [LTZ] + 451.4 over concentration range
of 1.0 × 10−6–1.0 × 10−2 mol L−1. The suggested sensors were successfully used to determine LTZ
in pharmaceutical formulations and biosamples. Method validation ensured the suitability of the
suggested potentiometric sensors.

Keywords: letrozole; electrochemical analysis; metal oxide nanoparticles; potentiometric sensors;
pharmaceutical formulations; biosamples

1. Introduction

Nano-scale materials are considered a potential key in sensors, material construction,
electronics, drug delivery systems, and cancer diagnosis. The nano size material exhibits
different and amazing properties that are considered a possible solution for many current
problems and can be an essential contribution to solve some global and environmental
challenges. These unique properties can potentially modify our life cycle and can be
utilized for the construction of ultra-sensitive sensors [1–4].

Magnesium oxide (MgO) is a basic oxide that has various applications. It has a
promising potential as a caustic adsorbent of toxic chemical wastes. Due to the characteristic
structures and versatile properties of MgO nanoparticles, they displayed exceptional
optical, electronic, magnetic, thermal, mechanical and chemical features. Therefore, MgO
nanoparticles have significantly been utilized in catalysis, toxic wastes remediation and
refractory material industries [5–7].

Copper oxide (CuO) is a strong p-type semiconductor. It has rewarded substantial at-
tention due to its outstanding optical, electrical, physical, and magnetic properties. Thus, it
is heavily utilized in different purposes such as catalysis [8], conversions of solar energy [9],
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sensors [10] and emissions [11]. Nevertheless, these characteristics can be enhanced by
synthesizing CuO in nanoparticles for better performance when compared with their bulk
counterparts. Different approaches have been proposed to fabricate nanoparticles in several
sizes and shapes such as thermal oxidation [12], sonochemical [13], combustion [14] and
quick precipitation [15]. The multi-functional physicochemical features, large surface area,
powerful binding properties and high isoelectric stability of magnesium oxide nanoparti-
cles (MgONPs) and copper oxide nanoparticles (CuONPs) enhanced their usage in various
analytical probes including electrochemical sensors [16,17], biomedical applications [18,19]
and drug delivery systems [20,21].

The typical potentiometric electrodes for detecting medicinal drugs, organic or in-
organic compounds are the classical form of self-powered electrodes that do not need
any external energy sources for their work [22]. The potentiometric measurements of
these electrodes are achieved as a result of analyte accumulation under the effect of an
electrostatic mechanism causing the production of potential difference between working
electrode surface and the surface of reference electrode [22]. The diverse structure and size
of the synthesized MgONPs and CuONPs provide an advanced competence for the con-
struction of various catalytic sensing systems. These systems exhibit rapid, ultrasensitive
and selective characteristics such as low detection limits, wide concentration ranges, higher
recoveries percentage, strong reproducibility, and functionality under room temperature
conditions [23,24].

Letrozole (LTZ) is an oral non-steroidal medication for breast cancer therapy after
surgery. It acts as aromatase inhibitor and prevents estrogen production. The action of this
medication is very specific and does not inhibit the formation of corticosteroids [25]. LTZ
was previously quantified using various analytical techniques, including chromatographic
separation such as high-performance thin layer chromatography [26], reversed phase liquid
chromatography [27,28], liquid chromatography coupled with tandem mass spectrome-
try [29,30], and capillary zone electrophoresis [31]. Furthermore, different spectrophotomet-
ric methods were reported for the determination of LTZ in various media [32–36]. However,
very few articles were concerned with potentiometric determination of LTZ [37]. These
techniques exhibited several analytical advantages such as excellent sensitivity to quantify
organic and inorganic substances with useful and wide linear concentration ranges. How-
ever, they still possess certain drawbacks such as the need for high technical skills and long
analytical time as well as the consumption of large solvent quantities.

Currently, determination and quantification of dosage form medications using modi-
fied metal oxide sensing electrodes have gained major attention. The objective of this study
is to fabricate highly sensitive and selective modified coated wire sensors enriched with
MgONPs and CuONPs. Those sensors were applied for electrochemical quantification
of the breast cancer medication LTZ in its tablets and biosamples. Moreover, method
validation was carried out to evaluate the validity of the suggested modified sensors.
Additionally, a comparative study was carried out between the enriched sensors with metal
oxide nanoparticles and the conventional fabricated ones.

2. Experimental
2.1. Chemicals

The purest form of breast cancer medication LTZ and its Femara® tablets (2.5 mg Letr-
ozole/tablet) were obtained from Saudi Pharmaceutical Distribution Co. Ltd. (Novar-
tise, Jeddah, Saudi Arabia). Magnesium sulfate, sodium hydroxide and copper nitrate
(Cu(NO3)2·3H2O) were supplied by BDH (Poole, UK). Various solvents and chemicals
including methanol 99.9%, acetone 99.9%, ethanol 99.9%, tetrahydrofuran (THF) 97.0%,
ortho-nitrophenyloctyl ether (o-NPOE), hydrochloric acid 37%, phosphomolybdic acid as
well as high molecular weight polyvinyl chloride (PVC) were supplied by Sigma Aldrich
(Hamburg, Germany). The blood samples were collected from patients in King Khalid hos-
pitals (Riyadh, Saudi Arabia), and the research ethics committee at King Saud University,
KSA (KSU-REC-002-E, 2020) approved the study.
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2.2. Instruments

