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The Hartung-Knapp method for random-effects meta-analysis, that was also
independently proposed by Sidik and Jonkman, is becoming advocated for gen-
eral use. This method has previously been justified by taking all estimated
variances as known and using a different pivotal quantity to the more con-
ventional one when making inferences about the average effect. We provide a
new conceptual framework for, and justification of, the Hartung-Knapp method.
Specifically, we show that inferences from fitted random-effects models, using
both the conventional and the Hartung-Knapp method, are equivalent to those
from closely related intercept only weighted least squares regression models.
This observation provides a new link between Hartung and Knapp's method-
ology for meta-analysis and standard linear models, where it can be seen that
the Hartung-Knapp method can be justified by a linear model that makes a
slightly weaker assumption than taking all variances as known. This provides
intuition for why the Hartung-Knapp method has been found to perform better
than the conventional one in simulation studies. Furthermore, our new find-
ings give more credence to ad hoc adjustments of confidence intervals from the
Hartung-Knapp method that ensure these are at least as wide as more conven-
tional confidence intervals. The conceptual basis for the Hartung-Knapp method
that we present here should replace the established one because it more clearly
illustrates the potential benefit of using it.
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1 INTRODUCTION

The random-effects model for meta-analysis is commonly
used to synthesize independent effect size estimates with
underlying heterogeneous true effect sizes.1,2 Two parame-
ters are estimated in the random-effects model: the average
effect and the between-study variance (the variance of

the studies' true effect sizes). When using standard meth-
ods for meta-analysis, the between-study variance is first
estimated. This estimate is then, together with the stud-
ies' within-study sampling variances, incorporated into
the study weights when estimating the average effect and
making inferences regarding this parameter. This stan-
dard approach for performing meta-analyses provides a
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pooled estimate that is a weighted average of the estimated
effects. However, estimates of the between-study variance
are often imprecise, especially if the number of studies
in a meta-analysis is small.3-5 This uncertainty is ignored
when making inferences under the random-effects model
using standard methodologies and so relying on a nor-
mal approximation for the average effect, with the poten-
tial risk of making inaccurate statistical inferences. A
further and related concern is that the within-study
variances are often imprecisely estimated if the studies
are small (and these variances may also be correlated
with the corresponding study specific estimated effects).
This uncertainty (and correlation) is also conventionally
ignored when fitting the random-effects model, which can
have detrimental consequences when making statistical
inferences.6-10

Hartung and Knapp11-13 and Sidik and Jonkman14 pro-
pose a “modified” or “refined” method (henceforth called
the Hartung-Knapp method) for making inferences about
the average effect when fitting the random-effects model.
The Hartung-Knapp method uses quantiles of the t dis-
tribution rather than the standard normal distribution in
the more conventional method when computing a con-
fidence interval (CI) for the average effect. This is justi-
fied by multiplying the conventional variance of the esti-
mated average effect with a scaling factor, because (treat-
ing the within and between-study variances as known)
the proposed pivot for making inferences then follows
a t distribution.11 However, we will see later that the
Hartung-Knapp method can in fact be justified by a slightly
weaker assumption than this, indeed this is the main point
made by our new justification of this method.

Simulation studies suggest that the Hartung-Knapp
method is a substantial improvement over the more con-
ventional method, in the sense that the actual coverage
probability of 95% CIs for the average effect has been found
to be closer to the nominal level.15-17 The calculations
required by these two methods are closely related, and it
is difficult to obtain evidence concerning which method is
best without resorting to simulation studies. To our knowl-
edge, the only analytical evidence supporting claim that
the Hartung-Knapp method performs better is provided by
Sidik and Jonkman18 who show, under the assumptions
of the random-effects model, that the coverage probabil-
ity of the CI from the Hartung-Knapp method is exact in
the artificial setting where all within-study variances are
the same and the random-effects model is true. Simulation
studies provide evidence, but little or no intuition, for the
greater accuracy of the inference from the Hartung-Knapp
method in more realistic settings. These findings indicate
that the Hartung-Knapp method possesses different prop-
erties to the conventional method, and so these two meth-
ods are perhaps most naturally conceptualised as being

completely alternative statistical methods that are both
valid under the fitted random-effects model.19

