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Abstract We analyse the dynamical behaviour of a simple, widely used model that
integrates epidemiological dynamics with disease control and economic constraint
on the control resources. We consider both the deterministic model and its stochastic
counterpart. Despite its simplicity, the model exhibits mathematically rich dynamics,
including multiple stable fixed points and stable limit cycles arising from global bifur-
cations. We show that the existence of the limit cycles in the deterministic model has
important consequences in modelling the range of potential effects the control can
have. The stochastic effects further interact with the deterministic dynamical structure
by facilitating transitions between different attractors of the system. The interaction is
important for the predictive power of themodel and in using themodel to optimize allo-
cation when resources for control are limited.We conclude that when studying models
with constrained control, special care should be given to the dynamical behaviour of
the system and its interplay with stochastic effects.

Keywords Disease dynamics modelling · Control of epidemics · Bifurcations in
epidemic models

1 Introduction

There is increasing interest in the integration of epidemiological models of con-
trol with economic considerations (Klein et al. 2007; Geoffard and Philipson 1996).
Recently, researchers have focused on models of control with economical constraints
on the control resources and used optimal control theory to provide insights into opti-
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mal resource allocation strategies. These models range from allocation of treatment
resources (Forster and Gilligan 2007; Goldman and Lightwood 2002) to problems
of how to divide resources between treatment and detection efforts (Ndeffo Mbah
and Gilligan 2010). However, in the conventional analysis the exact dynamics of the
epidemiological models with constrained control have not been investigated in detail.
Here by constrained control we refer to control which can be applied to some but not
necessarily all the individuals in a population due to limited resources.

In this paper, we select a simple, but widely used (Rowthorn et al. 2009; Ndeffo
Mbah and Gilligan 2011) epidemic model with constrained control and we examine
its deterministic dynamical behaviour. We show that despite its simplicity, the model
exhibits mathematically rich behaviour including stable limit cycles and their global
bifurcations. The presence of limit cycles in dynamical systems has long been of inter-
est in mathematical biosciences, particularly in ecology (Kaung and Freedman 1988;
Hastings 2001; Toupo and Strogatz 2015) and epidemiology (Hethcote and Levin
1989; Wang and Ruan 2004; Jin et al. 2007). We demonstrate that the presence of
limit cycles has important consequences for modelling the impacts of control. We also
show that in some parts of parameter space the model exhibits counter-intuitive behav-
iour in which lower initial disease prevalence leads to a higher-prevalence endemic
equilibrium. Whenever possible, we provide analytical conditions on the parameters
of the model that give rise to the particular dynamics.

We then examine the sensitivity of the dynamical behaviour when stochasticity is
introduced to the model to allow for inherent variability of the infection and recov-
ery processes. We do this by using the Gillespie construction (Gillespie 1976) to
model every event in the system as an exponential random process with rates given
by the deterministic model. Thus, the stochastic effects we introduce are demographic
in nature. We demonstrate that the existence of the limit cycles in the deterministic
version of the model strongly impacts the behaviour of the stochastic version of the
model. The stochastic fluctuations can cause transitions between different attractors
of the system and in some cases can lead to extinction of the pathogen by perturbing
the system onto a limit cycle which passes close to the line of zero prevalence in the
phase space. Similar transitions between different attractors of the dynamical system
have been previously studied in systems with seasonal forcing (Keeling et al. 2001).

Ourwork also demonstrates that economical constraints on control in epidemiologi-
calmodels can lead to the existence ofweakly stable attractors and complex bifurcation
dynamics. These in turn cause qualitative differences between the behaviour of the
deterministic model and its stochastic counterpart. This interaction between the bifur-
cation dynamics and stochastic effects is important both for the predictive power of
the model and in using the model to optimize resource allocation, since emergence of
the limit cycles in the deterministic model causes rapid changes in the probability of
eradication in the stochastic model. We conclude that when interpreting model pre-
dictions and especially when studying models with constrained control, special care
should be given to the dynamical behaviour of the system and its interplay with the
stochastic effects.
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Fig. 1 The transition structure
of the SIRS compartmental
model. All the rates are per host.
β is the transmission rate and
therefore β I is the rate at which
susceptible hosts get infected. μ
is the rate of recovery and
transition to the recovered class.
ν is the rate at which immunity
is lost and hosts rejoin the
susceptible class. Finally, σ is
both the birth and death rate,
assumed to be equal

