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» We integrated multi-omics analyses to establish a spatial-based radiotranscriptomic signature that distinguished
immune contexture, prognosis and response to immunochemotherapy for ICC. Targeting uPAR, the kernel of sig-
nature, potentiated the efficacy of anti-PD-1 therapy, and may be a promising therapeutic strategy for ICC at pre-
dicted high-risk immunochemotherapy resistance. Radiotranscriptomics enables rapid translation of precision
medicine for ICC.
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Background/Aims: Identifying patients with intrahepatic cholangiocarcinoma (ICC) likely to benefit from
immunochemotherapy, the new front-line treatment, remains challenging. We aimed to unveil a novel
radiotranscriptomic signature that can facilitate treatment response prediction by multi-omics integration and multi-
scale modelling.

Methods: We analyzed bulk, single-cell and spatial transcriptomic data comprising 457 ICC patients to identify an
immune-related score (IRS), followed by decoding its spatial immune context. We mapped radiomics profiles onto
spatial-specific IRS using machine learning to define a novel radiotranscriptomic signature, followed by multi-scale
and multi-cohort validation covering 331 ICC patients. The signature was further explored for the potential therapeutic
target from in vitro to in vivo.

Results: We revealed a novel 3-gene (PLAUR, CD40LG, and FGFR4) IRS whose down-regulation correlated with
better survival and improved sensitivity to immunochemotherapy. We highlighted functional IRS-immune interactions
within tumor epithelium, rather than stromal compartment, irrespective of geospatial locations. Machine learning
pipeline identified the optimal 3-feature radiotranscriptomic signature that was well-validated by immunohistochemical
assays in molecular cohort, exhibited favorable external prognostic validity with C-index over 0.64 in resection
cohort, and predicted treatment response with an area under the curve of up to 0.84 in immunochemotherapy cohort.
We also showed that anti-uPAR/PLAUR alone or in combination with anti-programmed cell death protein 1 therapy
remarkably curbed tumor growth, using in vitro ICC cell lines and in vivo humanized ICC patient-derived xenograft
mouse models.

Conclusions: This proof-of-concept study sheds light on the spatially-resolved radiotranscriptomic signature to
improve patient selection for emerging immunochemotherapy and high-order immunotherapy combinations in ICC.
(Clin Mol Hepatol 2025;31:935-959)
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INTRODUCTION

Intrahepatic cholangiocarcinoma (ICC) represents the
second most common primary liver cancer after hepatocel-
lular carcinoma, with increasing incidence and mortality
worldwide."* Only around 20-30% of patients are eligible
for curative-intent resection with 5-year survival rate of 20—
35%.' For the remaining 70-80% of patients with locally
advanced or metastatic disease, systemic chemotherapy
remains the standard-of-care treatment but has limited
benefit, with median survival duration of <12 months. Al-
though cancer immunotherapies have yielded unprece-
dented results over the last decade, early-phase studies
demonstrated the limited activity of immune-checkpoint in-
hibitor (ICI) monotherapy in patients with advanced-stage
ICC, underscoring the need for novel immune-based treat-
ment strategies.>* Recent evidence from phase Ill clinical
trials and real-world data suggests programmed cell death
protein 1 (PD-1) inhibitor pembrolizumab or programmed
death-ligand 1 (PD-L1) inhibitor durvalumab plus chemo-
therapy as the new front-line standard-of-care treatment for
advanced biliary tract cancer, especially ICC.>® Neverthe-
less, identifying patients who are more likely to benefit from
such combinations remains a key challenge.

Emerging studies have pinpointed the effect of tumor-im-
mune interactions on tumor growth and progression, im-
mune evasion and resistance to chemotherapy, and limited
efficacy of ICl-based combination therapies.” Recent high-
throughput transcriptomic and single-cell RNA sequencing
(RNA-seq) analyses have shed light on ICC immune pro-
files; however, bulk and single-cell approaches fail to pro-
vide spatial context and cellular composition across distinct
regions.>® The emergence of GeoMx™ Digital Spatial Pro-
filing (DSP) platform addresses the above challenges
based on user-defined regions of interest (ROIs)." This
platform allows the delineation of distinct spatial immune
micro-landscapes, which may provide additional prognos-
tic information and opportunities for novel ICI-based com-
bination strategies to improve patient outcome.®" Beyond
ICC genomic aspects, multi-scale imaging is an integral
component of tumor staging and therapeutic response as-
sessment. The distinct biology of the tumor and its interac-
tion with tumor-immune microenvironment (TIME) has
prompted distinct imaging phenotypes that can be mined
to predict clinical outcomes and genomic hallmarks, known

http://www.e-cmh.org

Gu-Wei Ji, et al.
Radiotranscriptomics biomarker for ICC

as radiomics and radiogenomics.”” However, adaptations to
high-dimensional and heterogeneous data need to be ad-
dressed when interrogating either radiomics or genomics
with the intent to develop prediction models and optimize
risk stratification. Fortunately, machine learning that utilizes
sophisticated computational modeling to learn from data
shines in handling such issues in biomedicine.” Here, we
present a multidisciplinary study on multi-scale modelling
by integrated analysis of multi-omics data to define im-
mune-related radiotranscriptomic signatures with machine
learning. We then assess whether such signatures are
complementary to known clinicopathological prognostic
factors and predict response to immunochemotherapy in
ICC.

