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Graphical Abstract

Study Highlights 
•	 We integrated multi-omics analyses to establish a spatial-based radiotranscriptomic signature that distinguished 

immune contexture, prognosis and response to immunochemotherapy for ICC. Targeting uPAR, the kernel of sig-
nature, potentiated the efficacy of anti-PD-1 therapy, and may be a promising therapeutic strategy for ICC at pre-
dicted high-risk immunochemotherapy resistance. Radiotranscriptomics enables rapid translation of precision 
medicine for ICC.
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Background/Aims: Identifying patients with intrahepatic cholangiocarcinoma (ICC) likely to benefit from 
immunochemotherapy, the new front-line treatment, remains challenging. We aimed to unveil a novel 
radiotranscriptomic signature that can facilitate treatment response prediction by multi-omics integration and multi-
scale modelling.

Methods: We analyzed bulk, single-cell and spatial transcriptomic data comprising 457 ICC patients to identify an 
immune-related score (IRS), followed by decoding its spatial immune context. We mapped radiomics profiles onto 
spatial-specific IRS using machine learning to define a novel radiotranscriptomic signature, followed by multi-scale 
and multi-cohort validation covering 331 ICC patients. The signature was further explored for the potential therapeutic 
target from in vitro to in vivo.

Results: We revealed a novel 3-gene (PLAUR, CD40LG, and FGFR4) IRS whose down-regulation correlated with 
better survival and improved sensitivity to immunochemotherapy. We highlighted functional IRS-immune interactions 
within tumor epithelium, rather than stromal compartment, irrespective of geospatial locations. Machine learning 
pipeline identified the optimal 3-feature radiotranscriptomic signature that was well-validated by immunohistochemical 
assays in molecular cohort, exhibited favorable external prognostic validity with C-index over 0.64 in resection 
cohort, and predicted treatment response with an area under the curve of up to 0.84 in immunochemotherapy cohort. 
We also showed that anti-uPAR/PLAUR alone or in combination with anti-programmed cell death protein 1 therapy 
remarkably curbed tumor growth, using in vitro ICC cell lines and in vivo humanized ICC patient-derived xenograft 
mouse models.

Conclusions: This proof-of-concept study sheds light on the spatially-resolved radiotranscriptomic signature to 
improve patient selection for emerging immunochemotherapy and high-order immunotherapy combinations in ICC. 
(Clin Mol Hepatol 2025;31:935-959)
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INTRODUCTION

Intrahepatic cholangiocarcinoma (ICC) represents the 

second most common primary liver cancer after hepatocel-

lular carcinoma, with increasing incidence and mortality 

worldwide.1,2 Only around 20–30% of patients are eligible 

for curative‐intent resection with 5-year survival rate of 20–

35%.1 For the remaining 70–80% of patients with locally 

advanced or metastatic disease, systemic chemotherapy 

remains the standard-of-care treatment but has limited 

benefit, with median survival duration of <12 months. Al-

though cancer immunotherapies have yielded unprece-

dented results over the last decade, early-phase studies 

demonstrated the limited activity of immune-checkpoint in-

hibitor (ICI) monotherapy in patients with advanced-stage 

ICC, underscoring the need for novel immune-based treat-

ment strategies.3,4 Recent evidence from phase III clinical 

trials and real-world data suggests programmed cell death 

protein 1 (PD-1) inhibitor pembrolizumab or programmed 

death-ligand 1 (PD-L1) inhibitor durvalumab plus chemo-

therapy as the new front-line standard-of-care treatment for 

advanced biliary tract cancer, especially ICC.5,6 Neverthe-

less, identifying patients who are more likely to benefit from 

such combinations remains a key challenge.