A digital pH meter HANNA model 211 (HANNA instruments, Smithfield, RI, USA)
was used to perform all the potentiometric measurements. Metrohm pH-meter model
744 (Metrohm Co., Herisau, Switzerland) was used to control the pH conditions of the
analyte samples. The electrochemical systems were comprised of a fabricated indicator
electrode in conjunction with a silver/silver chloride (Ag/AgCl) as a reference electrode.
Spectrophotometer (Shimadzu Corporation, Kyoto, Japan), Spectrum BX spectrometer,
(PerkinElmer, Waltham, WA, USA), Transmission electron microscope (TEM) (JEM-2100F,
JEOL Ltd., Akishima, Tokyo, Japan), Scanning Electron Microscope (SEM) (JSM-7610F;
JEOL, Tokyo, Japan), and X-ray diffraction (XRD) (Shimadzu XRD-6000 diffractometer,
Kyoto, Japan) were used for nanoparticles characterization. Energy-Dispersive X-Ray
Spectroscopy (EDX) analysis was obtained by a SEM microscope (JSM-7610F; JEOL, Tokyo,
Japan) connected with EDX to ensure the presence of magnesium and copper in samples.

2.3. Synthesis of Magnesium Oxide and Copper Oxide Nanoparticles

Magnesium hydroxide was prepared by mixing 50 mL of each 5% magnesium sulfate
(MgSO4) and 5% sodium hydroxide (NaOH) solutions under magnetic stirring for 3 h. The
formed magnesium hydroxide was heated in a hot air oven for another 3 h at 100 ◦C. This
precursor was calcined in a muffle furnace at 500 ◦C to obtain MgONPs [38].

The synthesis of CuONPs using copper nitrate was conducted by preparing 100 mL of
1.0 × 10−1 mol L−1 of copper nitrate in deionized water. A solution of 1.0 × 10−1 mol L−1

sodium hydroxide was added dropwise with continuous stirring. The black precipitate
was observed when the pH elevated to 14. Deionized water and absolute ethanol were
used to wash and neutralize the formed precipitate, and then dried at 80 ◦C for 16 h [39].

2.4. Characterization of Nanoparticles

Spectrophotometric detection at a wavelength range of 200–500 nm using a UV 2450
Spectrophotometer (Shimadzu Corporation, Kyoto, Japan) was carried out to ensure the
formation of MgONPs and CuONPs. Fourier-Transform Infrared spectroscopy (FT-IR)
spectra was used to determine the predicted functional groups that appear in the−prepared
MgONPs and CuONPs. Microscopic examination under TEM and SEM was performed to
study the surface structure, shape and particle size of both MgONPs and CuONPs.

2.5. Preparation of Standard Drug Solution

A standard 1.0 × 10−2 mol L−1 of LTZ solution (pH = 4) was obtained by dis-
solving 0.285 g of LTZ in 100 mL acidic distilled water (HCL:water, 1:3 v/v). Ana-
lytical solutions in the ranges of 1.0 × 10−6–1.0 × 10−2, 1.0 × 10−8–1.0 × 10−2 and
1.0 × 10−10–1.0 × 10−2 mol L−1 were prepared by performing serial dilutions using the
same solvent. The experimental studies were carried out using a conventional LTZ-PM,
modified LTZ-PM-MgONPs and LTZ-PM-CuONPs coated wire sensors, respectively.

2.6. Preparation of Electroactive Complex

The electroactive complex (ion pair) of LTZ-PM was prepared by mixing equal vol-
umes (50 mL) of 1.0× 10−2 mol L−1 of LTZ acidic solution (pH = 4) with 1.0 × 10−2 mol L−1

of PMA solution. A yellowish precipitate of LTZ-PM complex was obtained. The resulted
precipitate was filtrated using Schleicher and Schuelfilter paper No. 595 Ø150 mm, washed
three times with distilled water, and air dried at ambient temperature overnight.

2.7. Membrane Composition and Sensor Fabrication

Three different coated wire sensors based on LTZ-PM, LTZ-PM-MgONPs and LTZ-PM-
CuONPs were fabricated by mixing 190 mg of high molecular weight polyvinyl chloride
(PVC), 10 mg of ion-pair (LTZ-PM), and 0.35 mL of plasticizer o-NPOE in 5 mL of THF. The
mixed solution was purred in a Petri dish (3 cm in diameter) and allowed to evaporate
until the formation of an oily membrane solution. An Al wire was polished and acetone
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cleaned, then dipped several times in the membrane mixture to construct the conventional
LTZ-PM sensor. To fabricate the modified sensors, a plastic membrane mixture containing
MgONPs or CuONPs (5 g), PVC (190 mg), LTZ-PM-MgONPs or LTZ-PM-CuONPs ion-
pair (10 mg) and o-NPOE plasticizer (0.35 mL) in 5 mL of THF were prepared. A well
homogeneous dispersed membrane mixture was obtained by continuously stirring it for
15 min at room temperature. The formed polymeric membrane mixtures were used to
formulate a thin layer on the surface of the sensors. After drying, sensors were immersed
in the coated membrane mixture (several times) to form a thick coated wire membrane.
The fabricated sensors were designed as follows: Al wire/modified coated membrane/test
solution//Ag/AgCl reference electrode (Figure 1).