Given its greater accuracy, it is therefore perhaps sur-
prising that the Hartung-Knapp method has not been
more widely adopted. However, an undesirable feature of
this method is that its CI for the average effect can be
shorter than the corresponding conventional CI for some
datasets.16,19 This is unsatisfactory because the more con-
ventional method ignores the uncertainty in the unknown
variance components, and so its CI can be anticipated to be
too short in many settings. The suggestion to accompany
results from the Hartung-Knapp method with conven-
tional fixed-effect16 or random-effects19 meta-analyses as a
sensitivity analysis is one response to the concern that the
CI based on the Hartung-Knapp method can be too short.
Another response to this concern is to propose ad hoc
adjustments of the Hartung-Knapp method that ensure
that the width of its CI are at least as wide as the con-
ventional CI.19,20 As we will see below, this type of ad hoc
adjustment is easily made by constraining a scaling factor
to be greater than or equal to one. A consequence of our
new findings will be to give further credence to methods
that constrain this scaling factor in this and other ways.

The main aim of this paper is to provide intuition for
why the Hartung-Knapp method has been found to be
more accurate in simulation studies by establishing a new
conceptual framework for it. This framework shows that
the Hartung-Knapp method can be justified using stan-
dard regression based methods that allow us to make a
slightly weaker assumption than treating all variance com-
ponents as if known; more specifically, we will see that
the Hartung-Knapp method can be justified by an inter-
cept only linear regression where the total study variances
are assumed to be known only to within a constant of
proportionality. However, the conventional method does
not allow us to make this slightly weaker assumption
either when justified in the usual way or by using our
new framework. Comparing the conventional with the
Hartung-Knapp method in this way explains why the latter
method has been found to be more accurate in simula-
tion studies. This and the other insights that follow are
not at all obvious from the established way to justify the
Hartung-Knapp method. We therefore suggest that our
new framework for justifying this method should replace
the one that is currently used.

The rest of the paper is set out as follows. We continue
in section two by introducing the random-effects model
and describing the conventional and Hartung-Knapp
methods for making inferences for the average effect.
We also give the current standard derivations that
justify the use of these two methods. In Section 3, we
describe weighted least squares (WLS) regression in
general and two WLS regression models in particular
that differ in the assumption that is made regarding the
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error variances. We establish the equivalences between
the conventional and Hartung-Knapp methods for
random-effects meta-analysis and these WLS regression
models in Section 4, where we also extend our results
to include random-effects meta-regression models. In
Section 5, we illustrate our findings numerically using
two real examples. We describe further insights afforded
by our new conceptual framework in Section 6, and the
paper ends with a short discussion in Section 7.

2 THE CONVENTIONAL AND
HARTUNG-KNAPP METHODS FOR
MAKING INFERENCES FOR THE
AVERAGE EFFECT UNDER THE
RANDOM-EFFECTS MODEL

We will start by describing the conventional
random-effects model for meta-analysis following Chapter
12 of Borenstein et al.2 This model justifies the use of the
conventional and Hartung-Knapp methods to make infer-
ences about the average effect. The same average effect
is estimated when using both of these methods. Hence,
the Hartung-Knapp method does not modify the point
estimate in any way and so does not address any concerns
related to bias in this parameter. However, different results
are obtained when making further inferences (such as
performing hypothesis tests and calculating confidence
intervals) about the average effect. Both the conventional
and Hartung-Knapp methods could be supplemented
with the same CI for the between-study variance.21,22

The random-effects model can be written as (for
example, see Equation 12.1 in Borenstein et al 2 where we
slightly adapt the notation to avoid a notational conflict
later)