Emerging studies have pinpointed the effect of tumor-im-

mune interactions on tumor growth and progression, im-

mune evasion and resistance to chemotherapy, and limited 

efficacy of ICI-based combination therapies.7 Recent high-

throughput transcriptomic and single-cell RNA sequencing 

(RNA-seq) analyses have shed light on ICC immune pro-

files; however, bulk and single-cell approaches fail to pro-

vide spatial context and cellular composition across distinct 

regions.8,9 The emergence of GeoMx™ Digital Spatial Pro-

filing (DSP) platform addresses the above challenges 

based on user-defined regions of interest (ROIs).10 This 

platform allows the delineation of distinct spatial immune 

micro-landscapes, which may provide additional prognos-

tic information and opportunities for novel ICI-based com-

bination strategies to improve patient outcome.10,11 Beyond 

ICC genomic aspects, multi-scale imaging is an integral 

component of tumor staging and therapeutic response as-

sessment. The distinct biology of the tumor and its interac-

tion with tumor-immune microenvironment (TIME) has 

prompted distinct imaging phenotypes that can be mined 

to predict clinical outcomes and genomic hallmarks, known 

as radiomics and radiogenomics.12 However, adaptations to 

high-dimensional and heterogeneous data need to be ad-

dressed when interrogating either radiomics or genomics 

with the intent to develop prediction models and optimize 

risk stratification. Fortunately, machine learning that utilizes 

sophisticated computational modeling to learn from data 

shines in handling such issues in biomedicine.13 Here, we 

present a multidisciplinary study on multi-scale modelling 

by integrated analysis of multi-omics data to define im-

mune-related radiotranscriptomic signatures with machine 

learning. We then assess whether such signatures are 

complementary to known clinicopathological prognostic 

factors and predict response to immunochemotherapy in 

ICC.

MATERIALS AND METHODS

Study design and data sources

Overall study design is presented in Fig. 1. We collected 

bulk RNA-seq data and patient-level clinical data of ICC 

from publicly available datasets with a minimum of 40 tu-

mor samples and follow-up data. A total of 401 patients 

(244 from Fudan-ICC,14 81 from GSE89749 and 76 from E-

MTAB-6389) were obtained. The immune-related score 

(IRS) was constructed on the Fudan-ICC cohort, and vali-

dated in GSE89749 and E-MTAB-6389 cohorts. Single-cell 

RNA-seq analysis was performed on 16 human ICC sam-

ples and 6 adjacent normal liver samples from two GEO 

datasets (GSE138709 and GSE189903). We profiled 120 

samples from 40 patients with 3 bulk regions each, desig-

nated as tumor core (inner one-third portion), intermediate 

zone (transition one-third portion from the core to the mar-

gin) and invasive margin (outer one-third portion), using 

GeoMx™ DSP technology, to characterize the spatial het-

erogeneity of tumor-immune interactions and map spatial 

radiomics onto corresponding genomics. A total of 240 (120 

epithelial and 120 stromal) ROIs annotated by a certified 

pathologist were profiled from all samples.

Three-level validation that included a total of 331 ICC pa-

tients from multiple high-volume institutions was purpose-

fully designed as follows: (1) Molecular cohort (156 speci-

mens from 52 patients); (2) Resection cohort (243 patients); 

(3) Immunochemotherapy cohort (36 patients). Participant 
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Figure 1. Schematic representation of the study design. (A) IRS identification. (B) Mapping spatial radiomics onto genomics. (C) Multi-
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inclusion and exclusion criteria as well as follow-up and im-

munohistochemistry (IHC) protocols are detailed in Supple-

mentary Methods. Baseline characteristics of multi-scale 

validation cohorts are summarized in Supplementary Table 1. 

This study was approved by the Institutional Ethics Com-

mittee of the First Affiliated Hospital of Nanjing Medical 

University (No. 2024-SRFA-011), and the requirement to 

obtain informed written consent was waived.

