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Simple Summary: The current study is the first complete characterization of the phenotypic,
metabolic, calorimetric, and homeostatic effects of VPAC1R in a null murine model. To evalu-
ate the role of VPAC1R on body phenotype, feeding behavior, glucose/energy homeostasis, metabolic
rate and plasma hormones, a long-term study was conducted in VPAC1R−/− and WT mice. The
outcome data document that VPAC1R−/− mice have altered metabolism and insulin intolerance,
with significant increase of feeding bouts, reduction of total energy expenditure and respiratory gases
during both the dark and light cycle, together with elevated fasting levels of GLP-1 and PYY, and
higher postprandial levels of GLP-1, glucagon leptin and PYY. These findings suggests that VPAC1R
controls glucose homeostasis and energy balance by regulating plasma metabolic hormones.

Abstract: Vasoactive Intestinal Peptide binds with high affinity to VPAC1R and VPAC2R, thus
regulating key physiologic functions. Previously, we documented in VIP−/− mice a leaner body
phenotype and altered metabolic hormones. Past reports described in VPAC2−/− mice impaired
circadian rhythm, reduced food intake, and altered metabolism. To better define the effects of
VPAC1R on body phenotype, energy/glucose homeostasis, and metabolism, we conducted a 12-week
study in a VPAC1R null model. Our results reveal that VPAC1−/− mice experienced significant
metabolic alterations during the dark cycle with greater numbers of feeding bouts (p = 0.009), lower
Total Energy Expenditure (p = 0.025), VO2 (p = 0.029), and VCO2 (p = 0.016); as well as during the
light cycle with lower Total Energy Expenditure (p = 0.04), VO2 (p = 0.044), and VCO2 (p = 0.029).
Furthermore, VPAC1−/− mice had significantly higher levels of GLP-1 and PYY during fasting,
and higher levels of GLP-1, glucagon leptin and PYY during postprandial conditions. In addition,
VPAC1−/− mice had lower levels of glucose at 60′ and 120′, as assessed by insulin tolerance test.
In conclusion, this study supports a key role for VPAC1R in the regulation of body glucose/energy
homeostasis and metabolism.
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1. Introduction

Gastrointestinal neuropeptides are known to regulate important physiological func-
tions such as appetite/satiety, feeding behavior, digestion, nutrient absorption, energy
expenditure, water balance, glucose homeostasis, and immunomodulation [1–5]. These
neuropeptides, localized both centrally and peripherally, bind to receptors distributed
throughout the central nervous system, peripheral nerves and tissues, as in the gastroin-
testinal (GI) tract. Among these neuropeptides, Vasoactive Intestinal Peptide (VIP) has
been widely studied and found to be implicated in the regulation of gastrointestinal physi-
ology and homeostatic functions including vasodilation, microbiota, sphincter relaxation,
mucosal ion transport, motility and secretion, appetite, feeding behavior, inflammatory
reactions, and immunity [6–15].

We have previously demonstrated the regulatory functions of endogenous VIP on ap-
petite, body phenotype, and metabolism in VIP−/− mice [16]. Our long-term study showed
that VIP−/− mice, compared to their WT littermates, had leaner body phenotypes with a
deficit of fat mass accumulation as they aged, and a better maintained body lean mass along
with altered plasma levels of adiponectin, GLP-1, leptin, PYY and insulin [16]. Overall, our
study showed that endogenous VIP is a key regulator of appetite, feeding behavior, body
phenotype, and plasma metabolic hormone levels, thus supporting a potential role for the
VIP pathways in the development of obesity and metabolic syndrome [16]. However, the
major limitation of this study was that inability to evaluate VPAC1R mediated effects due
to the potential binding of PACAP, a closely related peptide which has affinity for VPAC1R.
To overcome this issue, here, we utilized a VPAC1R null model.

VIP binds to two different class B G-protein coupled receptors (GPCRs), VPAC1 and
VPAC2 [17,18], each structurally defined by having seven transmembrane helices and
signaling via a Gas/cAMP pathway [19,20]. The “classical” VIP receptor, VPAC1R, is
widely distributed throughout the GI tract and associated organs, including stomach, liver,
and pancreas [21–25]. In the small intestine and colon lumen/endothelium, VPAC1R has
mRNA expression levels which are almost 300 times higher than VPAC2R [21–23,26]. In the
human small intestine and colonic epithelium, VPAC1R was demonstrated to have a 4-fold
greater expression than VPAC2R [22]. Furthermore, VPAC1R were shown to be involved
in intestinal secretion and longitudinal muscle contraction in the jejunum [27]. The recent
development of a genetically engineered VPAC1−/− mouse model has allowed for better
analysis of the pathways and physiological processes which are mediated by VPAC1R [28].