2 Model Description

A wide range of models are used for infectious disease dynamics. Of these, many
are formulated as compartmental models (Kermack and McKendrick 1927; May and
Anderson 1991). The compartments represent groups of hosts who share an infection
status, such as being infectious or susceptible. Considering all the hosts within one
compartment as equivalent is a simplifying assumption that the transition rates between
the compartments are constant that is the underlying stochastic process is Markovian.
In this paper, we consider a compartmental SIRS-type model with the model structure
as in Fig. 1.
This describes a situation in which the time for which the hosts stay in the infected
class after infection is exponentially distributed with mean 1/μ. After recovery, the
recovered hosts have temporary immunity and cannot be immediately reinfected. This
immunity lasts for an exponentially distributed time period with mean 1/ν after which
the hosts rejoin the susceptible class. This model structure with temporary immunity is
appropriate for diseases such as Malaria (Aron 1988; Filipe et al. 2007), Tuberculosis
(Castillo-Chavez and Feng 1997) or Syphilis (Grassly et al. 2004).

We assume the population size stays constant on the time scale of the epidemic,
and thus the birth rate and death rate are both equal to σ . Finally, the rate at which a
susceptible host gets infected is β I , which assumes homogeneous mixing of the hosts.
It can be understood as an aggregate of three terms, nC× pI × I where nC is the number
of contacts of an average host per unit time, pI is the probability of infection upon
contact, and I is the proportion of infected individuals that is the probability that the
contact is with an infected individual.We include a brief overview of the mathematical
properties of the SIRS model in the “Appendix A1”. The effects and effectiveness of
control can be introduced in a number of ways. Here we consider a treatment that
can be applied to infected individuals and increases their rate of recovery by a fixed
amount η (Rowthorn et al. 2009; Ndeffo Mbah and Gilligan 2011).
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Tomodel the economical or logistic constraint, we assume that the control resources
are constrained and nomore than a proportion γ of the hosts can be treated at any given
time.Wefirst analyse the deterministic version of themodel,which is an approximation
to the mean of the full stochastic process. The deterministic model is described by a
standard set of differential equations for the proportions of susceptibles (S), infecteds
(I) and removed (R), given by

İ = β I S − (μ + σ)I − ηmin(I, γ ) (1)

Ṙ = μI + ηmin(I, γ ) − (ν + σ)R (2)

S = 1 − I − R. (3)

Here min(I, γ ) refers to the smaller of I and γ . We then proceed to discuss the
implications the dynamics of this model have for the stochastic behaviour. To simulate
the full stochastic process, we use the standard Gillespie algorithm (Gillespie 1976).

3 Model Analysis

In this section, we analyse the deterministic model (1–3) and present the complex
dynamical behaviour generated by the constrained treatment term. We also show how
this impacts on the stochastic dynamics of the system. To analyse the system (1–3),
we calculate the fixed points and construct the bifurcation diagrams. We only consider
the case when the pathogen can invade the population in the first place that is the basic
reproductive number (Heffernan et al. 2005) satisfies R0 = β/(μ + σ) > 1.
For the analysis, it is useful to also define the ’full treatment’ basic reproductive number
RT
0 by

RT
0 = β

μ + η + σ
. (4)

The above system of differential equations can have at most four fixed points. There
is always a fixed point at (I, R) = (0, 0) denoted as A. The point A is unstable when
RT
0 ≥ 1 and is stable otherwise. When A is stable it means that the disease can be

eradicated fully if the prevalence I drops below a certain value. In the region I < γ ,
there can be another fixed point B given by

IB = (ν + σ)
(
1 − 1/RT

0

)

η + ν + μ + σ
(5)

RB = (μ + η)
(
1 − 1/RT

0

)

η + ν + μ + σ
. (6)

This fixed point is stable whenever it exists and it exists whenever RT
0 > 1 and

γ > γc ≡ (ν + σ)
(
1 − 1/RT

0

)

η + μ + ν + σ
. (7)