Discovery and validation of immune-related 
score

We evaluated immune infiltration profiles based on sin-

gle-sample gene set enrichment analysis (ssGSEA) to de-

fine the resampling-based method termed consensus clus-

tering for immune cluster discovery. Weighted correlation 

network analysis (WGCNA) was then performed to identify 

immune-related hub genes. Overlaps between WGCNA-

defined immune-related hub genes and immunologically 

relevant genes downloaded from the ImmPort (https://

www.immport.org/shared/home) were included in ranking 

the importance of prognosis-related genes based on least 

absolute shrinkage and selection operator (LASSO) and 

random survival forest (RSF) algorithms, followed by back-

ward stepwise Cox regression analysis to compile the IRS. 

We validated the robustness of IRS by multi-cohort bioin-

formatics analysis of bulk and single-cell RNA-seq data. 

Details are described in Supplementary Methods.

Targeted spatial RNA profiling

Prepared slides were incubated with immunofluorescent 

antibodies for morphology staining: pan-cytokeratin for epi-

thelial cells, CD45 for immune cells, α-SMA for fibroblast 

compartments, and Syto13 for nuclei. Stained slides were 

loaded onto Nanostring GeoMx human whole-transcrip-

tome atlas (WTA; 18,677 genes) platform and scanned with 

a ×20 image of up to four-channel fluorescence. ROIs were 

targeted to freeform polygon-shaped regions with densest 

immune signal within tumor epithelium or stroma. Se-

quencing libraries were generated from photo-released in-

dexing oligos and on Illumina sequencing platform by 

Genedenovo Biotechnology Co., Ltd. (Guangzhou, China). 

Details are summarized in Supplementary Methods.

Radiomic feature extraction and filtering

Technical specifications of contrast-enhanced computed 

tomography (CT) imaging and tumor segmentation method 

are detailed in Supplementary Methods. Tumor sub-re-

gions, which corresponded to tumor core, intermediate 

zone and invasive margin in tissue sampling, were auto-

matically segregated based on dedicated in-house soft-

ware with code deposited on the Github website (https://

github.com/DrZhenggangXu/SpatialRT_ICC). Two main 

protocols for high-throughput feature extraction exist: hand-

crafted and deep-learning radiomics (Supplementary Fig. 1). 

A total of 851 handcrafted features and 2,048 deep-learn-

ing features were extracted from each three-dimensional 

(3D) segmentation; details are provided in Supplementary 

Methods. Values of extracted features were standardized 

with Z-score transformation in each cohort. Stable and re-

producible radiomic features, defined as features with intra-

class correlation coefficient above 0.90 in both test-retest 

and inter-reader settings, were retained. Then, features 

that were highly correlated (correlation coefficient above 

0.30) with any component of IRS were prioritized for further 

study.

Machine learning methods

The machine learning pipeline contained four steps. First, 

the study cohort was randomly split into a 70% training/in-

ternal validation set and a 30% external testing set. Sec-

ond, pairwise features with a mutual correlation above 0.8 

were removed, retaining the one with higher correlation 

with the task. Third, 6 machine learning classifiers (support 

vector machine, random forest, logistic regression, regular-

ized logistic regression, AdaBoost and decision tree) 

wrapped by recursive feature elimination were employed 

for feature filtering and prediction modelling. Each classifier 

was optimized over 5-fold cross-validation to fine-tune hy-

per-parameters. Finally, the trained model that exhibited 

the best performance in internal validation set was select-

ed. The machine learning pipeline was integrated into an 

open-source in-house software shared without access re-

strictions in a public repository (https://github.com/sa-

lan668/FAE).

https://www.immport.org/shared/home
https://www.immport.org/shared/home
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Cell function assays and humanized mouse 
models

Cell proliferation was measured by CCK-8 and clone for-

mation assays. Cell migration and invasion were analyzed 

by transwell and wound healing assays. We established a 

patient-derived xenograft (PDX) model in humanized C-NKG 

mice (NOD-PrkdcscidIl2rgem1/Cyagen; 6–8 weeks old). Mice were 

injected with anti-uPAR monoclonal antibody (mAb) (pre-

pared by Lanzhou Huazhitiancheng Biotechnologies Co. 