MATERIALS AND METHODS
Study design and data sources

Overall study design is presented in Fig. 1. We collected
bulk RNA-seq data and patient-level clinical data of ICC
from publicly available datasets with a minimum of 40 tu-
mor samples and follow-up data. A total of 401 patients
(244 from Fudan-ICC," 81 from GSE89749 and 76 from E-
MTAB-6389) were obtained. The immune-related score
(IRS) was constructed on the Fudan-ICC cohort, and vali-
dated in GSE89749 and E-MTAB-6389 cohorts. Single-cell
RNA-seq analysis was performed on 16 human ICC sam-
ples and 6 adjacent normal liver samples from two GEO
datasets (GSE138709 and GSE189903). We profiled 120
samples from 40 patients with 3 bulk regions each, desig-
nated as tumor core (inner one-third portion), intermediate
zone (transition one-third portion from the core to the mar-
gin) and invasive margin (outer one-third portion), using
GeoMx™ DSP technology, to characterize the spatial het-
erogeneity of tumor-immune interactions and map spatial
radiomics onto corresponding genomics. A total of 240 (120
epithelial and 120 stromal) ROIs annotated by a certified
pathologist were profiled from all samples.

Three-level validation that included a total of 331 ICC pa-
tients from multiple high-volume institutions was purpose-
fully designed as follows: (1) Molecular cohort (156 speci-
mens from 52 patients); (2) Resection cohort (243 patients);
(8) Immunochemotherapy cohort (36 patients). Participant

https://doi.org/10.3350/cmh.2024.0895 937



Clinical and Molecular Hepatology
Volume_31 Number_3 July 2025

Tumor samples Bulk RNA-seq data ....
J et | |
E——
ihalan. -
Y iees iE
‘| 10) 7.]% % -%.i; Celltype 1

Celltype 2

Celltype 3 Bioinformatic analysis

LSNE2
e

iy r —>

2 Celltype N Immune-related
i . N
s E E J By I . score
e Single-cell sorting Single-cell RNA-seq data T
g @
Multi-region Spatial RNA-seq data o
sampling

Machine-learning )
pipeline Spatlz_illy-resol_ved
radiogenomic
signature

Spatial '
radiomics Feature extraction

©

100

-

80 Low risk score
5 g 60 High risk score
3 z
() 3 40
% 20
= i 0
- = e — Time
Immune infiltration Protein-level Prognosis Immunochemotherapy
characteristics metrics stratification response prediction
Cell proliferation, migration and invasion Humanized mouse models

‘g a novel combination immunotherapy

S g%b
= . . L Leke;
=38 low-expression high-expression b

= — —
E § N T~ d
[aB overexpression — knockdown

©

5 <

= Q

In vitro experiments In vivo experiments

Figure 1. Schematic representation of the study design. (A) IRS identification. (B) Mapping spatial radiomics onto genomics. (C) Multi-
level validation of the radiotranscriptomic signature. (D) Experimental investigations to determine the potential of a novel therapeutic tar-
get. IRS, immune-related score; RNA-seq, RNA sequencing.
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inclusion and exclusion criteria as well as follow-up and im-
munohistochemistry (IHC) protocols are detailed in Supple-
mentary Methods. Baseline characteristics of multi-scale
validation cohorts are summarized in Supplementary Table 1.
This study was approved by the Institutional Ethics Com-
mittee of the First Affiliated Hospital of Nanjing Medical
University (No. 2024-SRFA-011), and the requirement to
obtain informed written consent was waived.

Discovery and validation of immune-related
score

We evaluated immune infiltration profiles based on sin-
gle-sample gene set enrichment analysis (sSGSEA) to de-
fine the resampling-based method termed consensus clus-
tering for immune cluster discovery. Weighted correlation
network analysis (WGCNA) was then performed to identify
immune-related hub genes. Overlaps between WGCNA-
defined immune-related hub genes and immunologically
relevant genes downloaded from the ImmPort (https://
www.immport.org/shared/home) were included in ranking
the importance of prognosis-related genes based on least
absolute shrinkage and selection operator (LASSO) and
random survival forest (RSF) algorithms, followed by back-
ward stepwise Cox regression analysis to compile the IRS.
We validated the robustness of IRS by multi-cohort bioin-
formatics analysis of bulk and single-cell RNA-seq data.
Details are described in Supplementary Methods.