This condition is simply IB < γ . In the region I > γ , there can be two further fixed
points, C and D (with IC < ID). The expressions for these fixed points are more
complicated and are given in “Appendix A3”. In “Appendix A2”, Lemma 6.1, we also
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Fig. 2 Bifurcation diagrams corresponding to the different values of η. Black lines mean that the fixed
point is stable, red linesmean it is unstable. The numerical values used are; a η = 0.3, b η = 0.65, c η = 1,
d η = 1.5 and e η = 2.3. The values of the remaining parameters are β = 3, μ = 1, ν = 0.2 and σ = 0

show that C is always a saddle point. To investigate the stability properties of D, note
that as γ → 0, D is the endemic equilibrium of the standard SIRS model without
treatment and therefore it must be stable (A1). The behaviour of D as γ increases then
depends on the value of η. There are five important regions on the η axis, I, II, III, IV
resp. V, corresponding to η < η1, η ∈ (η1, η2), η ∈ (η2, η3), η ∈ (η3, η4) resp. η > η4
(Fig. 2). The proof that the Fig. 2 is exhaustive and no other behaviour is possible,

123



Complex Dynamical Behaviour in an Epidemic Model with… 2217

together with the analytical expressions for the critical values ηi can be found in the
“Appendix A2”, Theorem 6.2.

In region I, the bifurcation diagram is simple, with D stable throughout and con-
tinuously transitioning into B at the γ = γc boundary (Fig. 2a). When η increases
into the region II, the fixed point D loses stability at γ = γ ′

c before changing into
B (Fig. 2b). This has implications for the phase portraits, since when D is unstable
there is no stable fixed point in the system. Since the solutions are bounded, it follows
from the Poincaré-Bendixson theorem that there must exist a stable limit cycle. In
fact, D loses stability through a Hopf bifurcation which means there must have been
an unstable limit cycle present in the system just before D became unstable. We con-
clude that for some unknown value or values of γ < γ ′

c , a stable and an unstable limit
cycles appear in the system through global bifurcation(s). In the Fig. 3a, we show an
example of the phase portrait within region II just after the two limit cycles appear
in the system. As η increases (region III, Fig. 2c), the fixed points B and C appear
through a saddle-node bifurcation. D loses stability through the same Hopf bifurcation
as before, and consequently there are limit cycles present. See Fig. 3b for an example
of the phase portrait when all the fixed points are present in the system.

In region IV, γ ′
c > γc and so D loses stability after B appears in the system.

Therefore, for values of γ ∈ (γc, γ
′
c) two stable endemic equilibria exist in the system.

The corresponding bifurcation diagram is given in Fig. 2d. The dynamical behaviour
for values of η in the region IV is complicated and here we give an example of a phase
portrait showing both B and D stable (Fig. 3c). Note that the stable limit cycle in this
case is large and comes close to the I = 0 axis. This has implications for the stochastic
behaviour of the system, which are discussed in the next section, since there can be a
significant probability of stochastic pathogen extinction on the limit cycle due to the
very low minimal prevalence. This can happen even if the system initially starts at D,
since stochastic fluctuations can perturb it outside of the unstable limit cycle.

Finally, region V corresponds to values of η such that the fixed point A becomes
stable, that is the eradication of the pathogen becomes possible. This is equivalent to
RT
0 ≤ 1 and therefore η4 = β − μ − σ . The bifurcation diagram is given in Fig. 2e

and a phase portrait showing both stable D and the stable disease-free equilibrium A
coexisting in Fig. 3d. Note that when two stable fixed points coexist in the system,
the model predicts a counter-intuitive dependence of the endemic equilibrium on the
initial conditions (Fig. 3d). Starting the system at X does not achieve eradication of the
pathogen, while starting it at Y does, even though at Y the prevalence is higher and the
population resistance (R) is lower. The system also exhibits catastrophic behaviour.
When γ is increased just above γ ′

c , the threshold for destabilizingD, the system under-
goes a rapid transition to the disease-free equilibrium A. This has obvious implications
for optimal resource allocation.