In order to achieve our aim to clarify the role of VPAC1R in the regulation of ap-
petite/satiety, feeding behavior, body phenotype, metabolism and energy homeostasis,
we have conducted a long-term metabolic study of VPAC1−/− mice using an Echo-MRI
body analyzer, a Promethion metabolic system, and glucose and metabolic hormone assays.
Our results show that genetic lack of VPAC1R induced significant alterations in respiratory
gases, total energy expenditure (TEE), plasma metabolic hormone levels, and glucose
homeostasis, but it did not significantly affect body weight and mass composition, food
intake, physical activity and the metabolic RQ index in mice. These findings support a
key role for VPAC1R in the regulation of body glucose, energy homeostasis and plasma
metabolic hormone levels.

2. Materials and Methods
2.1. Animals and Diets

VPAC1R null (VPAC1R−/−) mice, backcrossed > 12 generations to C57BL/6J mice,
were obtained from Dr. D’Odorisio [28]. Age-matched wild-type (WT) littermates from
the same colony were group-housed and fed ad libitum in a specific pathogen-free, sterile
animal facility, under conditions of controlled illumination (12:12-h light–dark cycle; lights
from 06:00 to 18:00 h) at the United States Department of Veteran Affairs Greater Los
Angeles Healthcare System animal facility. The animal protocol of this experimental study
(#06010-17) was approved by the Institutional Animal Care and Use Committee (IACUC)
of the VA Greater Los Angeles Healthcare System.
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2.2. Experimental Design

VPAC1−/− male mice (8 weeks of age) and their age- and sex-matched WT litter-
mates were divided into two experimental groups (n = 8/group). Body weight and mass
composition were monitored for 12 weeks. After this period, mice were transferred and
single-housed in Promethion metabolic cages, allowed to acclimate for a 5-day period, and
then their indirect calorimetric parameters were recorded and analyzed. Plasma samples
were obtained from each experimental mouse in fasting and post-prandial conditions to
assess the levels of a panel of metabolic hormones. Glucose tolerance test and insulin
tolerance test were conducted in each studied mouse, as previously published [16,29].

2.3. Body Phenotype Analysis

VPAC1−/− (n = 8) and WT mice (n = 8) were group-housed (4 animals per cage) and
given free access to water and standard rodent diet (Prolab RMH 2500; LabDiet, St. Louis,
MO, USA). Murine body weight and mass composition were measured at baseline and then
bi-weekly by using an Echo-MRI 4 in 1 whole body composition analyzer (EchoMedical
Systems, Houston, TX, USA). Body weight, fat, and lean mass changes were calculated in
terms of percentage of change from the baseline measurement at the beginning of the study.

2.4. Determination of Food Intake Behavior

Analyses of food and water intake were performed using an automated Promethion
Metabolic system (Sable Systems, Las Vegas, NV, USA), allowing for continuous, undis-
turbed, real-time monitoring of the food hopper and water bottle [30–32], as previously
published [16,29]. Mice were single-housed, and after a five-day acclimation period, com-
plete food/water consumption, feeding and drinking behavior were characterized for a
24-h period. Cumulative food/water intake, bout/meal frequency, total time spent eating
and drinking (time in minutes or percentages), bout/meal size, duration, and eating rate
were measured. “Mean food intake” is defined as the total food intake measured during a
period divided by the number of bouts and the number of minutes that each animal spent
eating. Food intake was measured undisturbed in real time through a weight sensor with a
3 mg resolution, which was attached to a food hopper. Total water intake was calculated as
total grams of water consumed during either the dark or light phase. Bouts are defined as
the number of times that each mouse drank water or consumed food. Mean water intake
was calculated as total water intake measured during a period divided by the number of
bouts and minutes that each animal spent drinking.

2.5. Assessment of Indirect Calorimetry Using the Promethion Metabolic System

Indirect calorimetry data were recorded in each experimental animal by using a
Promethion Metabolic Cage System (Sable Systems, Las Vegas, NV, USA) [5,16,29]. Mice
were single-housed and acclimated for five days in Promethion metabolic cages. Then,
respiratory gases and water vapor were measured with an integrated fuel cell oxygen
analyzer, spectrophotometric CO2 analyzer, and a capacitive water vapor partial pressure
analyzer [30]. Respiratory quotient (RQ) was calculated as the ratio of CO2 production over
O2 consumption. Energy expenditure was calculated using the Weir equation: kcal/h = 60
× (0.003941 × VO2 + 0.001106 × VCO2) [31]. These parameters were measured over a 48-h
period in all experimental animals.