Targeted spatial RNA profiling

Prepared slides were incubated with immunofluorescent
antibodies for morphology staining: pan-cytokeratin for epi-
thelial cells, CD45 for immune cells, a-SMA for fibroblast
compartments, and Syto13 for nuclei. Stained slides were
loaded onto Nanostring GeoMx human whole-transcrip-
tome atlas (WTA; 18,677 genes) platform and scanned with
a x20 image of up to four-channel fluorescence. ROIls were
targeted to freeform polygon-shaped regions with densest
immune signal within tumor epithelium or stroma. Se-
quencing libraries were generated from photo-released in-
dexing oligos and on lllumina sequencing platform by
Genedenovo Biotechnology Co., Ltd. (Guangzhou, China).
Details are summarized in Supplementary Methods.
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Radiomic feature extraction and filtering

Technical specifications of contrast-enhanced computed
tomography (CT) imaging and tumor segmentation method
are detailed in Supplementary Methods. Tumor sub-re-
gions, which corresponded to tumor core, intermediate
zone and invasive margin in tissue sampling, were auto-
matically segregated based on dedicated in-house soft-
ware with code deposited on the Github website (https:/
github.com/DrZhenggangXu/SpatialRT_ICC). Two main
protocols for high-throughput feature extraction exist: hand-
crafted and deep-learning radiomics (Supplementary Fig. 1).
A total of 851 handcrafted features and 2,048 deep-learn-
ing features were extracted from each three-dimensional
(3D) segmentation; details are provided in Supplementary
Methods. Values of extracted features were standardized
with Z-score transformation in each cohort. Stable and re-
producible radiomic features, defined as features with intra-
class correlation coefficient above 0.90 in both test-retest
and inter-reader settings, were retained. Then, features
that were highly correlated (correlation coefficient above
0.30) with any component of IRS were prioritized for further
study.

Machine learning methods

The machine learning pipeline contained four steps. First,
the study cohort was randomly split into a 70% training/in-
ternal validation set and a 30% external testing set. Sec-
ond, pairwise features with a mutual correlation above 0.8
were removed, retaining the one with higher correlation
with the task. Third, 6 machine learning classifiers (support
vector machine, random forest, logistic regression, regular-
ized logistic regression, AdaBoost and decision tree)
wrapped by recursive feature elimination were employed
for feature filtering and prediction modelling. Each classifier
was optimized over 5-fold cross-validation to fine-tune hy-
per-parameters. Finally, the trained model that exhibited
the best performance in internal validation set was select-
ed. The machine learning pipeline was integrated into an
open-source in-house software shared without access re-
strictions in a public repository (https://github.com/sa-
lan668/FAE).

https://doi.org/10.3350/cmh.2024.0895 939
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Cell function assays and humanized mouse
models

Cell proliferation was measured by CCK-8 and clone for-
mation assays. Cell migration and invasion were analyzed
by transwell and wound healing assays. We established a
patient-derived xenograft (PDX) model in humanized C-NKG
mice (NOD-Prkdc™ll2rg"™"**%", 68 weeks old). Mice were
injected with anti-uPAR monoclonal antibody (mAb) (pre-
pared by Lanzhou Huazhitiancheng Biotechnologies Co.
Ltd.; 10 mg/kg) either alone or in combination with anti-PD-1
mAb (Camrelizumab; 10 mg/kg) intraperitoneally every 5
days, as previously described.”® Experimental protocols and
reagents are detailed in Supplementary Methods and Sup-
plementary Table 2. Animal experiments were performed
according to the guidelines of the Institutional Animal Use
and the Animal Experimentation Ethics Committee of The
First Affiliated Hospital of Nanjing Medical University.

Statistical analysis

Between-group comparisons were analyzed by %, Fish-
er's exact test, Student’s t-test or Mann—Whitney U-test
based on data type and distribution. The Kruskal-Wallis
test was performed to compare more than two groups.
Correlations between two continuous variables were as-
sessed using Pearson correlation coefficients. Area under
the receiver operating characteristic curve (AUC) and its
confidence interval (Cl) were used to determine prediction
performance. The prognostic discrimination was quantified
using C-index. Survival curves were estimated by the Ka-
plan—Meier method and compared with the log-rank test.
Tumor response assessment was performed according to
Response Evaluation Criteria in Solid Tumors (RECIST)
v.1.1. All statistical analyses were performed using R ver-
sion 4.2.3 and associated packages. Statistical signifi-
cance was established at P<0.05.