3.1 Stochastic Effects

The dynamical behaviour discussed in the previous section has profound consequences
for the behaviour of the stochastic model. When the unstable limit cycle exists around
the stable fixed point D, stochastic fluctuations can perturb the solution from D over
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Fig. 3 a The two limit cycles after they emerge through a global bifurcation around the stable fixed point
D in region II.Green corresponds to stable, red to unstable. Parameter values are η = 0.65, γ = 0.04. bAll
four fixed points coexisting with a stable limit cycle. The detail shows the basin of attraction of B whose
boundary is the stable manifold of the saddle point C. Note that the basin of attraction (grey) is very small
and thus solutions are likely to end up on the large limit cycle. The parameter values are η = 1, γ = 0.0315.
c The fixed points B and D are both stable. The behaviour is similar to that in (b) since the stable D together
with the unstable limit cycle around it act globally as an unstable fixed point. The parameter values are
η = 1.3, γ = 0.02. d Coexistence of two stable fixed points without a limit cycle. Note that the trajectory
starting at Y leads to the disease-free state, while that starting at X does not, even though IY > IX and
RY < RX . Thus, higher initial prevalence can lead to lower long-term prevalence or even eradication. The
parameter values are η = 2.1, γ = 0.01. In all the simulations, β = 3, μ = 1, ν = 0.2 and σ = 0

the limit cycle. The system then transitions to another stable state; either a stable limit
cycle or another stable fixed point. Furthermore, in regions III and IV, the stable limit
cycles have large amplitude and come close to the I = 0 axis. This means that once
on the stable limit cycle, the pathogen might go extinct (Fig. 4a). The trajectories start
at the fixed point D and fluctuate around it. Eventually, they cross the unstable limit
cycle and fall onto the stable limit cycle, which leads to large amplitude oscillations.
Eventually, the trajectories lead to extinction as can be seen from the downward slope
of the average (red curve). This is in stark contrast to the deterministic model (green
curve). It shows that when even a simple economic constraint is added, the determinis-
tic model becomes inadequate by failing to capture the risk of extinction which can be
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Fig. 4 Stochastic realizations of themodel in three different scenarios. The green curve shows the predicted
deterministic behaviour, the red curve is the average of the stochastic realizations, and the blue curve shows
one of the stochastic realizations. a The scenario from Fig. 3c. When the model is started at the stable
fixed point D, the presence of the unstable limit cycle means that the stochastic fluctuations can perturb
it outside and onto the large stable limit cycle. Once there, the pathogen is likely to go extinct due to the
low minimum prevalence on the cycle. b The scenario from Fig. 3d. The trajectories fluctuate around D,
but rarely go extinct, as demonstrated by the small downward slope of the red curve. c The same as b only
with γ increased from 0.01 to 0.011. The emergence of the limit cycle is enough to significantly increase
the probability of extinction. In all the simulations, β = 3, μ = 1, ν = 0.2, σ = 0 and N = 5000
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appreciable not only when the disease prevalence is low but also in the endemic equi-
librium where the disease prevalence is appreciable and where the risk of extinction
would consequently be vanishing in the absence of the economic constraint.

Figure 4b, c illustrates how this impacts control. In both the system starts in the
stable fixed point D. In Fig. 4b, the eradication probability is low as demonstrated by
the very small downward slope of the average (red curve). The effect of increasing the
resources for control, γ , by a small amount (0.1% of the total population) is illustrated
in Fig. 4c. A global bifurcation gives rise to an unstable limit cycle around the fixed
point D and consequently its basin of attraction shrinks. This significantly increases
the probability of extinction, as can be seen from the steep drop in the average. This
potential benefit of slightly increasing the control resources γ would be completely
hidden in the deterministic model. Thus, when deciding on the optimal value of γ

under other external constraints, such as cost of the control, it is necessary to consider
the stochastic model. Relying on the deterministic model alone can lead to a gross
underestimation of the effects of the control.