Ltd.; 10 mg/kg) either alone or in combination with anti-PD-1 

mAb (Camrelizumab; 10 mg/kg) intraperitoneally every 5 

days, as previously described.15 Experimental protocols and 

reagents are detailed in Supplementary Methods and Sup-

plementary Table 2. Animal experiments were performed 

according to the guidelines of the Institutional Animal Use 

and the Animal Experimentation Ethics Committee of The 

First Affiliated Hospital of Nanjing Medical University.

Statistical analysis

Between-group comparisons were analyzed by χ2, Fish-

er’s exact test, Student’s t-test or Mann–Whitney U-test 

based on data type and distribution. The Kruskal–Wallis 

test was performed to compare more than two groups. 

Correlations between two continuous variables were as-

sessed using Pearson correlation coefficients. Area under 

the receiver operating characteristic curve (AUC) and its 

confidence interval (CI) were used to determine prediction 

performance. The prognostic discrimination was quantified 

using C-index. Survival curves were estimated by the Ka-

plan–Meier method and compared with the log-rank test. 

Tumor response assessment was performed according to 

Response Evaluation Criteria in Solid Tumors (RECIST) 

v.1.1. All statistical analyses were performed using R ver-

sion 4.2.3 and associated packages. Statistical signifi-

cance was established at P<0.05.

RESULTS

Discovery and multi-level validation of immune-
related score

We found an optimal 3-cluster solution (C1, C2, and C3) 

that demonstrated significant differences in immune infiltra-

tion, with C1 and C3 having a markedly higher immune in-

filtration abundance than C2, in the discovery (Fudan-ICC) 

cohort (Fig. 2A). WGCNA identified four key modules (blue, 

green, plum2, and skyblue3) that exhibited high correlation 

with immune clusters, and then 706 immune-related hub 

genes (Fig. 2B, Supplementary Fig. 2A, 2B). With the inter-

section of ImmPort template, a total of 172 overlapping 

genes were retained for subsequent analysis. Next, univar-

iate Cox analysis identified 46 prognostic genes that were 

subjected to LASSO-Cox and RSF algorithms for feature 

ranking, and top 10 candidate genes from both algorithms 

were extracted, which identified 5 overlapping genes (Fig. 2C). 

We then pruned the multivariate Cox model by backward 

stepwise selection, yielding a simple 3-gene IRS: risk 

score=(0.44×PLAUR)+(–0.35×CD40LG)+(–0.25×FGFR4). 

Notably, urokinase-type plasminogen activator receptor 

(uPAR/PLAUR) was the only independent risk factor (Fig. 2D).

IRS indicated favorable prediction of survival with a C-in-

dex of 0.72 (95% CI 0.67–0.77) in the Fudan-ICC cohort. 

Multivariate Cox regression demonstrated that IRS (hazard 

ratio [HR] 2.31; 95% CI 1.69–3.10; P<0.001) remained a 

powerful independent predictor of prognosis after adjusting 

for available clinical traits (Supplementary Fig. 3). IRS also 

stratified external validation cohorts (GSE89749 and E-

MTAB-6389) with respective C-index of 0.64 (95% CI 

0.44–0.79) and 0.65 (95% CI 0.47–0.79). Stratifying pa-

tients by the median value demonstrated that score-high 

patients had a significantly poor prognosis across cohorts 

(Fig. 2E). We further investigated its association with im-

mune infiltration estimated by CIBERSORT, which demon-

strated positive connection with immunosuppressive barri-

ers (e.g., M0 macrophages and neutrophils) but negative 

connection with anti-tumor immunity (e.g., naive B cells 

and CD8 T cells) (Fig. 2F). IRS was negatively correlated 

with ImmuCellAI score that predicts comprehensive T-cell 

subsets, and differed significantly between ImmuCellAI-

predicted immunotherapy responders and non-responders 

(Supplementary Fig. 4A, 4B). Furthermore, we observed a 

significant positive association between IRS and hypoxia 

that modulated tumor proliferation (P53 pathway), metabo-

lism (glycolysis), invasion and metastasis (TNF-α signaling 

via NF-κB) (Supplementary Fig. 4C). Drug sensitivity analy-

sis highlighted that low-IRS correlated with remarkably in-

creased sensitivity to current preferred chemotherapeutic 
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(gemcitabine and oxaliplatin) and molecular-targeted (lenva-

tinib and regorafenib) agents (Supplementary Fig. 4D, 4E).