RESULTS

Discovery and multi-level validation of immune-
related score

We found an optimal 3-cluster solution (C1, C2, and C3)

940 https://doi.org/10.3350/cmh.2024.0895

that demonstrated significant differences in immune infiltra-
tion, with C1 and C3 having a markedly higher immune in-
filtration abundance than C2, in the discovery (Fudan-ICC)
cohort (Fig. 2A). WGCNA identified four key modules (blue,
green, plum2, and skyblue3) that exhibited high correlation
with immune clusters, and then 706 immune-related hub
genes (Fig. 2B, Supplementary Fig. 2A, 2B). With the inter-
section of ImmPort template, a total of 172 overlapping
genes were retained for subsequent analysis. Next, univar-
iate Cox analysis identified 46 prognostic genes that were
subjected to LASSO-Cox and RSF algorithms for feature
ranking, and top 10 candidate genes from both algorithms
were extracted, which identified 5 overlapping genes (Fig. 2C).
We then pruned the multivariate Cox model by backward
stepwise selection, yielding a simple 3-gene IRS: risk
score=(0.44xPLAUR)+(—0.35xCD40LG)+(—0.25xFGFR4).
Notably, urokinase-type plasminogen activator receptor
(uPAR/PLAUR) was the only independent risk factor (Fig. 2D).

IRS indicated favorable prediction of survival with a C-in-
dex of 0.72 (95% CI 0.67-0.77) in the Fudan-ICC cohort.
Multivariate Cox regression demonstrated that IRS (hazard
ratio [HR] 2.31; 95% CI 1.69-3.10; P<0.001) remained a
powerful independent predictor of prognosis after adjusting
for available clinical traits (Supplementary Fig. 3). IRS also
stratified external validation cohorts (GSE89749 and E-
MTAB-6389) with respective C-index of 0.64 (95% CI
0.44-0.79) and 0.65 (95% CI 0.47-0.79). Stratifying pa-
tients by the median value demonstrated that score-high
patients had a significantly poor prognosis across cohorts
(Fig. 2E). We further investigated its association with im-
mune infiltration estimated by CIBERSORT, which demon-
strated positive connection with immunosuppressive barri-
ers (e.g., MO macrophages and neutrophils) but negative
connection with anti-tumor immunity (e.g., naive B cells
and CD8 T cells) (Fig. 2F). IRS was negatively correlated
with ImmuCellAl score that predicts comprehensive T-cell
subsets, and differed significantly between ImmuCellAl-
predicted immunotherapy responders and non-responders
(Supplementary Fig. 4A, 4B). Furthermore, we observed a
significant positive association between IRS and hypoxia
that modulated tumor proliferation (P53 pathway), metabo-
lism (glycolysis), invasion and metastasis (TNF-a signaling
via NF-kB) (Supplementary Fig. 4C). Drug sensitivity analy-
sis highlighted that low-IRS correlated with remarkably in-
creased sensitivity to current preferred chemotherapeutic

http://www.e-cmh.org
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Figure 2. Development and validation of IRS via an integrative procedure. (A) Consensus score matrix of the Fudan-ICC cohort for the
optimal 3-cluster solution with the abundance of 28 infiltrating immune cell subsets. (B) Gene co-expression modules identified by WGC-
NA dendrogram and four key modules that exhibited high correlation with immune clusters. (C) Overlapping genes between WGCNA and
ImmPort. Filtered by RSF and LASSO-Cox algorithms. (D) Forest plot with hazard ratios of retained genes in the multivariate backward
stepwise Cox regression analysis. (E) Kaplan—Meier plots of IRS risk groups in different cohorts. (F) Correlations between IRS and im-
mune infiltration. IRS, immune-related score; LASSO, least absolute shrinkage and selection operator; NS, not significant; RSF, random
survival forest; VIMP, variable importance; WGCNA, weighted correlation network analysis. *P<0.05, **P<0.01, ***P<0.001.

(gemcitabine and oxaliplatin) and molecular-targeted (lenva-  these cells were partitioned into 10 main cell clusters using
tinib and regorafenib) agents (Supplementary Fig. 4D, 4E). known marker genes. We found that IRS was top enriched

Besides, we obtained single-cell transcriptomes for  in monocyte-macrophages, followed by malignant cells;
51,642 cells from GEO database after quality filtering while PLAUR, CD40LG and FGFR4 were top enriched in mono-
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Figure 2. Continued.

cyte-macrophages, T cells and malignant cells, respective-
ly (Fig. 3A). Intercellular communication networks reflected
intensive cellular interactions between malignant cells,
monocyte-macrophages and T cells (Fig. 3B). We high-
lighted the high probability values of numerous immune-
regulatory interactions between malignant cells, monocyte-
macrophages and T cells, such as MDK-NCL, SPP1-

942

https://doi.org/10.3350/cmh.2024.0895

CD44, and LGALS9-CD44/45 (Fig. 3C), which have been
proved to inhibit T cell activation and limit anti-tumor im-
mune responses.’®"® To provide more detailed mechanistic
insights of the 3-gene IRS at single-cell level, we examined
the expression of selected markers in distinct sub-popula-
tions of enriched cell types. We found that malignant cells
that expressed PLAUR were mutually exclusive with

http://www.e-cmh.org
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Figure 2. Continued.