4 Discussion

In this paper, we studied the dynamics of a simple SIRS model with treatment that
increases the recovery rate of treated individuals. We considered an economic con-
straint on the control resources such that only a certain proportion γ of the population
can be treated at any given time. This can correspond to a limited amount of drug, insuf-
ficient infrastructure for administering the treatment or lack of specialized personnel.
This model structure has been considered before in the SIRS setting. NdeffoMbah and
Gilligan (2011) were primarily concerned with optimal allocation of drugs across two
subpopulations, following earlywork byRowthorn et al. (2009)who considered an SIS
model. Others have previously considered optimal allocation of constrained resources
in a single population (Forster and Gilligan 2007; Goldman and Lightwood 2002;
Sethi and Staats 1978). Conventional analysis centres around continuously adjusting
the amount of resources available to optimize the overall cost, using optimal control
theory (Seierstad and Sydsaeter 1986). However, the detailed dynamics of the SIRS
model with constrained control resources have not been investigated before. Since
optimal control theory becomes mathematically intractably complex as more sub-
populations are considered, such understanding of the dynamics of the system with
constrained control is likely to be necessary for studying the more realistic problem
of allocating resources between n interconnected populations. At the same time, the
nonlinear dynamics of the constrained control system turn out to be interesting in their
own right in the insight they provide on the effect of control on the inherent dynamics
of the epidemic system, even without allowing for stochasticity.

We show that the system can have more than one endemic equilibrium and that the
final equilibrium state which the solutions reach depends non-trivially on the initial
conditions. In particular, it is possible for solutions with initially fewer infected hosts
to end up in a higher-prevalence equilibrium.

The system also exhibits global bifurcations, as the critical parameter γ (control
resources) is changed, which gives rise to one or two limit cycles. The existence of
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the cycles has profound implications for the behaviour of the stochastic counterpart
of the deterministic model. Normally, stochastic solutions initiated at a stable fixed
point fluctuate around it [on time-scales shorter than exponential in N , the number
of individuals (Allen and Burgin 2000)]. However, when there is an unstable limit
cycle surrounding the fixed point, the stochastic fluctuations can perturb the solutions
across the cycle. The solutions then tend to a different stable attractor. This facilitates
transitions between stable attractors which would be much less likely in a stochas-
tic system without the unstable limit cycle and would not be possible at all in the
deterministic system. This is of particular importance when one of the attractors in
question is the disease-free equilibrium because the combined effect of the stochastic
fluctuations and the deterministic dynamics might then facilitate disease eradication.
This is a benefit of the control deployment which would not be revealed if the detailed
dynamics were not considered. Furthermore, the stable limit cycle often comes very
close to the I = 0 axis and thus may facilitate stochastic extinction of the pathogen
even if the disease-free equilibrium of the deterministic system is not stable.

We conclude that when an external constraint on the control resources is imposed,
stochastic effects togetherwith the detailed dynamics of the systemmust be considered
in order to understand the range of potential effects the control may have. Neglecting
this may lead to underestimation of the positive impact of the control and therefore to
wasting resources by overallocation or by incorrectly deciding not to apply control at
all. Note that most of the non-trivial dynamical behaviour is occurring close to γ = γc,
which for the parameter values considered in this paper corresponds to the ability of
treating between 1 and 8 % of the population simultaneously at any given time. These
values are low but plausible in situations where the proportion of individuals that can
be treated is limited by the shortage of infrastructure or personnel to administer the
control. Furthermore, when designing an optimal control coverage (optimal value of
γ ), selecting γ high above the critical threshold γc leads to the number of the infected
individuals in the endemic state being much smaller than the number that can be
treated, that is, resources will be wasted. This means that the optimal value of γ is
expected to be close to γc and thus in the region where the non-trivial dynamics are
important.

There are several directions in which this work could be taken forward. First is
an extension of the rigorous analysis to investigate whether the complex dynamics
and the qualitative differences between the deterministic and stochastic behaviour are
present when the effects of control are modelled differently or when disease-induced
death occurs. As an example of the former, the control can be modelled to reduce the
infectiousness of the controlled individuals via hospitalization or quarantine. Further
to this, in models where qualitative differences occur between deterministic and sto-
chastic versions, the parameter space could be scanned in its entirety to get a measure
of how often the divergence is sufficiently large to be significant in considering the
effectiveness of control programmes. Second is to consider the practical applications
of the understanding developed in this work in the context of the problem of how to
optimally allocate limited resources within a network of n interconnected populations.
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Appendix

Dynamics of the Standard SIRS Model

A full description of the dynamical behaviour of the SIRS model can be found in most
standard textbooks, for example Keeling and Rohani (2008) or May and Anderson
(1991). Here we list the most important properties for convenience. The SIRS model
at its most basic is described by the equations:

Ṡ = σ + νR − σ S − β I S (8)

İ = β I S − (μ + σ)I (9)

Ṙ = μI − (ν + σ)R. (10)

Here S, I and R and the proportions of the susceptible, infectious and recovered
individuals, respectively. β is the transmission rate of the infection, σ is the birth rate
and the death rate, which are assumed to be equal, μ is the recovery rate and ν is the
rate with which recovered individuals lose immunity and rejoin the susceptible class.