Yi = 𝜇 + 𝜍i + 𝛿i, (1)

where Yi, i=1, … , n, is the estimated effect size from the
ith study, 𝜇 is the average effect, 𝜍 i is a random effect
denoting the difference between 𝜇, the ith study's true
effect size, and 𝛿i is the within-study sampling error. It
is usually assumed that 𝜍 i ∼ N(0, 𝜏2), where 𝜏2 is the
between-study variance in true effect sizes, but some esti-
mation methods avoid assuming the 𝜍 i and 𝛿i are normally
distributed.23,24 We further assume that 𝛿i ∼ N(0, s2

i ),
where s2

i is the within-study sampling variance of the
ith study. The sampling variances s2

i are usually esti-
mated in practice and then regarded as known under the
random-effects model. Moreover, all 𝜍 i and 𝛿i are assumed
to be mutually independent. Fitting the random-effects
model therefore requires the estimation of two remaining
parameters, 𝜇 and 𝜏2.

Many estimators have been developed for estimating 𝜏2

(see Veroniki et al 25 and Langan et al 26 for an overview).

Any of these estimators of 𝜏2 may be used when comput-
ing the weights, w∗

i = 1∕
(

s2
i + 𝜏2) and in conjunction

with either the conventional and Hartung-Knapp meth-
ods when making inferences about 𝜇. These inferences are
approximate rather than exact, because in conventional
justifications all variances s2

i and 𝜏2 are treated as fixed
and known when making inferences for the average effect
under random-effects model.1 This is the case for both
the conventional and Hartung-Knapp methods that fol-
low, and may have especially detrimental consequences for
meta-analyses containing a small number of studies when
making statistical inferences.27,28 The average effect 𝜇 is
estimated using traditional inverse variance weights2 of
w∗

i when using both the conventional and Hartung-Knapp
methods. In either case, the average effect is therefore esti-
mated as (see Equation 12.7 in Borenstein et al2 with some
changes in notation here)

𝜇̂ =
∑

w∗
i Yi∑

w∗
i
. (2)

2.1 The conventional method for making
inference for 𝜇 under the random-effects
model
The variance of 𝜇̂, under the fitted random-effects model,
where we treat all variances as fixed and known, is tradi-
tionallycomputedas(seeEquation12.8 inBorensteinetal2)

V𝜇̂ = 1∑
w∗

i
. (3)

Thestandarderrorof 𝜇̂ fortheconventionalmethodisthere-
fore

√
V𝜇̂. The null hypothesis, H0 ∶ 𝜇 = 0, is tested using

the test statistic, 𝜇̂∕
√

V𝜇̂, by comparing this to critical val-
ues of the standard normal distribution (see Equation 12.12
in Borenstein et al2). A CI for𝜇 is calculated as 𝜇̂±z𝛼∕2

√
V𝜇̂,

where z𝛼/2 is the (1 − 𝛼∕2) quantile of the standard normal
distribution, with 𝛼 = 0.05, and so z𝛼/2 ≈ 1.96, for a 95% CI
(see Equations 12.10 and 12.11 in Borenstein et al2). These
conventional inferences are obtained from the approximate
pivot

𝜇̂ − 𝜇√
V𝜇̂

∼ N(0, 1), (4)

where N(0, 1) denotes the standard normal distribution.