FGFR4 expression, suggesting their different roles in ICC
progression (Fig. 3D). Increased communication probability
of the above-mentioned immunosuppressive ligand-recep-
tor pairs was noted in PLAUR+ cells compared with
FGFR4+ cells (Supplementary Fig. 5). Moreover, CD40LG

http://www.e-cmh.org
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was enriched in memory CD4+ T cells that enhance anti-
tumor immunity while PLAUR was enriched in all mono-
cyte-macrophages clusters, characterized by M2-like phe-
notype and expression of inhibitory molecules (e.g.,
CD163, MS4A4A, and VSIG4) (Fig. 3E, 3F) that have been
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Figure 3. Analysis of IRS using single-cell RNA-seq data. (A) t-SNE plots for cell-type identification and all single cells colored by IRS as
well as constitutive genes. (B) Weighted cell-cell interaction network between the identified cell types. (C) Inferred ligand-receptor inter-
actions between malignant cells, monocyte-macrophages and T cells. (D) t-SNE plots for PLAUR and FGFR4 expressions in distinct ma-
lignant sub-clusters. (E) t-SNE plots for CD40LG expression in distinct T sub-clusters. (F) t-SNE plots for PLAUR expression, M1 and M2
phenotypes as well as violin plots of marker gene expression in distinct monocyte-macrophages sub-clusters. IRS, immune-related
score; RNA-seq, RNA sequencing.
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Figure 3. Continued.
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Figure 3. Continued.

proven to suppress T-cell function.” differed between epithelial and stromal regions (Fig. 4A,

4B). Representatively, FGFR4 was overexpressed in tumor
Machine learning integrates spatial epithelium versus stroma, which was consistent with sin-
transcriptomics with radiomics gle-cell RNA-seq results. We next interrogated associa-

tions between IRS and immune infiltration calculated by

We harnessed DSP to characterize the immune land- ~ CIBERSORT that were almost identical to bulk RNA-seq

scape in distinct niches associated with IRS, which dem- results within tumor epithelium, rather than stromal com-

onstrated that the 3-gene IRS was almost comparable be- partment (Fig. 4C). Thus, epithelium-based DSP data were
tween different intra-tumor regions, but substantially used to create radiotranscriptomic connections.
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Figure 4. Training-validation-testing of spatially-resolved radiotranscriptomic signature using machine learning. (A) DSP of formalin-fixed
paraffin-embedded tissue sections harvested from representative spatially separated regions. (B) Violin plots for the spatial distribution of
IRS and constitutive genes. (C) Correlation analysis between defined IRS and immune infiltration estimated by CIBERSORT in DSP. (D)
Machine learning pipeline with wrapped feature selection based on recursive feature elimination method, selection of the best classifier,
weights of radiomics features and receiver operating characteristic curves for the exported models. (E) Correlation analysis between ra-
diomics, IRS and immune infiltration. AUC, area under the curve; DSP, Digital Spatial Profiling; IRS, immune-related score; ROI, regions
of interest. *P<0.05, **P<0.01, ***P<0.001.
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Figure 4. Continued.

We extracted a total of 5,798 radiomic features from each
spatial sub-region of the whole tumor that corresponded to
each DSP sampling region, on arterial and portal venous
phase scans. Among 3,827 features with high stability and
reproducibility, 288 (154 handcrafted and 134 deep learn-
ing) features that exhibited high correlation with any IRS
component, were subjected to the machine learning pipe-
line. We designed three models defined by feature types
(handcrafted versus deep-learning versus combined) for
the probabilistic classification of IRS (score-low versus
score-high) by using a median split. Although all three
models exhibited good performance, using 3 handcrafted
features with logistic regression algorithm resulted in the
highest accuracy with AUC of 0.95 (95% CI 0.85-1.00) in
the internal validation subset and was exported as the ra-
diotranscriptomic signature (Fig. 4D):

Score=4.19xAP_wavelet-LHL_glcm_MCC
—3.07xAP_wavelet-LLL _firstorder_RootMeanSquared

948

T cells CD4 memory activated

https://doi.org/10.3350/cmh.2024.0895

Correlation
0.4

0.2

-0.2

-0.4

* P<0.05
** P<0.01
*** P<0.001

—2.97xAP_wavelet-LHH_gldm_DependenceEntropy

We confirmed strong correlations between selected ra-
diomic features, spatial-specific gene expressions and im-
mune infiltration in turn (Fig. 4E). Strikingly, the 3-feature
radiotranscriptomic signature revealed the highest positive
correlation with PLAUR expression and macrophage infil-
tration within tumor epithelium.