Polymers 2021, 13, 1384 4 of 18 
 

 

2.7. Membrane Composition and Sensor Fabrication 
Three different coated wire sensors based on LTZ-PM, LTZ-PM-MgONPs and 

LTZ-PM-CuONPs were fabricated by mixing 190 mg of high molecular weight polyvinyl 
chloride (PVC), 10 mg of ion-pair (LTZ-PM), and 0.35 mL of plasticizer o-NPOE in 5 mL 
of THF. The mixed solution was purred in a Petri dish (3 cm in diameter) and allowed to 
evaporate until the formation of an oily membrane solution. An Al wire was polished 
and acetone cleaned, then dipped several times in the membrane mixture to construct the 
conventional LTZ-PM sensor. To fabricate the modified sensors, a plastic membrane 
mixture containing MgONPs or CuONPs (5 g), PVC (190 mg), LTZ-PM-MgONPs or 
LTZ-PM-CuONPs ion-pair (10 mg) and o-NPOE plasticizer (0.35 mL) in 5 mL of THF 
were prepared. A well homogeneous dispersed membrane mixture was obtained by 
continuously stirring it for 15 min at room temperature. The formed polymeric mem-
brane mixtures were used to formulate a thin layer on the surface of the sensors. After 
drying, sensors were immersed in the coated membrane mixture (several times) to form a 
thick coated wire membrane. The fabricated sensors were designed as follows: Al 
wire/modified coated membrane/test solution//Ag/AgCl reference electrode (Figure 1). 

 
Figure 1. Illustrated the construction of the modified sensor and its potentiometric system. 

2.8. Calibration Graphs 
Twenty-five mL of 1.0 × 10−10–1.0 × 10−2 mol L−1 LTZ standard solution was analyzed 

using the fabricated sensors separately in conjunction with Ag/AgCl as a reference elec-
trode. The calibration graphs of each sensor were plotted (Microsoft office Excel 2010) 
using the potential readings as a function of –logarithm LTZ concentrations. 

2.9. Optimization of Potential Readings Condition 
To evaluate the pH effect, 0.1 mol L−1 hydrochloric acid was used to acidify 1.0 × 10−4 

mol L−1 of LTZ test solution. The potential readings were recorded after elevating the pH 
using 0.1 mol L−1 of sodium hydroxide and the fabricated sensors were separately used in 
conjunction with Ag/AgCl reference electrode and combined glass electrode for meas-
uring pH values. pH graphs were plotted (Microsoft office Excel 2010) using the pH 
values as a function of potential readings of each sensor. 

Figure 1. Illustrated the construction of the modified sensor and its potentiometric system.

2.8. Calibration Graphs

Twenty-five mL of 1.0 × 10−10–1.0 × 10−2 mol L−1 LTZ standard solution was ana-
lyzed using the fabricated sensors separately in conjunction with Ag/AgCl as a reference
electrode. The calibration graphs of each sensor were plotted (Microsoft office Excel 2010)
using the potential readings as a function of –logarithm LTZ concentrations.

2.9. Optimization of Potential Readings Condition

To evaluate the pH effect, 0.1 mol L−1 hydrochloric acid was used to acidify 1.0× 10−4 mol L−1

of LTZ test solution. The potential readings were recorded after elevating the pH using
0.1 mol L−1 of sodium hydroxide and the fabricated sensors were separately used in con-
junction with Ag/AgCl reference electrode and combined glass electrode for measuring
pH values. pH graphs were plotted (Microsoft office Excel 2010) using the pH values as a
function of potential readings of each sensor.

The separate solution method [40] was followed to evaluate the selectivity of the sug-
gested sensors. The tolerable values of various interfering species including cations, sugars,
amino acids and co-formulated compounds were calculated using the following equation:

Log Kpot = (E2 − E1)/S + Log [LTZ] − Log [Bz+]1/z (1)
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The equation represented as selectivity coefficient (Kpot), potential reading of 1.0× 10−3 mol L−1

LTZ (E1), potential reading of 1.0 × 10−3 mol L−1 of interfering species (E2), interfering
ions (Bz+) and slope of the calibration graph (S).

The dynamic response time was investigated by measuring the potential response of
the tested drug using a concentration range of 1.0 × 10−10–1.0 × 10−2 mol L−1.

2.10. Analysis of LTZ in Femara® Tablets

Twenty Femara® tablets (2.5 mg/tablet) were milled to fine powder and an accurate
amount equivalent to 0.285 g was dissolved in distilled water to prepare 1.0 × 10−2 mol L−1

standard solution. Serial dilutions were carried out to prepare different concentrations
of LTZ within the range of 1.0 × 10−10–1.0 × 10−2 mol L−1. The fabricated sensors
LTZ-PM, LTZ-PM-MgONPs and LTZ-PM-CuONPs were separately used to quantify the
investigated drug.

2.11. Analysis of LTZ in Biosamples

To measure the concentration of LTZ in human plasma samples, approximately 3 mL
of blood samples were collected from a forearm vein into vacuum heparinized tubes. The
samples were withdrawn after 0.25–240 h of drug administration. The plasma samples
were separated after centrifugation for 15 min at 1500 rpm and low temperature (less than
10 ◦C). Before and during the separation process, the samples were kept in an ice water
bath. The obtained samples were analyzed using the fabricated modified sensors and LTZ
concentrations in the plasma samples were calculated using regression equations.