2.2 The Hartung-Knapp method
for making inference for 𝜇 under
the random-effects model
Hartung and Knapp11-13 and Sidik and Jonkman14 propose
using an alternative pivot for making inferences about
𝜇. Our exposition of this method follows Hartung and
Knapp,13 but we adapt their notation to make it equivalent
with the notation used above.
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An alternative estimator for the variance of 𝜇̂ (see
Equation 10 of Hartung and Knapp13) is

V HK
𝜇̂

= 1
n − 1

∑ w∗
i

w∗
+
(Yi − 𝜇̂)2,

where w∗
+ =

∑
w∗
𝑗
. This estimator of the variance of 𝜇̂ is

the conventional estimator V𝜇̂ scaled by H*2, where

V HK
𝜇̂

=

(∑
w∗

i (Yi − 𝜇̂)2

n − 1

)
V𝜇̂ = H∗2V𝜇̂ . (5)

The standard error of 𝜇̂ for the Hartung-Knapp method
is therefore

√
V HK
𝜇̂

. If 𝜏2 = 0, then H*2 is equal to the H2

statistic proposed by Higgins and Thompson29 for quan-
tifying the between-study heterogeneity. The null hypoth-
esis, H0 ∶ 𝜇 = 0, is tested using the test statistic (see
Equation 11 in Hartung and Knapp13), 𝜇̂∕

√
V HK
𝜇̂

, by com-
paring this to critical values of the t distribution with
n − 1 degrees of freedom.11 A CI for 𝜇 is calculated as
𝜇̂ ± tn−1,𝛼∕2

√
V HK
𝜇̂

, where tn−1,𝛼/2 is the (1 − 𝛼∕2) quantile
of the t distribution with n − 1 degrees of freedom. These
inferences using the Hartung-Knapp method are obtained
from the approximate pivot

𝜇̂ − 𝜇√
V HK
𝜇̂

∼ tn−1, (6)

where tn−1 denotes the t distribution with n − 1 degrees of
freedom. Comparing Equations (4) and (6), we can see
that the conventional and Hartung-Knapp methods use
different pivots when making inferences for 𝜇 under the
random-effects model.

2.3 The usual justifications of the
conventional and Hartung-Knapp methods
The usual formal justifications of the conventional and
Hartung-Knapp methods treat all variances as if they are
known. That is, we assume that 𝜏2 = 𝜏2 and s2

i is the true
within-study variance for all i (or, at least, that replacing
these parameters by their estimates is a reasonable approx-
imation; see Jackson30 for formal justifications of these
approximations). In practice, all variance components are
estimated before making inferences for 𝜇, which means
that both of these methods are merely approximate. Treat-
ing all variances as known also means that we can treat the
w∗

i as known.
The distributional results in Equations (4) and (6) that

motivate the conventional and Hartung-Knapp methods
then follow from standard statistical theory. Briefly, for the
Hartung-Knapp method this is because the approximate

pivot in Equation (6) can be written as P = Z∕
√

H∗2,
where (by taking all variances to be known) Z = (𝜇̂ −
𝜇)∕

√
V𝜇̂ ∼ N(0, 1) and (n − 1)H∗2 ∼ 𝜒2

n−1, where Z and
H*2 are independent. Hence, P ∼ tn−1. The approximate
pivot in Equation (4) used in the conventional method is
directly justified by the distribution of Z in this argument.

3 WLS REGRESSION

As we have seen, the conventional and Hartung-Knapp
methods for random-effects meta-analysis are justified by
the approximate pivots in Equations (4) and (6), respec-
tively. However, we will see below that these two methods
can also be justified using the standard statistical theory of
WLS regression. Upon conceptualising these two methods
for meta-analysis as applications of WLS regression further
insight will be possible.

In order to establish this new link between WLS regres-
sion models and the two methods for meta-analysis
described above, we begin by describing the theory of WLS
regression. We primarily use Section 4.1.2 of the book by
Fahrmeir et al31 to describe WLS regression, but we will
also refer to a variety of other standard textbooks.32-36 The
notation of Fahrmeir et al31 is slightly adapted here to
avoid a clash of notation with earlier sections of this paper.