2.6. Plasma Samples and Measurement of Metabolic Hormone Levels

Following the EchoMRI body composition analysis and Promethion metabolic cage
study, blood samples were obtained from VPAC1−/− (n = 8) and WT (n = 8) mice by retroor-
bital collection using a 75 uL heparinized tube (Fisherbrand, Fisher Scientific) and an EDTA
microcollection tube (Microtainer, Becton Dickenson) from live mice, anesthetized with
inhaled isoflurane after overnight fasting (18:00–06:00 h) and in postprandial conditions,
consisting of overnight fasting (18:00–06:00 h) followed by re-feeding period (06:00–10:00 h),
with blood being collected 1 h after feeding.
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Plasma samples, obtained from the whole blood collection, were added with a cocktail
of protease inhibitors, including inhibitor cocktail tablets with EDTA (Roche, Indianapo-
lis, IN), aprotinin (Pittsburgh, PA, USA), and dipeptidyl peptidase IV (DPP-IV) inhibitor
(Millipore, Billerica, MA, USA), and stored frozen at −80 ◦C until the assay was per-
formed. Plasma levels of a panel of metabolic hormones including active ghrelin, GLP-1,
glucagon, insulin, leptin, and peptide YY (PYY) were assessed, using a Milliplex MAP
Mouse Metabolic Hormone Magnetic Bead Panel (Millipore, Billerica, MA, USA) according
to the manufacturer’s instructions, as previously published [5,16,29]. Analysis of quality
control standards provided in the kit matched expectations, and the assay had an inter-assay
precision of <25% and an intra-assay precision of <7%.

2.7. Insulin Tolerance and Glucose Tolerance Test

Glucose tolerance test: mice were fasted overnight (18:00–09:00 h), then dextrose
(Sigma) was injected intraperitoneally (2 U/kg), and glucose levels in the tail vein blood
were measured at 0, 15, 30, 60, and 120 min by using a OneTouch ultra-meter, as previously
published [5,16,29].

Insulin tolerance test: mice were fasted overnight (18:00–09:00 h), then insulin (Sigma)
was injected intraperitoneally (0.75 U/kg), and glucose levels in the tail vein blood were
measured at 0, 15, 30, 60, and 120 min by using a OneTouch ultra-meter, as previously
published [5,16,29]. Fasting blood glucose measurements were also performed using the
same system.

2.8. Data Analysis and Trial Exclusion

A two-way analysis of variance (ANOVA) with a Sidak’s multiple comparisons post
hoc test was used to evaluate the statistical significance of RQ, VO2, VCO2, and TEE between
the two experimental treatment groups. Factors included in the two-way ANOVA were:
genetic strain (VPAC1−/−, WT), categorical time (X-Minute Intervals), and an interaction
term (food intake by time). The area under the curve (AUC) for RQ, VO2, VCO2, and
TEE values were calculated, and a t-test was used to determine the statistical significance
between the two treatment groups. Food and water consumption were analyzed by
multiple t-test. Metabolic hormone levels were analyzed using a two-way ANOVA with a
Sidak’s multiple comparisons post hoc test. Glucose tolerance and insulin tolerance curve
values were statistically analyzed using an unpaired t-test. Graphs were constructed and
standard error of the mean values plotted using GraphPad Prism 6/7 Software (La Jolla,
CA, USA).

3. Results

3.1. Body Phenotype Long-Term Study in VPAC1−/− Mice

In VPAC1−/− mice (n = 8) and WT mice (n = 8), fed a standard diet ad libitum for
12 weeks, an analysis of body phenotype was conducted weekly throughout the study
period. The results showed no significant differences between the two groups, even though
at the beginning of the study, VPAC1−/− mice had lower, but not significant, body weight
values compared to WT littermates fed with the same diet (26.3 ± 1.5 vs. 29.7 ± 1.4 g)
(Figure 1A). Body fat and lean mass analysis, measured as percentage of change from the
first measurement obtained at 8 weeks of age, confirmed that VPAC1−/− mice had no
significant differences in body fat mass (Figure 1B) and lean mass compared to WT mice
(Figure 1C). The values were measured by Echo-MRI at two-week intervals throughout the
study period.
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Figure 1. A 12-week analysis of body weight (g) (A), fat mass % (B), and lean mass % (C) was
conducted in VPAC1−/− (closed triangle) and WT mice (open square). Unpaired t-test was used for
the data analysis; Values are means ± SEMs.

3.2. Feeding Behavior and Food Intake in VPAC1−/− Mice

At the end of the 12-week study period, feeding behavior and food intake were
assessed in each VPAC1−/− and WT experimental animal using a Promethion metabolic
cage system. Food consumption data of VPAC1−/− and WT mice were calculated in terms
of 24 h average values over 48 h of uninterrupted recording. The detailed time course of the
cumulative food intake is illustrated in Figure 2. The recorded data show that VPAC1−/−

mice had a significantly greater number of feeding bouts during the active phase (dark cycle)
as compared to their WT littermates (30.13 ± 3.69 bouts vs. 21.13 ± 1.27 bouts, p = 0.009);
however, no significant differences were found during the dormant phase (light cycle)
between the two experimental groups (Figure 2A). Furthermore, no significant differences
were recorded between the two groups in the total number of minutes spent eating (p = 0.8)
(Figure 2B), as well as in the total grams of food consumed (p = 0.5) (Figure 2C), during
either the dark or the light phase of the cycle.