The system has one or two equilibria. One is the disease-free equilibrium I � = 0,
R� = 0 and S� = 1. The other, whenever it exists, is an endemic equilibrium given
by:

S� = 1

R0
(11)

I � = ν + σ

ν + σ + μ

(
1 − 1

R0

)
(12)

R� = μ

ν + σ + μ

(
1 − 1

R0

)
, (13)

where we have defined the so-called basic reproductive number R0 = β/(μ + σ).
The basic reproductive number measures on average how many new infections an
infectious individual will cause before recovering. When R0 ≤ 1, an epidemic is
impossible, the disease-free equilibrium is stable and the endemic equilibrium does
not exist. When R0 > 1, the disease-free equilibrium is unstable and the endemic
equilibrium is a stable global attractor.

Proofs of the Key Results

Lemma 4.1 C is a saddle whenever it exists.
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Proof First, it is straightforward to find the expressions for the fixed points C and D.
They are given by

IC = χ − √
χ2 − P

2β(μ + ν + σ)
(14)

ID = χ + √
χ2 − P

2β(μ + ν + σ)
(15)

RC,D = μIC,D + γ η

ν + σ
(16)

where

χ = β(−γ η + ν + σ) − (μ + σ)(ν + σ) (17)

P = 4βγ η(ν + σ)(μ + ν + σ) > 0. (18)

When I > γ , the Jacobian of the system is

J (I, R) =
(

β(1 − R − 2I ) − (μ + σ) −β I
μ −(ν + σ)

)
. (19)

From this, we can calculate the determinant evaluated at the point (IC , RC ). It is given
by

det JC = −(β(1 − RC − 2IC ) − (μ + σ))(ν + σ) + βμIC (20)

= (μ + σ)(ν + σ) − β

(
ν + σ − γ η − 1

β
(χ −

√
χ2 − P)

)
(21)

= −
√

χ2 − P < 0 (22)

�	
Theorem 4.2 The bifurcation diagrams in Fig. 2 cover all the possible behaviour of
the fixed points.

Proof We have discussed stability of A and B in the main text and in lemma 6.1 we
proved that C is always a saddle. To prove this theorem, we first consider what happens
to D as γ increases. ID must be a decreasing function of γ . What is its value when
γ = γc? Inserting the expression for γc into the formula for ID gives that

ID(γc) =
{
IB if η ≤ η2

η(ν+σ)
β(ν+μ+σ)

> IB if η > η2.
(23)

where
η2 = −(μ + ν + σ) + √

(μ + ν + σ)(β + ν). (24)
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Note this is the η2 that separates regions II and III on the η axis, in Fig. 2. This is
the value of η at which the transition from D to B at γ = γc becomes discontinuous.
The argument presented here constitutes a derivation of its value. Now, at γ = 0, D is
stable. As γ increases, TrJD > 0 is equivalent to γ ∈ (γ ′

c, γ0) where γ ′
c and γ0 are the

roots of the corresponding quadratic equation. So D can change its stability properties
at most twice. For the purposes of the analysis here, only γ ′

c will be needed. It is given
by

γ ′
c = 1

2βη

(
μ2 + 3μ(ν + σ) + 2(ν + σ)(β + 2ν + σ) − (μ + 2ν + 2σ)

√
(μ + ν + σ)2 + 4(ν + σ)(β + ν)

)
. (25)

Now we need to check when D loses stability and whether it happens for γ < γc.
Solving the quadratic inequality γ ′

c > γc, which, when satisfied, means that at γc, D
is still stable, gives η /∈ (η1, η3) where η1 and η3 are the roots of the corresponding
quadratic equation, given by

η1 = 1

2

(
−μ − ν − σ +

√
(μ + ν + σ)2 + 4(ν + σ)(β + ν)

)
(26)