Multi-level validation of radiotranscriptomic
signature

Initially, we found a significant correlation between IRS
calculated on IHC-based density quantification and the sig-
nature (Spearman’s rho 0.49; P<<0.001) in the molecular
cohort, consistent with the DSP data (Fig. 5A). We then ob-
served that the signature stratified patients into distinct
prognostic subgroups, and predicted overall and recur-
rence-free survival with C-index of 0.67 (95% CI 0.63-0.71)
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Figure 4. Continued.

and 0.64 (95% CI 0.60-0.69), respectively, in the resection
cohort (Fig. 5B). Stepwise multivariate Cox regression
analysis demonstrated that the signature was an indepen-
dent prognostic factor, even when major semantic imaging
features were included (Supplementary Table 3). Addition-
ally, median progression-free and overall survival times
were 6.3 (95% CI 3.4-not applicable) and 16.2 (95% ClI

http://www.e-cmh.org
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10.3-not applicable) months, respectively, after a median
follow-up of 16.2 (interquartile range 6.7-26.1) months for
the immunochemotherapy cohort. The objective response
rate (ORR) was 36.1% (13/36); the disease control rate
(DCR) was 52.8% (19/36). Compared with PD-L1 expres-
sion, the signature exhibited significantly better perfor-
mance metrics (all P<0.05 by DelLong test) in predicting
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Figure 5. Multi-level validation of radiotranscriptomic signature. (A) Associations between computationally derived signature and IRS de-
termined by quantitative analysis of IHC slides. (B) Kaplan—Meier plots showing survival of patients following resection. (C) Comparison
of treatment response proportions stratified by PD-L1 expression and radiotranscriptomic signature by using x° test. (D) Performance of
PD-L1 expression and radiotranscriptomic signature in predicting treatment response. (E) Kaplan—Meier plots stratified by the signature.
(F) Example implementation of the radiogenomics signature. CAPOX, capecitabine and oxaliplatin, GEMOX, gemcitabine and oxaliplatin;
GC, gemcitabine and cisplatin; IHC, immunohistochemistry; IRS, immune-related score; PD-L1, programmed death-ligand 1. *P<0.05,
**P<0.01, ***P<0.001.
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Figure 5. Continued.

objective tumor response and disease control, with respec-
tive AUC of 0.84 (95% CI 0.69-0.99) and 0.81 (95% CI
0.67-0.96) (Fig. 5C-D). We also observed statistically sig-
nificant differences for progression-free survival (HR 6.73;
95% Cl 2.58-17.54; P<0.001) and overall survival (HR
14.35; 95% CI 3.98-51.77; P<0.001) between the predicted
high-risk versus low-risk groups (Fig. 5E). Fig. 5F shows
examples of the signature to predict response to anti-PD-1/
PD-L1 plus chemotherapy.
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uPAR is a potential therapeutic target in ICC

Above, we highlighted uPAR expression, the kernel of
signature, in malignant cells and monocyte-macrophages,
and, therefore, designed preclinical in vitro and in vivo
studies to examine the potential of therapeutic strategies
targeting uPAR. Although high uPAR expression in 3 differ-
ent ICC cell lines was verified, we chose HUCCT1 cells that
exhibited relatively higher expression and were interfered
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Figure 5. Continued.

by short small interfering RNA (siRNA)-mediated knock-
down, and RBE cells that exhibited relatively lower expres-
sion and were interfered by plasmid-mediated over-expres-
sion (OE) (Fig. 6A, Supplementary Fig. 6A). Using CCKS8,
colony formation, transwell and wound healing assays, we
showed that uPAR promoted ICC progression and THP-1
migration. To elucidate its potential mechanisms, we per-
formed RNA-seq of RBE and THP-1 cells before and after
UuPAR OE, followed by KEGG pathway analysis, which re-
vealed that PI3K-Akt signaling pathway was enriched,
also consistent with the results of single-cell data analysis
(Fig. 6B—6D, Supplementary Figs. 6, 7). Furthermore, both
PI3K inhibitor (LY294002) and anti-uPAR mAb could mark-
edly suppress PI3K-Akt signaling pathway and, subsequent-
ly, ICC progression as well as THP-1 migration (Figs. 6E,
6F, 7A). Anti-uPAR mAb strongly induced the production of
THP-1-derived CXCL9 that has been proven to regulate the
recruitment of CD8* T cells.”

Besides, using humanized mice bearing uPAR-positive
PDX, we observed that tumor growth was markedly imped-
ed by anti-uPAR or anti-PD-1 alone compared with place-
bo, and further suppressed by the combination of two
mAbs. Moreover, IHC staining showed that such combina-
tion therapy induced a strong synergistic inhibition of cell

952 https://doi.org/10.3350/cmh.2024.0895
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Male, 60 years old
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Outcomes: Progression at 2.1 mo

Dead at 4.3 mo

proliferation and macrophage infiltration with increased tu-
mor-infiltrating CD8" T cells (Fig. 7B—7F).

DISCUSSION

ICC is a highly heterogeneous disease characterized by
a desmoplastic TIME that is poorly immunogenic, and the
abundance of immunosuppressive cells that facilitate tumor
progression, immune evasion and resistance to chemo-
therapy.” Here, we integrated bulk, single-cell and spatial
transcriptomics to propose an IRS that distinguished im-
mune characteristics, prognosis, and potential benefits
from immunochemotherapy for ICC. Following this discov-
ery, we established and validated a novel signature that
mapped radiomic profiles onto the spatially heterogeneous
IRS using a machine learning-based radiotranscriptomic
approach. Using ICC cell lines and humanized PDX mouse
models, we demonstrated that uPAR, the kernel of signa-
ture, and particularly in combination with PD-1, may be
promising therapeutic targets for patients at predicted high-
risk immunochemotherapy resistance.