2.12. Statistical Analysis

Statistical analyses were performed in triplicate measurements using Student’s t-test
which was applied to compare the means between two groups at p-value < 0.05. The F test
is used to evaluate the statistical variance significance [41].

3. Results and Discussion
3.1. Characterization of MgO and CuO Nanoparticles

The prepared MgONPs and CuONPs were characterized using different spectroscopic
methods. UV–Vis spectroscopy is the utmost useful and reliable technique suitable for
confirming the primary characterization of size, shape and stability of the synthesized
metal oxide nanostructures in their aqueous suspensions [42]. UV-Vis spectroscopy of
MgONPs and CuONPs showed broad absorption peaks at 290 and 330 nm, respectively
(Figure 2). The band gap was calculated using the formula Eg = hυ = hc/λ, where h
is Planck’s constant, c is the velocity of light, and λ is the wavelength. The calculated
band gab for each synthesized nanoparticles were 7.46 eV and 3.58 eV for MgONPs and
CuONPs, respectively. The obtained results were in agreement with the standard band
gaps of MgONPs (7.5 eV) and CuONPs (3.63 eV) previously reported in [43,44].

FTIR analysis for MgONPs and CuONPs was performed in the range of 400–4000 cm−1.
The absorption bands for MgONPs were 3703, 3440, 2362, 1654, 1622, 1129, 534 and
442 cm−1. The two bands observed at 3697 and 3646 cm−1 corresponded to the O–H
bond stretching vibration. The weak band at 2362 cm−1 was assigned to be related to
CO2 stretching vibration as a result of atmospheric carbon dioxide adsorption [45]. Two
observed absorption bands around 1654 and 1622 cm−1 revealed the existence of an O-H
stretching mode of water. A strong peak at 1129 cm−1 was attributed to S=O of sulfate.
The noticed peak, which is slightly shifted from 534 to 442 cm−1 confirmed the formation
of Mg-O stretching vibration (Figure 3a).

For CuONPs, two well defined bands at 3430 and 2926 cm−1 were observed and were
related to both O-H and C-H stretching vibrations. The appearance of absorption band
at 2360 cm−1 revealed the presence of CO2 stretching vibration. Additionally, the O–H
stretching mode of water is confirmed by the presence of an absorption band at 1620 cm−1.
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In the range from 400–1000 cm−1, the observed bands around 835 and 622 cm−1 can be
assigned to represent the formation of Cu–O (Figure 3b).
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The presence of magnesium and copper elements in MgONPs and CuONPs was
revealed by investigating their EDX profiles using SEM equipped with an EDX spectroscopy.
The recorded profiles showed that the elemental composition percentage of Mg and Cu
nanoparticles were 54.12% Mg and 45.88% O for MgONPs, while 72.48% Cu and 27.52%
O in CuONPs (Figure 4a,b). The maximum intensity peaks were at 1.5 keV and 1.2 keV
for Mg and Cu, respectively. This confirmed the high purity of the prepared nanoparticles
and the reduction of magnesium and copper ion to zero valences. The outcomes were in
agreement with the previously reported results in [46,47].

XRD is an analytical method for estimating and quantifying different crystalline forms
in the tested samples. This analysis was carried out using XRD diffractometer with Cu-kα
at (k = 1.5405 A◦) and applied to determine and verify the crystal structure of MgONPs
and CuONPs. XRD patterns of MgONPs displayed characteristic peaks at 2θ = 37.2◦, 43.5◦,
64.3◦, 75.1◦ and 79.2◦ corresponding to MgO of (1 1 1), (2 0 0), (2 2 0), (3 1 1) and (2 2 2),
respectively. These values can be indexed as a high hexagonal crystalline structure, and
these results were similar to the JCPDS file of MgO (No. 36-1451). For CuONPs, different
peaks were recorded at 2θ = 32.5◦, 35.7◦, 46.8◦ and 66.8◦ for CuO (1 1 1), (2 0 0), (2 0 2)
and (1 1 3) plane orientation of CuO (JCPDS 80-1268). The broad XRD patterns revealed



Polymers 2021, 13, 1384 7 of 17

high particle crystalline and nanoscale dimensions. No other phases were observed and all
diffraction peaks can be indexed as typical monoclinic structure (Figure 4c,d).
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Further microscopic investigations, including TEM and SEM, were carried out to study
the surface size, shape and morphology of the prepared nanoparticles. The obtained images
of MgONPs and CuONPs using TEM showed fairly uniform distributed particles with
hexagonal and spherical shape for MgONPs and CuONPs, respectively. The recorded size of
their particles was in the range from 60–100 nm for both MgONPs and CuONPs (Figure 5a,b).
Moreover, the surface morphology of the synthesized metal oxide nanoparticles was studied
under SEM using 30,000× magnification and the resulted images confirmed that they are
highly aggregated crystals with particles size around 100 nm (Figure 6a,b).
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3.2. The Nature of the Fabricated Sensors

LTZ interacts with PM to obtain a stable LTZ-PM complex soluble in THF. The fabrica-
tion of conventional and modified coated wire sensors was conducted by adding the active
materials with (o-NPOE) as a solvent mediator in the presence of PVC. In the current study,
o-NPOE acted as a fluidizer aiding homogenous dissolution of ion-pair and permitting its
diffusion mobility inside the membrane. The elevated dielectric constant of o-NPOE (ε = 24)
improves membrane selectivity towards the tested analyte by influencing the dissolution
of ion pair within the active membrane and consequently increase its partition coefficient
and gave suitable mechanical feature [48].