Besides, we obtained single-cell transcriptomes for 

51,642 cells from GEO database after quality filtering while 

these cells were partitioned into 10 main cell clusters using 

known marker genes. We found that IRS was top enriched 

in monocyte-macrophages, followed by malignant cells; 

PLAUR, CD40LG and FGFR4 were top enriched in mono-
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cyte-macrophages, T cells and malignant cells, respective-

ly (Fig. 3A). Intercellular communication networks reflected 

intensive cellular interactions between malignant cells, 

monocyte-macrophages and T cells (Fig. 3B). We high-

lighted the high probability values of numerous immune-

regulatory interactions between malignant cells, monocyte-

macrophages and T cells, such as MDK-NCL, SPP1-

CD44, and LGALS9-CD44/45 (Fig. 3C), which have been 

proved to inhibit T cell activation and limit anti-tumor im-

mune responses.16-18 To provide more detailed mechanistic 

insights of the 3-gene IRS at single-cell level, we examined 

the expression of selected markers in distinct sub-popula-

tions of enriched cell types. We found that malignant cells 

that expressed PLAUR were mutually exclusive with 

WGCNA
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FGFR4 expression, suggesting their different roles in ICC 

progression (Fig. 3D). Increased communication probability 

of the above-mentioned immunosuppressive ligand-recep-

tor pairs was noted in PLAUR+ cells compared with 

FGFR4+ cells (Supplementary Fig. 5). Moreover, CD40LG 

was enriched in memory CD4+ T cells that enhance anti-

tumor immunity while PLAUR was enriched in all mono-

cyte-macrophages clusters, characterized by M2-like phe-

notype and expression of inhibitory molecules (e.g., 

CD163, MS4A4A, and VSIG4) (Fig. 3E, 3F) that have been 
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proven to suppress T-cell function.19

Machine learning integrates spatial 
transcriptomics with radiomics

We harnessed DSP to characterize the immune land-

scape in distinct niches associated with IRS, which dem-

onstrated that the 3-gene IRS was almost comparable be-

tween different intra-tumor regions, but substantially 

differed between epithelial and stromal regions (Fig. 4A, 

4B). Representatively, FGFR4 was overexpressed in tumor 

epithelium versus stroma, which was consistent with sin-

gle-cell RNA-seq results. We next interrogated associa-

tions between IRS and immune infiltration calculated by 

CIBERSORT that were almost identical to bulk RNA-seq 

results within tumor epithelium, rather than stromal com-

partment (Fig. 4C). Thus, epithelium-based DSP data were 

used to create radiotranscriptomic connections.
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We extracted a total of 5,798 radiomic features from each 

spatial sub-region of the whole tumor that corresponded to 

each DSP sampling region, on arterial and portal venous 

phase scans. Among 3,827 features with high stability and 

reproducibility, 288 (154 handcrafted and 134 deep learn-

ing) features that exhibited high correlation with any IRS 

component, were subjected to the machine learning pipe-

line. We designed three models defined by feature types 

(handcrafted versus deep-learning versus combined) for 

the probabilistic classification of IRS (score-low versus 

score-high) by using a median split. Although all three 

models exhibited good performance, using 3 handcrafted 

features with logistic regression algorithm resulted in the 

highest accuracy with AUC of 0.95 (95% CI 0.85–1.00) in 

the internal validation subset and was exported as the ra-

diotranscriptomic signature (Fig. 4D): 

Score=4.19×AP_wavelet-LHL_glcm_MCC

–3.07×AP_wavelet-LLL_firstorder_RootMeanSquared

–2.97×AP_wavelet-LHH_gldm_DependenceEntropy

We confirmed strong correlations between selected ra-

diomic features, spatial-specific gene expressions and im-

mune infiltration in turn (Fig. 4E). Strikingly, the 3-feature 

radiotranscriptomic signature revealed the highest positive 

correlation with PLAUR expression and macrophage infil-

tration within tumor epithelium.