Figure 2. A 24-h analysis of food intake bouts (A), total food intake minutes (B), and total food intake
grams (C) was conducted in VPAC1−/− and WT mice. Values were separated into dark (active) cycle
and light (dormant) cycle. A two-factor ANOVA analysis was used to compare number of bouts,
duration of bouts, and amount of food consumed. Values are means ± SEMs; ** p < 0.01.

3.3. Calorimetric Parameters Alteration in VPAC1−/− Mice

Indirect calorimetric analyses were conducted over a 24-h period (Figure 3) in VPAC1−/−

mouse (n = 8) and WT littermates (n = 8), single-housed in Promethion metabolic cages;
the data revealed a difference in Total Energy Expenditure (TEE), as assessed by analyzing
two full light/dark cycles (Figure 3A). VPAC1−/− mice had significantly lower TEE values
than WT littermates, as assessed using an area under the curve (AUC) analysis, during
both the dark phase (0.643 ± 0.058 kcal/hr vs. 0.814 ± 0.055 kcal/hr, p = 0.025) and the
light phase of the cycle (0.385 ± 0.014 kcal/hr vs. 0.544 ± 0.042, p = 0.0402) (Figure 3B).
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Figure 3. Analyses of respirometry and calorimetry data in VPAC1−/− and WT mice: TEE (A) and
dark phase and light phase averages of TEE (B); RQ (C) and dark phase and light phase averages of
RQ (D); VO2 (E) and dark phase and light phase averages of VO2 (F); VCO2 (G) and dark phase and
light phase averages of VCO2 (H); VH2O (I) and dark phase and light phase averages of VH2O (J). A
two-factor ANOVA analysis was used to compare TEE, RQ, VO2, VCO2, and VH2O dark phase and
light phase averages. In panels B, D, F, H, and J, values are means ± SEMs; * p < 0.05.
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Respiratory Quotient (RQ) values, calculated in both VPAC1−/− and WT mice as a ra-
tio between released CO2 (VO2) and consumed O2 (VO2), showed no significant differences
between VPAC1−/− and WT experimental mice (Figure 3C), as confirmed by AUC analysis
(Figure 3D). Respiratory gases (VO2 and VCO2) were continuously measured in each exper-
imental VPAC1−/− and WT mouse during two full light and dark cycles, as shown, respec-
tively, in Figure 3E,G. VPAC1−/− mice had significantly lower VO2 values, compared to WT
mice, during the dark phase (2.181 ± 0.197 mL/min vs. 2.756 ± 0.187 mL/min, p = 0.029)
as well as the light phase (1.325 ± 0.051 mL/min vs. 1.86 ± 0.145 mL/min, p = 0.044)
(Figure 3F). Furthermore, VPAC1−/− mice had significantly lower VCO2 values than
WT littermates during the dark phase (1.914 ± 0.164 mL/min vs. 2.451 ± 0.165 mL/min,
p = 0.016) as well as the light phase (1.081 ± 0.036 mL/min vs. 1.57 ± 0.122 mL/min,
p = 0.029) (Figure 3H). The water vapor (VH2O) released by VPAC1−/− and WT mice
was also measured over 48 h two full light/dark cycles (Figure 3I). In VPAC1−/− mice,
significantly lower levels of released VH2O were detected, compared to WT mice, during
the dark phase (0.271 ± 0.022 mL/min vs. 0.367 ± 0.027 mL/min, p = 0.0198); however, no
significant differences were found during the light phase (p = 0.33) (Figure 3J).

3.4. Physical Activity Values in VPAC1−/− Mice

In VPAC1−/− (n = 8) and WT mouse (n = 8), single-housed in Promethion metabolic
cages, physical activity profiles were analyzed over a 24-h dark/light cycle period (Figure 4).
All meters (total activity) in Figure 4A, pedestrian meters (mouse walking) in Figure 4B,
coarse activity (mouse movement) in Figure 4C, pedestrian speed (mouse speed) in
Figure 4D, wheel meters (rotation) in Figure 4E, and wheel speed (rotation speed) in
Figure 4F, were assessed. No significant differences were found between VPAC1−/− and
WT mice in any of the aforementioned parameters during the dark phase as well as during
the light phase.

3.5. Circulating Levels of Metabolic Hormones Are Dysregulated in VPAC1−/− Mice

To better elucidate the effects of the VPAC1R on metabolism, the plasma levels of
a panel of orexigenic-anorexigenic metabolic hormones were measured in VPAC1−/−