Potentiometric response and critical characteristic performance of the LTZ-PM, LTZ-
PM-MgONPs and LTZ-PM-CuONPs sensors were presented in Table 1. Outcomes showed
that the above-mentioned sensors exhibited Nernstian responses with slopes of 53.3 ± 0.5,
56.4 ± 0.7 and 58.7 ± 0.5 mV over the drug concentration ranges of 10 × 10−6–1.0 × 10−2,
1.0 × 10−8–1.0 × 10−2 and 10 × 10−10–1.0 × 10−2 mol L−1 with correlation coefficients
(0.9996, 0.9998, 0.9999) for conventional LTZ-PM, modified LTZ-PM-MgONPs and LTZ-
PM-CuONPs, respectively (Figure 7a–c). The results showed that both modified metal
oxide sensors displayed increased potentiometric response to a wide linear concentration
range compared with the conventional one. Outcomes revealed high sensitivity of those
sensors towards the determination of LTZ. This could be attributed to the coating nanopar-
ticles layer with large surface area that enhanced the conductivity of the sensor surface.
Furthermore, it was noticed that the use of CuONPs gave better results than MgONPs,
which could be due to the elevated dielectric permittivity value of CuONPs (≈104) over
MgONPs (≈3.2–9.8) at room temperature [49,50].

The dynamic response (time of response) is known as the time between the instant at
which the potential of the cell becomes equal to its steady-state value within 1 mV. This
time should be taken under experimental conditions, including the constant stirring and
precondition of the sensor in test sample prior to measuring the potential readings [51].
The dynamic response of each fabricated sensor was detected, and it was noticed that
rapid dynamic responses at 75, 45 and 30 s for 20, 50 and 65 days were recorded for LTZ-
PM, LTZ-PM-MgONPs and LTZ-PM-CuONPs, respectively. The results showed that the
modified sensors enriched with metal oxide nanoparticles displayed fast and high stability
compared with the conventional one. This could be due to the modification of sensors with
nanomaterials, which possess new physicochemical features that are not present in the bulk
material. These nanoparticles had greater surface to volume ratio improving interactions
with targets in test solutions. Additionally, the extraordinary electrical properties, such as
high charge transfer as well as the excellent electrical capabilities produced at interfaces of
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some nanostructured materials, are vital when nanomaterials are used as transductions in
potentiometric sensors [52].

Table 1. Performance characteristics of fabricated conventional coated wire LTZ-PM and modified LTZ-PM-MgONPs and
LTZ-PM-CuONPs sensors.

Parameter Conventional Coated Wire
LTZ-PM Sensor

Modified LTZ-PM-MgONPs
Sensor

Modified LTZ-PM-CuONPs
Sensor

Slope (mV. Decade−1) 53.3 ± 0.5 56.4 ± 0.7 58.7 ± 0.5
Intercept 451.4 569.6 692.6

Regression equation EmV = (53.3 ± 0.5) log [LTZ] +
451.4

EmV = (56.4 ± 0.7) log [LTZ] +
569.6

EmV = (58.7 ± 0.5) log [LTZ] +
692.6

Correlation coefficient, r 0.9996 0.9998 0.9999
Linear range (mol L−1) 10 × 10−6–1.0 × 10−2 1.0 × 10−8–1.0 × 10−2 1.0 × 10−10–1.0 × 10−2

LOD 5.0 × 10−7 5.9 × 10−9 5.6 × 10−11

Response time/s 75 45 30
Working pH range 2–5 2–5 2–5

Lifetime/day 20 50 65
Temperature, ◦C 25 25 25

Accuracy (%) 99.3 ± 0.4 99.6 ± 0.3 99.8 ± 0.3
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1.0 × 10−6–1.0 × 10−2 mol L−1 LTZ using the fabricated (a) modified LTZ-PM-MgONPs, (b) LTZ-CuONPs and (c) con-
ventional LTZ-PM coated wire sensors, respectively.

The performance of the membrane sensors can greatly be influenced by hydrogen
ions interference. Thus, the influence of pH on the potential of fabricated sensors was
investigated to decide the safe pH range suitable for determining LTZ in its tested solutions.
The outcomes demonstrated that both conventional and modified sensors were practically
independent in the acidic pH range 2–5, and LTZ could simply be determined using
the studied sensors within this range (Figure 8). It was observed that in acidic medium
(below pH 2), the readings were slightly augmented due to the existence of H+ ions and
the formation of protonated ion-pair that is poorly responsive to LTZ ions as well as the
strong response to hydronium ions in the test solution. In the alkaline medium (pH value
higher than 5), the readings were gradually decreased. The rise in OH− ions caused a
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competition between LTZ and OH− ions, and consequently decreased interaction between
the tested drug ions and the sites of ion-pair on the sensor membrane. Therefore, the
potential response of the fabricated sensors was reduced [53].