Multi-level validation of radiotranscriptomic 
signature

Initially, we found a significant correlation between IRS 

calculated on IHC-based density quantification and the sig-

nature (Spearman’s rho 0.49; P＜0.001) in the molecular 

cohort, consistent with the DSP data (Fig. 5A). We then ob-

served that the signature stratified patients into distinct 

prognostic subgroups, and predicted overall and recur-

rence-free survival with C-index of 0.67 (95% CI 0.63–0.71) 
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and 0.64 (95% CI 0.60–0.69), respectively, in the resection 

cohort (Fig. 5B). Stepwise multivariate Cox regression 

analysis demonstrated that the signature was an indepen-

dent prognostic factor, even when major semantic imaging 

features were included (Supplementary Table 3). Addition-

ally, median progression-free and overall survival times 

were 6.3 (95% CI 3.4-not applicable) and 16.2 (95% CI 

10.3-not applicable) months, respectively, after a median 

follow-up of 16.2 (interquartile range 6.7–26.1) months for 

the immunochemotherapy cohort. The objective response 

rate (ORR) was 36.1% (13/36); the disease control rate 

(DCR) was 52.8% (19/36). Compared with PD-L1 expres-

sion, the signature exhibited significantly better perfor-

mance metrics (all P<0.05 by DeLong test) in predicting 
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Figure 5. Multi-level validation of radiotranscriptomic signature. (A) Associations between computationally derived signature and IRS de-
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objective tumor response and disease control, with respec-

tive AUC of 0.84 (95% CI 0.69–0.99) and 0.81 (95% CI 

0.67–0.96) (Fig. 5C-D). We also observed statistically sig-

nificant differences for progression-free survival (HR 6.73; 

95% CI 2.58–17.54; P<0.001) and overall survival (HR 

14.35; 95% CI 3.98–51.77; P<0.001) between the predicted 

high-risk versus low-risk groups (Fig. 5E). Fig. 5F shows 

examples of the signature to predict response to anti-PD-1/

PD-L1 plus chemotherapy.

uPAR is a potential therapeutic target in ICC

Above, we highlighted uPAR expression, the kernel of 

signature, in malignant cells and monocyte-macrophages, 

and, therefore, designed preclinical in vitro and in vivo 

studies to examine the potential of therapeutic strategies 

targeting uPAR. Although high uPAR expression in 3 differ-

ent ICC cell lines was verified, we chose HuCCT1 cells that 

exhibited relatively higher expression and were interfered 
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by short small interfering RNA (siRNA)-mediated knock-