In a WLS regression model, we assume that the response
variable Yi, i = 1, 2, …n, depends on one or more predic-
tor variables that are fully observed. The WLS regression
model is

Y = X𝛃 + 𝜖, (7)

where Y is a n × 1 column vector containing Yi, i=1, … ,
n, X is the n × p design matrix with p denoting the num-
ber of regression parameters (sometimes also referred to as
the model matrix), 𝜷 is a p × 1 column vector of p regres-
sion parameters, and 𝜖 is a n× 1 column vector containing
the sampling errors. We assume that E(𝜖) = 0, where 𝜖 is
taken to follow a multivariate normal distribution. Differ-
ent assumptions about the form of the covariance matrix
Var(𝜖) result in different types of WLS regression models.
The WLS regression model reduces to the ordinary least
squares regression model if all variances (ie, elements on
the diagonal of the covariance matrix Var(𝜖)) are equal to
each other and the observations are uncorrelated (ie, off
diagonal elements of the covariance matrix Var(𝜖) equal to
zero).35 Equal variances is also referred to as homoscedas-
ticity that is in contrast with heteroscedasticity where the
variances are not the same. We fully examine two particu-
lar forms of the covariance matrix Var(𝜖) in detail immedi-
ately below, and we will subsequently show that these can
be used to motivate the conventional and Hartung-Knapp
methods for random-effects meta-analysis.
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3.1 Known variances and independent
errors
If the error variances are assumed to be known, and the
errors are assumed to be independent, then we have 𝜖i ∼
N(0, 𝜎2

i ), where these 𝜖i are the entries of 𝜖 in model (7) and
𝜎2

i are the error variances. In this model, all 𝜎2
i are known,

and so are fixed constants, and the 𝜖i are independent. WLS
regression models with known variances are rarely applied
in practice, because it is usually unrealistic to assume that
variances are known without error. Perhaps for this reason,
this type of model is not discussed in Fahrmeir et al31 but
is described in other books on linear models.33

Let W=diag(1∕𝜎2
i ) denote the n×n diagonal matrix con-

taining the weights 1∕𝜎2
i , so that under the model, we

have Var(𝜖) = W −1. The variances 𝜎2
i are assumed to

be known so that W is also treated as known. These
weights are optimal under the model, because they result
in the best linear unbiased estimation of the regression
coefficients.36 The regression parameters 𝜷 are estimated
as (see Equation 11.9 in Kutner et al33

𝛃̂ =
(

XTWX
)−1XTWy, (8)

where y is the observed value of Y. Searle (1971) gives a
more general result than Equation (8) on his page 87,
where Equation (8) is given as the estimate where W −1 =
Var(𝜖), for example, in Searle's result, the 𝜖i need not be
independent so that W is not a diagonal matrix. Then, from
model (7) and estimating Equation (8), together with
Var(𝜖) = W −1 and the standard result that Var(MX) =
MVar(X)MT, where M is a matrix of constants, we have the
standard result

Var(𝛃̂) =
(

XTWX
)−1

. (9)

Inference using Equations (8) and (9) is then straight-
forward. This is because matrices X and W contain fixed
constants so that, from Equation (8), 𝛃̂ is a linear com-
bination of the multivariately normally distributed (with
known variance) y, so that 𝛃̂ is also multivariate normal
with known variance. The null hypothesis H0 ∶ 𝛽 j = 0 is

therefore tested using the test statistic 𝛽𝑗∕
√

Var(𝛽𝑗), where
𝛽𝑗 is the jth entry of 𝛃̂ from Equation (8) and Var(𝛽𝑗)
is the entry in the jth row and column of Var(𝛃̂) from
Equation (9). We compare this test statistic to critical
values of the standard normal distribution when perform-
ing hypothesis testing. A CI for 𝛽𝑗 is calculated as 𝛽𝑗 ±

z𝛼∕2

√
Var(𝛽𝑗) where z𝛼/2 is the (1 − 𝛼∕2) quantile of the

standard normal distribution.33

3.2 Error variances known up
to constant of proportionality
Popular software packages that can be used for fitting
WLS regression models (ie, SPSS,37 SAS,38 and R39) do
not by default fit a model where the error variances are
assumed to be known as in the previous section. These
software packages usually assume that the error variances
are known up to a constant of proportionality that is a
weaker and more realistic assumption than assuming that
the error variances are known. We now assume a much
more standard model of this type.