Selectivity of the fabricated LTZ-PM, LTZ-PM-MgONPs and LTZ-PM-CuONPs sensors
towards the detection of LTZ using 1.0 × 10−3 mol L−1 was investigated. Separate solution
method [40] was applied and various inorganic cations (Na+, K+, Ag+, Ni2+, Mg2+, Cu2+

and Zn2+), some sugars (glucose, lactose and starch) and amino acids (lysine, L. histidine,
tryptophan, glycine, lysine, valine, and leucine) were tested. The presence of metal oxide
nanoparticles with considerable surface area and physicochemical properties increased the
conductivity of the constructed sensors, and hence increased selectivity towards the drug
under investigation. This selectivity could be due to the free energy transfer of LTZ+ ions
initiated between the membrane and the surrounding medium. The outcomes revealed the
absence of any interference caused by sugars and amino acids. Additionally, the difference
in inorganic cations ionic size, their mobility and permeability when compared with LTZ+

prevented the interference of these cations during the analysis. Thus, outstanding selectivity
and suitable tolerance were achieved when LTZ-PM-MgONPs and LTZ-PM-CuONPs were
used for determining LTZ (Table 2).

Table 2. Selectivity coefficient (KPot
LTZ

+) of conventional coated wire LTZ-PM, modified LTZ-PM-MgONPs and LTZ-PM-
CuONPs sensors by the separate solution method using 1.0 × 10−3 mol L−1 LTZ.

Interferences
Conventional Coated Wire

LTZ-PM Sensor
(Kpot

LTZ
+)

Modified
LTZ-PM-MgONPs Sensor

(Kpot
LTZ

+)

Modified
LTZ-PM-CuONPs Sensor

(Kpot
LTZ

+)

Na+ 5.4 × 10−3 4.8 × 10−4 9.2 × 10−5

K+ 1.9 × 10−3 3.3 × 10−4 4.8 × 10−4

Ag+ 3.1 × 10−3 1.5 × 10−3 8.4 × 10−4

Ni2+ 5.6 × 10−3 4.2 × 10−3 2.2 × 10−3

Mg2+ 6.8 × 10−3 7.9 × 10−4 8.7 × 10−4

Cu2+ 6.6 × 10−3 1.4 × 10−4 2.3 × 10−5

Zn2+ 4.9 × 10−3 4.9 × 10−4 6.3 × 10−4

Glucose 3.6 × 10−3 9.9 × 10−4 4.2 × 10−4

Lactose 3.9 × 10−3 6.7 × 10−4 5.6 × 10−4

Starch 4.8 × 10−3 2.3 × 10−4 2.1 × 10−3

Lysine 1.4 × 10−3 8.9 × 10−3 9.5 × 10−4

L-histidine 2.6 × 10−3 2.7 × 10−4 3.2 × 10−5

Tryptophan 5.5 × 10−3 5.8 × 10−4 5.4 × 10−5

Glycine 8.4 × 10−3 3.6 × 10−3 6.6 × 10−4

Valine 2.6 × 10−3 8.4 × 10−3 2.5 × 10−4

Leucine 2.5 × 10−3 3.5 × 10−3 2.9 × 10−4

Talc 5.2 × 10−3 2.2 × 10−4 9.1 × 10−5

SiO2 3.7 × 10−3 7.7 × 10−3 8.2 × 10−4

TiO2 7.8 × 10−3 7.8 × 10−4 7.8 × 10−4

Magnesium stearate 3.9 × 10−3 4.5 × 10−3 7.3 × 10−5

Microcrystalline cellulose 4.5 × 10−3 1.8 × 10−4 3.6 × 10−4
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3.3. Quantification of Letrozole

The designed sensors were used to determine LTZ in its bulk powder. The direct
calibration method was used and the obtained results were expressed as percentage recov-
eries. The outcomes of the analysis using the suggested sensors showed mean percentage
recoveries of 98.9 ± 0.7, 99.6 ± 0.5% and 99.7 ± 0.3 for LTZ-PM, LTZ-PM-MgONPs and
LTZ-PM-CuONPs, respectively (Table 3). These results displayed ultrasensitivity of the
modified LTZ-PM-MgONPs and LTZ-PM-CuONPs sensors. The unique physicochemical
characteristics of the used metal oxide nanoparticles enhanced the sensitivity and conduc-
tivity of the modified sensors towards the determination of the selected drug. Moreover, it
was noticed that the CuONPs modified sensor exhibited an excellent detection towards the
investigated LTZ due to the high dielectric constant of CuONPs over MgONPs.

Table 3. The outcomes from the determination of LTZ in pure form using fabricated LTZ-PM, modified LTZ-PM-MgONPs
and LTZ-PM-CuONPs coated wire sensors.

Statistical
analysis

Conventional LTZ-PM Coated
Wire Sensor

Modified LTZ-PM MgONPs
Sensor

Modified LTZ-PM CuONPs
Sensor

Test Solution % Recovery Test Solution * % Recovery Test Solution * % Recovery

6 98.5 8 99.8 10 100.0
5.3 99.2 7 99.7 9 99.7
5 99.8 6 100.0 8 99.9
4 99.5 5 100.2 7 100.0
3 98.0 4 99.8 6 99.7
2 98.7 3 98.7 5 99.2