and WT mice (Figure 5) during fasting, as well as in postprandial conditions, as shown
in Figure 5A. No significant differences in active-ghrelin levels were detected between
the two experimental groups, although under postprandial conditions, the higher ghre-
lin values measured in VPAC1−/− mice were approaching significance (p = 0.08). In
VPAC1−/− mice, circulating levels of GLP-1 were significantly higher during fasting
(254.30 ± 91.43 pg/mL vs. 15.41 ± 2.81 pg/mL, p = 0.035) as well as during postprandial
conditions (291.19 ± 113.24 pg/mL vs. 50.62 ± 11.93 pg/mL, p = 0.0287), as shown in
Figure 5B. Plasma levels of glucagon demonstrated no significant differences (p = 0.12)
between VPAC1−/− and WT mice (Figure 5C) during fasting conditions; however, signif-
icantly higher postprandial glucagon values were measured in VPAC1−/− mice (132.28
± 28.43 pg/mL vs. 30.99 ± 6.56 pg/mL, p = 0.0006). No significant differences in plasma
levels of insulin were found under fasting or postprandial conditions between the two
experimental groups (Figure 5D). Plasma leptin showed no significant differences during
fasting conditions; however, significantly lower postprandial leptin levels were found in
VPAC1−/− mice (3717.125 ± 599.77 pg/mL vs. 8272.57 ± 1415.25 pg/mL, p = 0.0011),
as shown in Figure 5E. Circulating levels of PYY (Figure 5F) were significantly higher
in VPAC1−/− mice during fasting (378.00 ± 174.03 pg/mL vs. 78.32 ± 69.13 pg/mL,
p < 0.0001), as well as in postprandial conditions (366.88± 97.33 pg/mL vs. 120.76± 105.66
pg/mL, p = 0.0012).
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Figure 4. Analysis of physical activity and movement in WT mice and VPAC1−/− mice: All meters
(total activity) dark phase and light phase averages (A); Pedestrian meters (mouse walking) dark
phase and light phase averages (B); Course activity (mouse movement) dark phase and light phase
averages (C); Pedestrian speed (mouse speed) dark phase and light phase averages (D); Wheel meters
(rotation) dark phase and light phase averages (E); Wheel speed (rotation speed) dark phase and light
phase averages (F). A two-factor ANOVA analysis was used to compare these dark phase and light
phase averages. Values in panels A through F are means ± SEMs.
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Figure 5. Plasma levels of a panel of orexigenic and anorexigenic metabolic hormones assayed in WT
mice and VPAC1−/− mice: active-Ghrelin (A), GLP-1 (B), glucagon (C), insulin (D), leptin (E), and
PYY (F) were measured in either fasting or postprandial conditions. A 2-factor ANOVA analysis was
used to compare averages. Values are means ± SEMs. * p < 0.05, ** p < 0.01, *** p < 0.001.

3.6. VPAC1−/− Mice Have Altered Insulin Sensitivity and Tolerance

Glucose tolerance and insulin sensitivity were studied in VPAC1−/− and WT mice
(Figure 6). The glucose tolerance test (GTT) revealed no significant differences between
VPAC1−/− and WT mice at 0, 30, 60, and 120 min, post glucose infusion (Figure 6A), as
shown also by the area under the curve values (AUC) (Figure 6B). Insulin tolerance test
(ITT), conducted in VPAC1−/− and WT mice, demonstrated significantly lower glucose
levels in VPAC1−/− mice, compared to WT mice, at 60 min (80.14 ± 13.65 mg/dL vs.
39.00 ± 7.62 mg/dL, p = 0.0419) and at 120 min (94.00 ± 15.89 mg/dL vs. 47.29 ± 14.46
mg/dL, p = 0.0152), as seen in Figure 6C. No significant differences in glucose levels were
measured at 0, 15, and 30 min, post insulin infusion (Figure 6C). The area under the curve
analysis (Figure 6D) confirms a significant decrease in plasma glucose levels in VPAC1−/−

mice as compared to WT mice (10903 ± 1185 AU vs. 7094 ± 995 AU, p = 0.0299).
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Figure 6. Glucose tolerance test (GTT) and insulin tolerance test (ITT) in WT (open square) and
VPAC1−/− mice (closed triangle). Blood glucose values (A,C) and area under the curve (AUC) of
glycemia analysis (B,D) of blood glucose levels. An unpaired t-test was used to compare time points
post glucose/insulin infusion in WT mice and VPAC1−/− mice. A two-factor ANOVA analysis
was used to compare AUC values between WT and VPAC1−/− mice. Values are means ± SEMs;
* p < 0.05.

4. Discussion

VIP is most highly expressed in the gut, in which it regulates motility, digestive pro-
cesses, absorption, secretion, microbiota, and immunity [6–15]. Previously, we assessed the
overall physiologic functions of endogenous VIP on body phenotype and metabolism [16]
and suggested that alteration of the VIP pathways could be involved in the development
of obesity and metabolic syndrome. VIP, as well as PACAP neuropeptide, binds with
similar high affinity to VPAC1 and VPAC2 receptors [17–20]. Its role on glucose/energy
homeostasis and metabolism has not been fully established, therefore, the main aim of
our current research is to establish VPAC1R effects on body and energy homeostasis and
metabolism.