down, and RBE cells that exhibited relatively lower expres-

sion and were interfered by plasmid-mediated over-expres-

sion (OE) (Fig. 6A, Supplementary Fig. 6A). Using CCK8, 

colony formation, transwell and wound healing assays, we 

showed that uPAR promoted ICC progression and THP-1 

migration. To elucidate its potential mechanisms, we per-

formed RNA-seq of RBE and THP-1 cells before and after 

uPAR OE, followed by KEGG pathway analysis, which re-

vealed that PI3K-Akt signaling pathway was enriched, 

also consistent with the results of single-cell data analysis 

(Fig. 6B–6D, Supplementary Figs. 6, 7). Furthermore, both 

PI3K inhibitor (LY294002) and anti-uPAR mAb could mark-

edly suppress PI3K-Akt signaling pathway and, subsequent-

ly, ICC progression as well as THP-1 migration (Figs. 6E, 

6F, 7A). Anti-uPAR mAb strongly induced the production of 

THP-1-derived CXCL9 that has been proven to regulate the 

recruitment of CD8+ T cells.20 

Besides, using humanized mice bearing uPAR-positive 

PDX, we observed that tumor growth was markedly imped-

ed by anti-uPAR or anti-PD-1 alone compared with place-

bo, and further suppressed by the combination of two 

mAbs. Moreover, IHC staining showed that such combina-

tion therapy induced a strong synergistic inhibition of cell 

proliferation and macrophage infiltration with increased tu-

mor-infiltrating CD8+ T cells (Fig. 7B–7F).

DISCUSSION

ICC is a highly heterogeneous disease characterized by 

a desmoplastic TIME that is poorly immunogenic, and the 

abundance of immunosuppressive cells that facilitate tumor 

progression, immune evasion and resistance to chemo-

therapy.7 Here, we integrated bulk, single-cell and spatial 

transcriptomics to propose an IRS that distinguished im-

mune characteristics, prognosis, and potential benefits 

from immunochemotherapy for ICC. Following this discov-

ery, we established and validated a novel signature that 

mapped radiomic profiles onto the spatially heterogeneous 

IRS using a machine learning-based radiotranscriptomic 

approach. Using ICC cell lines and humanized PDX mouse 

models, we demonstrated that uPAR, the kernel of signa-

ture, and particularly in combination with PD-1, may be 

promising therapeutic targets for patients at predicted high-

risk immunochemotherapy resistance.

Recent molecular profiling studies on bulk tumor samples 

have highlighted distinct ICC subtypes with theoretically 
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therapeutic vulnerabilities; however, each core subtype 

bears a spectrum of marker genes, which limits its future 

clinical translation.8,21 Through meticulously designed 

methodology, we identified a simple 3-gene IRS compris-
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ing PLAUR, CD40LG and FGFR4, and low-IRS indicated 

significantly improved survival and response to PD-1/PD-

L1 inhibitors plus chemotherapy. Note that CD40LG and 

FGFR4 act as protective factors in our IRS. CD40LG, a 

member of the tumor necrosis factor superfamily, is mainly 

expressed on key immune cells, confirming its involvement 

in anti-tumor immune response, while our single-cell data 

analysis showed that CD40LG expression was enriched in 

memory CD4+ T cells, consistent with previous reports.22 

Our bulk and spatial RNA-seq data also highlighted the re-

markable positive correlation between CD40LG and acti-

vated-memory CD4 T cells, which can induce cytotoxic T 

lymphocyte anti-cancer responses, suggesting that 

CD40LG is associated with the response to immunoche-

motherapy in cancer patients, in concordance with recent 

studies.22,23 Besides, FGFR4, a member of the FGFR fami-

ly, plays a pivotal role in bile acid biosynthesis, glucose 

metabolism as well as tumor invasiveness and angiogene-

sis.24 Note that both lenvatinib and regorafenib are small-

molecule multi-kinase inhibitors, with more potent activity 

against vascular endothelial growth factor receptors and 

the FGFR family. The combination of gemcitabine-oxalipla-

tin-lenvatinib-anti-PD-1 therapy may have additive or syn-

ergistic inhibitory effects for patients with advanced ICC, 

with a promising ORR of 80% and median overall survival 

of 22.5 months, in a recent report.25 Inspired by subtype-

specific therapeutic strategies, we therefore presented a 

classifier that enabled identification of ICC patient sub-

group (low-risk), who may be the ideal candidate for immu-

nochemotherapy, even combined with lenvatinib or rego-

rafenib.