2 99.0 4 99.8
3 99.3
2 99.5

Mean ± SD 98.9 ± 0.7 99.6 ± 0.5 99.7 ± 0.3
n 6 7 9

Variance 0.49 0.25 0.09
RSD % 0.71 0.50 0.30
SE ** 0.29 0.18 0.12

* Test solution using –log Conc. mol L−1. ** SE (standard error) = SD/
√

n.
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3.4. Method Validation

The proposed analytical technique was ensured and validated according to ICH
guidelines [54]. Wide linear concentration relationships were exhibited by the designed
sensors over 1.0 × 10−8–1.0 × 10−2, 1.0 × 10−10–1.0 × 10−2 mol L−1, respectively, in
comparison with 1.0 × 10−6–1.0 × 10−2 mol L−1 for the conventional coated wire type.
The regression equations were estimated to be EmV = (56.4 ± 0.7) log [LTZ] + 569.6 and
EmV = (58.7 ± 0.3) log [LTZ] + 692.6 for LTZ-PM-MgONPs and LTZ-PM-CuONPs, respec-
tively. The conventional type LTZ-PM showed a potential response of EmV = (53.3± 0.5) log
[LTZ] + 451.4 with correlation coefficients 0.9998, 0.9999 and 0.9996 for the abovementioned
sensors, respectively.

To detect the lower limit of detection (LOD), the potential readings of the designed sensors
were recorded after the decrease in each sensor slope by 17.9 mV. The obtained LOD was
5.0 × 10−7, 5.9× 10−9, and 5.6× 10−11 mol L−1 for the three suggested sensors, respectively.

The accuracy of the developed potentiometric technique was investigated using nine
authentic samples and the (mean ± SD) were estimated as 99.3 ± 0.4%, 99.6 ± 0.3% and
99.8 ± 0.3% for LTZ-PM, LTZ-PM-MgONPs and LTZ-PM-CuONPs, respectively. The
intermediate precision of the proposed electrochemical procedure was evaluated using
intra-day and inter-day assay and results were presented by estimating the relative standard
deviation percentage (RSD %). The outcomes indicated that the RSD % for the fabricated
LTZ-PM-MgONPs and LTZ-PM-CuONPs were 0.3% and 0.1%, 0.4% and 0.2% for intra-
day and inter day, respectively. All results are less than the recommended value (2.0%)
indicating high precise technique (Table 4).

Table 4. Intermediate precision assay of LTZ using modified LTZ-PM-MgONPs and LTZ-PM-CuONPs coated wire sensors.

Statistical
Analysis

Modified LTZ-PM-MgONPs Coated Wire Sensor

Intra-Day Assay Inter-Day Assay

Test Solution * Found * % Recovery Test Solution * Found * % Recovery

8.0 7.98 99.50 8.0 7.97 99.60
6.0 6.00 100.00 6.0 5.99 99.80
4.0 3.98 99.50 4.0 3.96 99.00

Mean ± SD 99.8 ± 0.3 99.5 ± 0.4
n 3 3

Variance 0.09 0.16
RSD % 0.30 0.40
SE ** 0.17 0.23

Statistical
Analysis

Modified LTZ-PM-CuONPs Sensor

Intra-day assay Inter-day assay

Test Solution * Found * % Recovery Test solution * Found * % Recovery

10 10.00 100.00 10 9.99 99.90
8 7.99 99.90 8 8.00 100.00
6 5.98 99.70 6 5.97 99.50

Mean ± SD 99.9 ± 0.1 99.8 ± 0.2
n 3 3

Variance 0.01 0.04
RSD % 0.10 0.20
SE ** 0.06 0.12

* Test solution using –log Conc. mol L−1. ** SE (standard error) = SD/
√

n.

The robustness of the described method was studied by changing the pH using acetate
buffer pH 5± 0.5 and the (Mean± SD) recoveries were recorded as 98.9± 0.6%, 99.2 ± 0.4%
and 99.6 ± 0.1% for LTZ-PM, LTZ-MgONPs and LTZ-PM-CuONPs, respectively. An
additional study was carried out to evaluate the raggedness of the proposed method by
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altering the pH meter model (Metrohm-744) The resulted (mean ± SD) recoveries were
99.2 ± 0.7%, 99.6 ± 0.5% and 99.8 ± 0.2% for the above-mentioned sensors. The outcomes
confirmed a great agreement with those obtained by the described method.

3.5. Determination of LTZ in Tablets

To quantify the breast cancer medication LTZ in its pharmaceutical form (Femara®

2.5 mg/tablet), the fabricated LTZ-PM, LTZ-PM-MgONPs and LTZ-PM-CuONPs sensors
were used. The potential readings were measured vs. different concentrations of LTZ
samples, and the recoveries percentage was estimated. The outcomes were 99.3 ± 0.4,
99.6 ± 0.3 and 99.9 ± 0.2 for the above-mentioned sensors, respectively (Table 5). It was
observed that the modified sensor LTZ-PM-CuONPs displayed ultrasensitivity towards the
determination of LTZ more than LTZ-PM-MgONPs. The enhancement of LTZ-PM-CuONPs
conductivity over LTZ-PM-MgONPs one could be due to the higher dielectric constant of
CuO over MgO.

The calculated (Mean ± SD) recoveries were assessed statistically using student’s
t-test and F-test [41]. The results were compared with those achieved by the potentiometric
method [37], which is established at the formation of PVC electrode using tetraphenylb-
orate. The outcomes indicated excellent sensitivity of the proposed sensors towards the
determination of LTZ in its dosage forms.

Table 5. The outcomes from the determination of LTZ in Femara® (2.5 mg Letrozole/tablet) using fabricated LTZ-PM, modified
LTZ-PM-MgONPs and LTZ-PM-CuONPs coated wire sensors in comparison with previously reported method [37].