In this study, a 12-week phenotypic analysis of age-and sex-matched VPAC1−/−

mice and WT littermates revealed no significant differences in body weight, and fat and
lean mass composition (Figure 1). Even though a trend toward a greater body lean mass
was observed in VPAC1−/− mice, those values were not significant at the end of the
12-week study (Figure 1C). In a previous study, VPAC1−/− mice were observed to have
developmental delays with lower body weight, similarly to VIP null mice [28], with
significantly lower body weights observed in 4-week-old VPAC1−/− male and female
pups, compared to WT and heterozygous mice. In our laboratory, we have also observed
lower body weights and higher mortality in VPAC1−/− pups (unpublished data), similarly
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to Fabricius et al. [8]. At the beginning of our study, VPAC1−/− mice at 8 weeks of age had
body weight averages 3.4 g lower than WT littermates, yet not statistically significant, but
after 12 weeks, VPAC1−/− and WT body weights were similar.

Previously, we demonstrated that VIP−/− mice had a leaner body phenotype with
deficit of fat mass accumulation as they aged, and a better maintained body lean mass [16].
Other authors have shown that VPAC2−/− male mice had lower body weight and length
at 8 weeks of age, but they accumulated fat mass as they aged [33]. This leaner body
phenotype described in VPAC2−/− mice is similar to the one that we described in VIP−/−

mice [16]. However, in the current study we did not observe a leaner phenotype in
VPAC1−/− mice, thus suggesting that VPAC1R is not responsible for the phenotypic
changes observed in VIP−/− mice [16]. Other authors reported [34] that WT mice treated
with a VPAC1 agonist were protected against high-fat-diet-induced obesity. Furthermore,
it was published that a treatment with VPAC1 blocking antibodies for 15 weeks in WT
mice had no significant impact on adipogenesis and weight gain [35]; therefore, these
in vivo studies did not reach similar conclusions. An in vitro study by Akesson et al. [36]
reported in rat adipocytes that PACAP, VIP, as well as two different VPAC2-R agonists,
induced lipolytic effects, thus indicating that even though VPAC1R, VPAC2R, and PAC1R
were all expressed on adipocytes, only VPAC2R mediated VIP- and PACAP-induced
lipolysis. These data are concordant with our in vivo findings that body fat mass was not
affected by genetic lack of VPAC1R in mice. According to Lijnen et al., inhibition of VPAC1
receptors by monoclonal antibodies in WT mice, fed a high-fat diet to induce obesity for
15 weeks, failed to modify weight gain and fat mass, but induced adipocyte hypertrophy
in the subcutaneous compartment [35]. These data are consistent with our current data
on VPAC1−/−.

In our study, after 12 weeks of phenotype development observation, a complete
feeding and metabolic profile analysis was conducted by indirect calorimetry in VPAC1−/−

and WT mice. Our results revealed no significant differences in food consumption and
amount of time spent eating in the two experimental groups; however, a significantly
increased number of feeding bouts was found in VPAC1−/− mice during the active phase
(dark cycle) (Figure 2A). Other researchers have shown that a long-term treatment with a
VPAC1 agonist inhibited food intake significantly over a 28-day experimental period [34].
On the other end, Alexander at al. reported in a rat study that a pretreatment with a VIP
antagonist did not affect food intake [37], therefore, these data would concur with our
feeding data in VPAC1−/− mice, as well as with our previously published data in VIP−/−

mice, showing no difference in food intake from WT littermates 16]. Bechtold et al. [38]
found in a VPAC2−/− murine model no significant differences in food consumption,
except for a significant decrease in hopper activity during the dark cycle compared to WT;
whereas, other authors reported a lower daily food intake in VPAC2−/−mice [38]. The same
studies [38,39] demonstrated an altered physiology in VIP−/− and VPAC2−/− mice, with
3–4 h advancement in their metabolic and feeding rhythms, due to an altered expression
of peripheral clock genes at feeding time in the VPAC2−/− mice liver. Our current data
confirm that VPAC1Rs do not affect clock genes and circadian rhythm of feeding.

Our analysis demonstrated an increased number of feeding bouts in VPAC1−/− mice,
which could be explained by VPAC1R localization on the taste receptive cells of the tongue
and by the altered taste cells and preferences in VIP−/−mice [40]. These data would suggest
that lack of VPAC1R expression could potentially change the food preference/aversion
behavior without impacting satiety/hunger and food consumption in mice.

An indirect calorimetry analysis conducted in VPAC1−/− mice revealed lower to-
tal energy expenditure (TEE) during both the active (dark) and dormant (light) cycle
(Figure 3A,B). No significant differences in physical activity parameters, including total
movement, fine activity (scratching/sniffing), and wheel activity (Figure 4) were detected.

Our study is the first to evaluate VPAC1R impact on TEE and physical activity levels,
and the results would suggest that VPAC1−/− mice can maintain normal levels of physical
activity while requiring less metabolic energy. Even though VIP is a potent vasodilator,
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the administration of VIP, or a VIP agonist, has been shown to dilate coronary vasculature
without impacting the mouse heart rate or myocardial contractility [41,42], thus, these data
would support the normal physical activity parameters measured in our study.