Recent molecular profiling studies on bulk tumor samples
have highlighted distinct ICC subtypes with theoretically
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Figure 6. uPAR promotes cell proliferation and migration by activating PI3BK-Akt signaling pathway in vitro. (A) The mRNA and protein ex-
pression levels of uPAR in HIBEC and 3 ICC cell lines were measured by qRT-PCR and Western blotting while the efficiency of uPAR
plasmid in RBE cells was certified by qRT-PCR. (B) CCK8, colony formation, transwell and wound healing assays were performed in
RBE cells transfected with uPAR plasmid. (C) The efficiency of uPAR plasmid or siRNAs in THP-1 cells was certified by gRT-PCR while
transwell assay was performed in THP-1 cells transfected with uPAR siRNAs or plasmid. (D) KEGG pathway analysis of differentially ex-
pressed genes in RBE and THP-1 cells with uPAR OE and control group. (E) Western blotting analysis showed the levels of PI3K, p-
PI3K, AKT and p-AKT in RBE cells before and after PI3K inhibitor (LY294002) or anti-uPAR treatment. (F) CCK8 and Transwell assays
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http://www.e-cmh.org https://doi.org/10.3350/cmh.2024.0895 953



Clinical and Molecular Hepatology
Volume_31 Number_3 July 2025

RBE_KEGG_top10 THP-1_gseKEGG_top10
Pathways of neurodegeneration "
- multiple diseases ® Ribosome ®
Alzheimer disease+ @ Parkinson disease: [ ]
NES
Amyotrophic lateral sclerosis [ ] (:)u;(t) PI3K-Akt signaling pathway [ J | ® 20
" ® 25
" - " Pathways of neurodegeneration
Human papillomavirus infection [ ] : gg Y - multiplg diseases [ ] : g(s)
. 100 Chemical carcinogenesis - .
Endocytosis { ] ® reactive oxygen species L4 @ 40
PI3K-Akt signaling pathway’ ® | p-adjust Thermogenesis ° p.adjust
. ' 0.100 Ribosome biogenesis in
Parkinson disease; @ 0.075 e%karyotes { ] 0.02
0050 Non-alcoholic fatty liver 0.01
Prion disease: @ 0.025 disease . }
Huntington disease| @ CoronaV|rust(|)s\7|%s_<1eé °
Salmonella infection ® IL-17 signaling pathway- @
@ 60 70 80 90 100 20 25 30 35 40
O D Qq/ O
¥ P o © Qv &
PR R
S & $ >
C‘)\' (}- Q/X Q/X \.o % Q/XO.
W W@ oY O W@ oY QO

pPisk [= W ]  p-PIBK
PI3K PISK
p-AKT p-AKT [ W
AKT E AKT [ - - -
GAPDH |eeBeESEBEES|  CAPDH g amema® |

RBE RBE
e

Vector+DMSO  Vector+LY294002  OE+DMSO OE+LY294002 20

c
.9 5200
-oa E 150
; 8 50
N o
°
O,
w
o
o
Vector+DMSO Vector+LY294002 OE+DMSO
= o
=
)
c
©
=
w
)
o
Vector+DMSO Vector+LY294002 OE+DMSO OE+LY294002 - .
% » 80 I 5
% g 60- L
[ S
© g«
'_l = 20-
= o
O & &L &
|<£ fx’“ﬁﬁ J"} ﬁ‘s
®

Figure 6. Continued.
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Figure 7. Continued.

therapeutic vulnerabilities; however, each core subtype clinical translation.®*' Through meticulously designed
bears a spectrum of marker genes, which limits its future ~ methodology, we identified a simple 3-gene IRS compris-
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ing PLAUR, CD40LG and FGFR4, and low-IRS indicated
significantly improved survival and response to PD-1/PD-
L1 inhibitors plus chemotherapy. Note that CD40LG and
FGFR4 act as protective factors in our IRS. CD40LG, a
member of the tumor necrosis factor superfamily, is mainly
expressed on key immune cells, confirming its involvement
in anti-tumor immune response, while our single-cell data
analysis showed that CD40LG expression was enriched in
memory CD4+ T cells, consistent with previous reports.?
Our bulk and spatial RNA-seq data also highlighted the re-
markable positive correlation between CD40LG and acti-
vated-memory CD4 T cells, which can induce cytotoxic T
lymphocyte anti-cancer responses, suggesting that
CD40LG is associated with the response to immunoche-
motherapy in cancer patients, in concordance with recent
studies.?®® Besides, FGFR4, a member of the FGFR fami-
ly, plays a pivotal role in bile acid biosynthesis, glucose
metabolism as well as tumor invasiveness and angiogene-
sis.** Note that both lenvatinib and regorafenib are small-
molecule multi-kinase inhibitors, with more potent activity
against vascular endothelial growth factor receptors and
the FGFR family. The combination of gemcitabine-oxalipla-
tin-lenvatinib-anti-PD-1 therapy may have additive or syn-
ergistic inhibitory effects for patients with advanced ICC,
with a promising ORR of 80% and median overall survival
of 22.5 months, in a recent report.?® Inspired by subtype-
specific therapeutic strategies, we therefore presented a
classifier that enabled identification of ICC patient sub-
group (low-risk), who may be the ideal candidate for immu-
nochemotherapy, even combined with lenvatinib or rego-
rafenib.