In our second model, we assume that 𝜖 ∼ N(0, kW −1),
where k is the unknown constant of proportionality and W
continues to be the diagonal matrix containing the weights
1∕𝜎2

i . These weights, and so W, are treated as known.
Hence, we assume 𝜖i ∼ N

(
0, k𝜎2

i

)
where all 𝜖i are indepen-

dent. If we further assume that k = 1, we obtain the model
with known variances and independent errors as described
above, but in this section, k is another unknown that must
be estimated. Hence, this second WLS regression model is
a slightly more general model than the first and is more
commonly used in practice.

An important observation is that the regression param-
eters continue to be estimated using Equation (8). This
follows from the more general result of Searle35that, as
explained above, states that Equation (8) applies more
generally provided that W −1 = Var(𝜖). Then, any con-
stant of proportionality k that is applied to Var(𝜖), so that
the constant c = 1∕k is applied to its inverse W, imme-
diately cancels from Equation (8).33 This means that 𝛃̂
is the same regardless of whether or not the variances are
treated as known or instead known up to a proportional-
ity constant; conceptually, the constant of proportionality
does not change the relative weight that each observation
receives in the WLS regression model.

However, from model (7) and estimating Equation (8),
together with 𝜖 ∼ N(0, kW −1), we now have31-33

Var(𝛃̂) = k(XTWX)−1. (10)

Comparing Equations (9) and (10), we can see that the
value of k affects the precision of the estimation in the
way we should expect; as k increases so does the residual
variance of 𝜖 and so Var(𝛃̂) also increases in k.

The proportionality constant k is unknown, but is con-
ventionally estimated as the weighted mean squared error
(MSE)

k̂ = 1
n − p

𝜖TW 𝜖, (11)

where 𝜖 is the column vector containing the observed
residuals.31-33 We then substitute the estimate of k from
Equation (11) into Equation (10) in order to estimate
Var(𝛃̂). A more general result than we require for making
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inferences that considers an arbitrary linear combination
of regression parameters is given in Section 7.2.2 of Yan
and Su.32 The standard methods for making inferences
that follow take this linear combination to be 𝛽 j. As in the
previous model, the null hypothesis H0 ∶ 𝛽 j = 0 is tested

using the test statistic, 𝛽𝑗∕
√

Var(𝛽𝑗), where Var(𝛽𝑗) is the
entry in the jth row and column of the estimated Var(𝛃̂)
from Equation (10) with k replaced by its estimate in
Equation (11). However, we now compare this test statis-
tic to critical values of the t distribution with n− p degrees
of freedom when performing hypothesis testing. A CI for