η3 = 1

2(ν + σ)

(
− (μ + ν + σ)(μ + 3ν + 3σ)

+
√

(μ + ν + σ)2 + 4(ν + σ)(β + ν)

)
. (27)

These are the critical values separating the regions I and II resp. III and IV on the η

axis, in the Fig. 2. This means that for η < η1, D stays stable until it continuously
transitions into B (see Fig. 2a). Now we are ready to consider the other cases in turn:

• The case η ∈ (η1, η2). In this case, C cannot exist because D transitions into B
continuously. We will show that it is impossible for D to lose stability and then
become stable again before γ reaches γc. To do this we consider the sign of TrJD
at γ = γc, when ID(γc) = IB . This is equal to

TrJD = η2 − (β + ν)(ν + σ) + η(μ + ν + σ)

η + μ + ν + σ
(28)

Setting TrJD < 0 then gives a quadratic inequality which is satisfied if and only
if η < η1. Therefore, when η ∈ (η1, η2) the only possible behaviour is such that
D loses stability for some γ < γc and then continuously transitions into B. This
justifies Fig. 2b.

• The case η ∈ (η2, η4). We already know that in this case, ID > IB at γ = γc.
Now we will show that this means C always appears at γ = γc. For C to exist, we
must have IC > γ . This is once again a quadratic inequality and holds whenever
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γ ∈ (γc, γb) where the root γb is given by

γb = (β − μ − σ)(ν + σ)

β(η + 2(μ + ν + σ))
. (29)

When does this interval exist? Setting γb > γc and solving for η reveal that the
interval does exist when η > η2. This proves that for η > η2, C appears at γ = γc.
As γ increases further, there are two ways C can cease to exist. Either γ reaches γb
or C and D collide, which happens when χ2 = P . Solving this quadratic equation
for γ reveals that this first happens at γa given by

γa = ν + σ

βη

(
β + μ + 2ν + σ − 2

√
(μ + ν + σ)(β + ν)

)
. (30)

We will now show that γb > γa which means that C and D always collide and
annihilate. We want to show that

ν + σ

βη

(
β + μ + 2ν + σ − 2

√
(μ + ν + σ)(β + ν)

)
<

(β − μ − σ)(ν + σ)

β(η + 2(μ + ν + σ))
.

(31)
After solving for η, this simplifies to η > (ν + μ + σ)(β + ν − η2)/η2. We have
divided by η2 because it is always positive, as can be quickly checked using the
assumption β > μ + σ . Simple algebra reveals that in fact (ν + μ + σ)(β +
ν − η2)/η2 = η2 and therefore the above inequality reduces to η > η2 which
is trivially satisfied by assumption. To finish the justification of the bifurcation
diagrams in Fig. 2c, d, we need to check that when C and D collide, D is always
unstable. To do this we need to show that γ ′

c < γa and a proof of this is the subject
of Lemma 6.3.

• The final case, η > η4. This region corresponds to RT
0 ≥ 1 and therefore η4 =

β−μ−σ . Since the disease can be eradicated, the point A is stable. The behaviour
of D andC does not change compared to the case η ∈ (η2, η4). Theywill be present
as long as γa > 0 and for β > μ + σ this is always the case.

�	
Lemma 4.3 γ ′

c < γa.

Proof Consider the quantity D = 2βη(γ ′
c −γa). Define new variables x = β + ν and

y = σ + ν and without loss of generality, set μ = 1 (this is just a rescaling of time).
Then we can write

D(x, y) = 2y
√
x(1 + y) + 1 + y − (1 + 2y)

√
1 + 2y + y(4x + y), (32)

where x > 1 and y > 0. We will show that D is always negative. After squaring
D < 0 reads

4y2x(1+ y)+(1+ y)2+4(1+ y)y
√
x(1 + y) < (1+2y)2(1+2y+ y2+4xy). (33)
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Separating the square root and squaring again gives

x(1 + y)3 < [(1 + y)3 + x(1 + 3y + 3y2)]2 (34)

and rearranging the terms leads to

x2(1 + 3y + 3y2)2 + (1 + y)3(1 + 6y + 6y2)x + (1 + y)6 > 0, (35)

which is evidently satisfied. This finishes the proof. �	
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