Statistical
Analysis

Conventional LTZ-PM
Coated Wire Sensor

Modified LTZ-PM MgONPs
Sensor

Modified LTZ-PM CuONPs
Sensor Reported

Method [37]Test
Solution * % Recovery Test

Solution * % Recovery Test
Solution * % Recovery

6 99.3 8 99.9 10 100.0

99.5 ± 0.4

5.3 99.4 7 100.01 8 99.9
5 99.4 6 99.7 6 99.7
4 99.8 4 99.8 4 99.8
3 99.3 3 99.3 3 100.3
2 98.5 2 99.0 2 100.0

Mean ± SD 99.3 ± 0.4 99.6 ± 0.3 99.9 ± 0.2
n 6 6 6

Variance 0.16 0.09 0.04
RSD % 0.40 0.30 0.20
SE ** 0.16 0.12 0.08
t-test 0.884 (2.228) *** 0.500 (2.228) *** 2.236 (2.228) ***
F-test 1.00 (5.05) *** 1.78 (5.05) *** 4.00 (5.05) ***

* Test solution and Found using –log Conc. mol L−1. ** SE (standard error) = SD/
√

n. *** The tabulated values of “Student’s t-test” and
“F-test” at p < 0.05 [41].

3.6. Quantification of LTZ in Biosamples

To confirm the suitability of the proposed modified metal oxide sensors for the de-
tection of breast cancer medication letrozole, further investigations were carried out on
16 plasma samples of patients recommended to use letrozole as a breast cancer medication.
The fabricated sensors were used to analyze the real samples withdrawn from women
ranging from 25–55 years old. Certain increments (0.5 mol L−1 of LTZ) were added, and
the potential concentration relationship was used to evaluate the tested drug in 3 replicates
using the modified LYZ-PM-MgONPs and LTZ-PM-CuONPs. The results showed excellent
efficiency for the quantification of LTZ with calculated RSD % (0.4–1.4%), (0.1–0.7%) and
percentage recoveries (98.2–99.3%), (98.9–99.9%) for the sensors as represented in Table 6.
Furthermore, a confirming study was carried out to compare the outcomes with other
results obtained using the reported method [55]. The random analysis of plasma samples
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demonstrated that the modified sensors displayed ultrasenstivity for the quantification of
LTZ when compared with the reported method.

Table 6. The outcomes from the determination of LTZ in biosamples using modified LTZ-PM-MgONPs and LTZ-PM-
CuONPs coated wire sensors in comparison with a reported method [55].

Initial [LTZ], mol L−1 Added [LTZ] mol L−1
LTZ-PM-MgONPs LTZ-PM-CuONPs Reported Method [55]

% Recovery ±%RSD % Recovery ±%RSD % Recovery ±%RSD

8.9 0.5 98.2 ± 0.8 99.3 ± 0.7 97.3 ± 0.6
6.8 0.5 98.4 ± 0.6 99.2 ± 0.1 96.8 ± 0.9
8.5 0.5 98.8 ± 0.5 99.5 ± 0.2 97.2 ± 1.2
6.6 0.5 98.2 ± 0.4 98.9 ± 0.6 96.8 ± 0.9
8.4 0.5 98.3 ± 0.5 99.4 ± 0.3 97.3 ± 0.7
6.3 0.5 98.7 ± 0.9 99.8 ± 0.2 98.2 ± 1.2
6.7 0.5 99.3 ± 0.7 99.5 ± 0.3 96.9 ± 1.4
8.7 0.5 99.2 ± 0.4 99.7 ± 0.9 97.6 ± 0.9
7.2 0.5 98.6 ± 1.2 99.9 ± 0.1 98.1 ± 0.4
8.3 0.5 98.6 ± 0.8 99.7 ± 0.3 96.7 ± 1.1
7.4 0.5 98.9 ± 1.2 99.2 ± 0.6 97.5 ± 0.6
8.1 0.5 98.2 ± 0.7 98.9 ± 0.7 98.1 ± 1.2
7.9 0.5 98.6 ± 0.4 99.4 ± 0.2 96.8 ± 0.9
8.8 0.5 99.3 ± 0.8 99.8 ± 0.4 97.8 ± 0.6
7.5 0.5 98.4 ± 1.4 99.6 ± 0.1 98.3 ± 0.4
8.4 0.5 99.3 ± 0.7 99.9 ± 0.3 96.9 ± 1.1

4. Conclusions

The described electrochemical method was conducted by constructing two coated
wire sensors modified with magnesium oxide and copper oxide nanoparticles. The sug-
gested sensors were utilized for the determination of the oral non-steroidal medication
for breast cancer (LTZ) in its authentic powder, commercial pharmaceuticals and biosam-
ples. The measured potential readings of the modified sensors were compared with those
of conventional LTZ-PM type. Outcomes of the modified sensors showed excellent and
higher sensitivity over the conventional one due to the enhanced electro-conductivity.
Additionally, the use of metal oxide nanoparticles as coated membrane modifiers promoted
high selectivity in quantifying the selected drug with high selectivity with wide linear
concentration range and low limit of detection. Thus, metal oxide enriched membrane
sensors can successfully be applied for the analysis of LTZ in pharmaceutical industries,
research laboratories and biosamples.
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