On the other hand, PLAUR, also known as uPAR, acts as 

the key risk factor in our radiotranscriptomic signature, and 

triggers extracellular matrix proteolysis that has been 

proved to promote cell migration.26 Our results suggested 

that uPAR activated PI3K-Akt signaling pathway to promote 

ICC progression and macrophage infiltration, which exerts 

immunosuppressive effects in ICC.7 A recent study on dif-

fuse-type gastric cancer has demonstrated that therapeutic 

strategies targeting uPAR can potentiate anti-PD-1 effica-

cy.15 Here we examined the prospects of anti-uPAR alone 

or in combination with PD-1 blockade against ICC using 

human cancer cell lines and humanized PDX mouse mod-

el, which is considered an optimal in vivo model for immu-

no-oncology research.26 We found that uPAR knockdown 

or blockade significantly suppressed proliferation and mi-

gration of ICC cells in vitro and in vivo. Anti-uPAR therapy 

alone significantly reduced tumor burden in humanized 

mice bearing uPAR-positive ICC tumors, while anti-uPAR 

combined with anti-PD-1 therapy further enhanced the anti-

tumor efficacy, indicating their additive effects on immune 

activation and tumor growth inhibition. Taken together, 

these results highlight uPAR as a potential therapeutic tar-

get for ICC.

Clinical imaging is integral to routine cancer care and ex-

hibits enormous potential to facilitate further advances in 

oncology practice. Despite significant efforts in decoding 

biological underpinnings of radiomics, recent studies have 

so far relied on bulk tissue analysis that obscures the intra-

tumoral spatial heterogeneity, and, to our knowledge, no 

study has yet attempted to encapsulate genomic or molec-

ular characteristics within radiomics at geospatial level. 

Note that the radiotranscriptomic signature is composed 

entirely of arterial-phase wavelet-based features. Reassur-

ingly, these selected radiomics features describe the IRS 

within tumor epithelium, while increased perfusion induced 

by ICC cells contributes to hyper-enhanced regions ob-

served in the arterial phase.27 We have previously reported 

strong connections between arterial-phase enhancement 

patterns and spatial abundance of tumor-infiltrating im-

mune cells.28 Accordingly, the application of targeted image 

filters to isolate spatial patterns from arterial-phase images 

may be better suited to detect spatial heterogeneity of bio-

logical activities for ICC patients. Besides, this study re-

vealed that both handcrafted and deep-learning radiomics 

offered great potential to identify the genomic subtype of 

interest, but a combined approach did not exhibit synergis-

tic effects. Moreover, previous studies have shown the po-

tential value of radiomics-based biomarkers in ICI response 

prediction, yet no study has focused on those predicted 

non-responder. We demonstrated that targeting uPAR 

along with PD-1 may be a promising strategy for non-re-

sponders predicted by our radiotranscriptomic signature. 

Although radiotranscriptomics has all ingredients fitted to 

translational cancer research, it is subject to a unique set 

of challenges in clinical implementation, such as technical 

variability, confounding factors and regulatory permission.12

The limitations of this study include its retrospective na-

ture that leaves it susceptible to potential bias, and the lim-

ited size of training/validation data which can give rise to 
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potential overfitting issues. Further prospective validation 

with larger sample size is warranted to strengthen our find-

ings. Furthermore, CT images obtained from different 

scanners and institutions may limit the quality of radiomics 

data, although we conducted data standardization to mini-

mize the effect of this issue. Additionally, semi-manual tu-

mor delineation is time-consuming and may influence ra-

diomics feature stability, despite our efforts to address this 

issue by selecting stable and reproducible features.

In conclusion, our study serves as a proof-of-principle for 

integrating spatial transcriptome with radiomics to describe 

intra-tumoral TIME heterogeneity and predict treatment re-

sponse in ICC. Integrated analysis of bulk, single-cell and 

spatial transcriptomics identifies a novel region-specific 

IRS that predicts prognosis and immunochemotherapy 

benefit, and can be decoded by non-invasive imaging us-

ing computational and machine learning methods. The final 

radiotranscriptomic signature has been validated in multi-

scale independent datasets that may motivate current pre-

cision oncology practice in treatment decision-making for 

ICC patients.
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