A full metabolic profile assessment of VPAC1−/− and WT mice at 12 weeks of age
revealed similar respiratory quotient (RQ) values (Figure 3C,D), but significant differences
in oxygen consumption (Figure 3E,F), carbon dioxide production (Figure 3G,H), and water
vapor production (Figure 3I,J) between the two groups of mice. In fact, VPAC1−/− mice
had lower VO2 and VCO2 during both the dark (active) and light (dormant) phase, and
lower VH2O only during the dark cycle. This is the first study that addresses the effects
of VPAC1R on respirometry. In the literature, VIP administration in a perfused rat heart
did not impact VO2 [42]. In our study, VPAC1−/− mice had significantly decreased VO2.
Other authors reported lower VO2 and VCO2 values in VPAC2−/− mice during the active
phase (dark cycle) without significant changes in RQ during both the active and dormant
phase [38]. These findings are complementary to ours and suggest that both VPAC1 and
VPAC2 receptors are involved in the regulation of respiratory gases and in the maintenance
of metabolic homeostasis.

Circadian rhythm alterations have been documented in mice lacking certain clock
genes, and VIP has been shown to mediate the synchronization of these rhythms [43–45].
Clock genes regulate metabolism by modulating the timing of food consumption and
feeding rhythms [44,46]. Light has been shown to be a key regulatory factor in VIP/VPAC2
signaling pathways, thus establishing that this ligand–receptor pair alters the clock func-
tion [44]. VPAC2R is implicated in the regulation of these homeostatic rhythms centrally,
through binding of VIP in the suprachiasmatic nucleus [44,47–49]; however, limited re-
search has been conducted on the role of VPAC1R in modulating circadian rhythm signals.
Centrally, VPAC2R and PAC1R mRNA are expressed in the rat suprachiasmatic nucleus
(the regulatory center of the circadian clock), whereas VPAC1R mRNA expression is ab-
sent [49]. In the current study, the absence of alterations in circadian signaling confirms
that VPAC1R are not involved in these mechanisms.

In the current study, plasma levels of a panel of orexigenic and anorexigenic metabolic
hormones were measured in VPAC1−/− and WT mice, during both fasting and postpran-
dial conditions (Figure 5) to assess potential endocrine alterations in peripheral signals
controlling the balance between orexigenic and anorexigenic responses and glucose home-
ostasis. Plasma levels of active-Ghrelin were not significantly different in VPAC1−/− mice,
even though higher postprandial ghrelin values, nearing significance, were measured in
VPAC1−/−. Centrally, food intake and appetite are modulated by hormone signaling and
binding within the hypothalamic ARC nucleus [49]. Ghrelin is a key hunger hormone,
released peripherally to stimulate food intake and fat storage in times of depleted plasma
blood glucose [50,51]. In VPAC2−/− mice, circadian alterations, changes in anticipatory
rhythms of activity and hormone secretion were described [38].

Here, VPAC1−/− fasting and postprandial active-Ghrelin levels were not significantly
different; thus, these data are concordant with the food consumption and would suggest
that VPAC1R is not directly involved in the hunger initiation mechanism, even though VIP
has been implicated in these pathways, as shown by the altered hormones that we reported
in VIP−/− mice [16].

VPAC1−/− mice had significantly higher plasma levels of GLP-1 during both fasting
and postprandial conditions. In the literature, there are no other reports of GLP-1 plasma
values in a VPAC1 null model. However, we have previously shown higher fasting
and postprandial levels of GLP-1 in VIP−/− mice [16]. Therefore, these data suggest
that VPAC1R could mediate VIP inhibitory effects on GLP-1 secretion. GLP-1 plays an
important role in glucose homeostasis by increasing insulin and suppressing glucagon
secretion in response to blood glucose changes [52,53]. In the present study, no significant
differences in plasma glucagon levels were found in VPAC1−/− during fasting; however,
glucagon was significantly higher during postprandial conditions (Figure 5C). We have
previously [16] described significantly higher postprandial level of glucagon in VIP−/−
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mice, therefore, this would suggest that VIP could inhibit the postprandial release of
glucagon through VPAC1R. Glucagon stimulates glucose blood increase by promoting
glycogenolysis and gluconeogenesis, working together with insulin to maintain glucose
homeostasis [54]. In VPAC1−/− mice, no significant differences in insulin levels were
measured during either fasting or post-prandial conditions (Figure 5D), thus, these data
support our previous findings in VIP−/− mice [16]. VPAC1R has been indicated as a
key player in protecting mice against diabetes-associated inflammation and oxidative
stress [55]. VPAC1R mRNA has higher expression than VPAC2R and PAC1R in murine
diabetic pancreas [55,56]. In diabetic mice, a 28-day treatment with a VPAC1 agonist
decreased plasma glucose levels and reduced oxidative stress [56]. Another study reported
that a VPAC1R agonist increased hepatic glucose production, whereas a VPAC2 agonist
elevated plasma insulin levels [57]. De Vadder et al. reported that VIP activated intestinal
gluconeogenesis [54], and Erendor at al. [58], using VIP encoded by a lentiviral gene therapy
vector, suppressed diabetes-related inflammation and increased beta-cell proliferation. In
our VPAC1R−/− mice, postprandial glucagon levels were higher, suggesting that VPAC1R
could play a key role in GLP-1 and glucagon release, thus contributing to plasma glucose
homeostasis.