On the other hand, PLAUR, also known as uPAR, acts as
the key risk factor in our radiotranscriptomic signature, and
triggers extracellular matrix proteolysis that has been
proved to promote cell migration.?® Our results suggested
that uPAR activated PI3K-Akt signaling pathway to promote
ICC progression and macrophage infiltration, which exerts
immunosuppressive effects in ICC.” A recent study on dif-
fuse-type gastric cancer has demonstrated that therapeutic
strategies targeting uPAR can potentiate anti-PD-1 effica-
cy.® Here we examined the prospects of anti-uPAR alone
or in combination with PD-1 blockade against ICC using
human cancer cell lines and humanized PDX mouse mod-
el, which is considered an optimal in vivo model for immu-
no-oncology research.”® We found that uPAR knockdown
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or blockade significantly suppressed proliferation and mi-
gration of ICC cells in vitro and in vivo. Anti-uPAR therapy
alone significantly reduced tumor burden in humanized
mice bearing uPAR-positive ICC tumors, while anti-uPAR
combined with anti-PD-1 therapy further enhanced the anti-
tumor efficacy, indicating their additive effects on immune
activation and tumor growth inhibition. Taken together,
these results highlight uPAR as a potential therapeutic tar-
get for ICC.

Clinical imaging is integral to routine cancer care and ex-
hibits enormous potential to facilitate further advances in
oncology practice. Despite significant efforts in decoding
biological underpinnings of radiomics, recent studies have
so far relied on bulk tissue analysis that obscures the intra-
tumoral spatial heterogeneity, and, to our knowledge, no
study has yet attempted to encapsulate genomic or molec-
ular characteristics within radiomics at geospatial level.
Note that the radiotranscriptomic signature is composed
entirely of arterial-phase wavelet-based features. Reassur-
ingly, these selected radiomics features describe the IRS
within tumor epithelium, while increased perfusion induced
by ICC cells contributes to hyper-enhanced regions ob-
served in the arterial phase.” We have previously reported
strong connections between arterial-phase enhancement
patterns and spatial abundance of tumor-infiltrating im-
mune cells.”® Accordingly, the application of targeted image
filters to isolate spatial patterns from arterial-phase images
may be better suited to detect spatial heterogeneity of bio-
logical activities for ICC patients. Besides, this study re-
vealed that both handcrafted and deep-learning radiomics
offered great potential to identify the genomic subtype of
interest, but a combined approach did not exhibit synergis-
tic effects. Moreover, previous studies have shown the po-
tential value of radiomics-based biomarkers in ICI response
prediction, yet no study has focused on those predicted
non-responder. We demonstrated that targeting uPAR
along with PD-1 may be a promising strategy for non-re-
sponders predicted by our radiotranscriptomic signature.
Although radiotranscriptomics has all ingredients fitted to
translational cancer research, it is subject to a unique set
of challenges in clinical implementation, such as technical
variability, confounding factors and regulatory permission.”

The limitations of this study include its retrospective na-
ture that leaves it susceptible to potential bias, and the lim-
ited size of training/validation data which can give rise to
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potential overfitting issues. Further prospective validation
with larger sample size is warranted to strengthen our find-
ings. Furthermore, CT images obtained from different
scanners and institutions may limit the quality of radiomics
data, although we conducted data standardization to mini-
mize the effect of this issue. Additionally, semi-manual tu-
mor delineation is time-consuming and may influence ra-
diomics feature stability, despite our efforts to address this
issue by selecting stable and reproducible features.

In conclusion, our study serves as a proof-of-principle for
integrating spatial transcriptome with radiomics to describe
intra-tumoral TIME heterogeneity and predict treatment re-
sponse in ICC. Integrated analysis of bulk, single-cell and
spatial transcriptomics identifies a novel region-specific
IRS that predicts prognosis and immunochemotherapy
benefit, and can be decoded by non-invasive imaging us-
ing computational and machine learning methods. The final
radiotranscriptomic signature has been validated in multi-
scale independent datasets that may motivate current pre-
cision oncology practice in treatment decision-making for
ICC patients.
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