We reported in VPAC1−/− mice significantly lower postprandial, but not fasting,
leptin levels. Anorexigenic hormones, such as leptin, regulate intake, digestion, and
absorption of nutrients by binding to gut receptors to maintain caloric homeostasis [59,60].

Previously, we reported in VIP−/− mice significantly higher fasting leptin levels, a
disrupted feeding pattern and altered food consumption [16]. Asnicar et al. also found
higher levels of leptin in VIP−/− mice [33]. Therefore, here, we propose that the VPAC1R
is involved in the physiologic postprandial increase of leptin, but not in the inhibition of
leptin secretion during fasting. No studies have analyzed the role of VPAC2 on leptin
plasma levels.

In our current research, PYY plasma levels were significantly higher in VPAC1−/−

mice during both fasting and postprandial conditions.
PYY, like leptin, is a peripheral anorexigenic hormone, released by gastrointestinal L

cells [61,62]. These data are in concordance with the higher levels of PYY that we reported
in VIP−/− mice during both fasting and postprandial conditions [16]. VIP is known to
mediate the colonic release of PYY [63], therefore, these results support a VPAC1R-mediated
inhibitory mechanism in PYY fasting and postprandial plasma release.

To further assess glucose homeostasis in VPAC1−/− mice, we performed glucose and
insulin tolerance tests. VPAC1−/− mice showed no significant differences in blood glucose
levels following IP injection of glucose, however, after insulin IP administration, they had
significantly lower blood glucose at 60 and 120 min (Figure 6). Our data are in concordance
with a study in which hypoglycemia was reported after insulin injection in VPAC1 null
mice [28]. Therefore, our data suggest that VPAC1R is involved in the regulation of blood
glucose homeostasis. In Fabricius at al. [28], a significant hypoglycemia was observed also
in fasted VPAC1−/− mice, orally administered with glucose. The observed differences
might be explained by the different route of administration, oral vs. intraperitoneal. Since
VPAC1, VPAC2, and PAC1 receptors are all expressed on pancreatic islet cells, where they
bind to VIP and PACAP [55,64], further research is necessary to clarify the mechanisms by
which these receptors modulated insulin secretion.

5. Conclusions

The strength of the current study is that this is the first complete characterization
of the phenotypic, metabolic, calorimetric, and homeostatic effects of VPAC1R in a null
murine model. Lack of VPAC1R gene expression in mice significantly lowered total
energy expenditure, respiratory gases, and altered glucose/insulin regulation and plasma
metabolic hormone levels. Our findings support a key role for VPAC1R in the regulation
of metabolism, energy, and glucose homeostasis through the control of plasma GLP-1,
glucagon, leptin, and PYY levels. A weakness of the current study is its reliance on an
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animal model, however the results support the need for further studies to explore the
effects of VPAC1R in models of obesity, diabetes mellitus, and metabolic syndrome by
using VPAC1 null genetic models, or VPAC1 agonists and antagonists in WT animals, in
order to develop future potential pharmacological protocols.
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CNS central nervous system
GI gastrointestinal
GLP-1 glucagon-like peptide 1
IGF insulin-like growth factor
PAC1-R pituitary adenylate cyclase activating polypeptide type 1 receptor
PACAP pituitary adenylate cyclase activating polypeptide
PCR polymerase chain reaction
PYY peptide YY
SEM standard error of the mean
VIP vasoactive intestinal polypeptide
VPAC1R vasoactive intestinal polypeptide receptor 1
VPAC2R vasoactive intestinal polypeptide receptor 2
BW body weight
qPCR quantitative polymerase chain reaction
T2D type 2 diabetes
TEE Total Energy Expenditure
VCO2 carbon dioxide production
VO2 rate of oxygen consumption
VH2O water vapor
RQ respiratory quotient
GPCRs G-protein coupled receptors
WT wild type
GTT glucose tolerance test
ITT insulin tolerance test

References
1. Alhabeeb, H.; AlFaiz, A.; Kutbi, E.; AlShahrani, D.; Alsuhail, A.; AlRajhi, S.; Alotaibi, N.; Alotaibi, K.; AlAmri, S.; Alghamdi, S.;

et al. Gut Hormones in Health and Obesity: The Upcoming Role of Short Chain Fatty Acids. Nutrients 2021, 13, 481. [CrossRef]
[PubMed]
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