𝛽𝑗 is calculated as 𝛽𝑗± tn−p,𝛼∕2

√
Var(𝛽𝑗) where tn−p,𝛼/2 is the

(1 − 𝛼∕2) quantile of the t distribution with n − p degrees
of freedom.32,35

4 EQUIVALENCES BETWEEN
RANDOM-EFFECTS MODEL FOR
META-ANALYSIS AND WLS
REGRESSION MODELS

We have now described two alternative methods for
making inferences under the random-effects model for
meta-analysis (the conventional and Hartung-Knapp
methods) and two alternative WLS regression models
(error variances assumed known and error variances
assumed known up to a constant of proportionality). We
anticipate that some parallels between the meta-analysis
and WLS regression methodologies that we have pre-
sented may already be apparent to the reader, so that the
connections we will ultimately make may be unsurpris-
ing. For example, the conventional and Hartung-Knapp
methods for random-effects meta-analysis result in the
same estimate 𝜇̂ and both types of the WLS regression
model result in the same 𝛃̂. Furthermore, the standard
normal distribution is used when making inferences using
the conventional method for meta-analysis and our first
WLS regression model (error variances known), whereas
the t distribution is used when using the Hartung-Knapp
method for meta-analysis and our second WLS regres-
sion model (error variances known up to a constant of
proportionality). Finally, the scaling factor H*2 in the
Hartung-Knapp method for meta-analysis is a weighted
MSE term where the weighted sum of squares is divided
by its associated degrees of freedom, and the propor-
tionality constant k in the second WLS regression model
is also estimated in this way. Moreover, these weighted
MSEs are multiplied by variances from the conventional
meta-analysis and the first of our WLS regression models,
in order to provide these variances when using the cor-
responding alternative method and model. We will now
formally establish links between standard methods for
meta-analysis and WLS regression models.

4.1 WLS regression and the conventional
method for meta-analysis
Let us consider the most simple form of the WLS regres-
sion model in Equation (7) where there are no predictors
(and so we have an intercept only model). Let us also
assume known variances and independent errors as in
Section 3.1, but we now assume that 𝜖i ∼ N(0, s2

i +
𝜏2). Hence, in the notation of Section 3.1, we have
𝜎2

i = s2
i + 𝜏2. When using the conventional method for

meta-analysis, the s2
i and 𝜏2 are estimated but treated as

known when making inferences about the average effect.
Hence, treating the 𝜎2

i = s2
i + 𝜏2 as known in our regres-

sion model mimics the conventional approximations used
in meta-analysis.

Hence, X = 1, where 1 is an n × 1 column vec-
tor where every entry is 1 and W = diag

(
1∕

(
s2

i + 𝜏2)).
Equations (8) and (9) then provide

𝛽 = (1TW1)−11TWy,

and

Var(𝛽) = (1TW1)−1,

Evaluating these matrix expressions gives

𝛽 =
∑

w∗
i Yi∑

w∗
i
, (12)

and

Var(𝛽) = 1∑
w∗

i
, (13)

so that Equations (12) and (13) are identical to
Equations (2) and (3) ; the only cosmetic difference is that
𝜇̂ is now denoted by the intercept 𝛽. Furthermore, the nor-
mal distribution is used for making inferences under both
this WLS regression model and the conventional method
for meta-analysis. Hence, making inferences under the
random-effects model for meta-analysis using the conven-
tional method is equivalent to making inferences under
this WLS regression model.

4.2 WLS regression and the
Hartung-Knapp method for meta-analysis
Now let us consider a second WLS regression model where
𝜖i ∼ N

(
0, k

(
s2

i + 𝜏2)), so that the error variances are
now assumed to be known up to a constant of propor-
tionality, and we otherwise make the same assumptions
as in the previous regression model. We obtain the same
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estimate 𝛽 in the previous WLS regression model from
Equation (12); this is because we have already estab-
lished that the same estimates of the regression parameters
are obtained from the two types of WLS regression mod-
els. However Equation (10), with the substitution of the
estimate of k from equation (11), now gives

Var(𝛽) = 1
n − 1

𝜖TW𝜖
(

1TW1
)−1 =

∑
w∗

i (Yi − 𝛽)2

n − 1
1∑
w∗

i
,

(14)
where we have taken p = 1 because there is one
regression parameter (the intercept). Furthermore, both
the WLS regression model with error variances known
up to a proportionality constant and the Hartung-Knapp
method for meta-analysis use the t distribution with n − 1
degrees of freedom when making inferences for 𝛽 (because
p = 1) and 𝜇, respectively. The expression for Var(𝛽)
in Equation (14) is, to within the same type of cos-
metic differences as described above, the same as Var(𝜇̂)
in Equation (5) for the Hartung-Knapp method for
meta-analysis. Hence, the Hartung-Knapp method under
the random-effects model for meta-analysis is equivalent
to the WLS regression model where the error variances
are known up to a constant of proportionality. The con-
nections between these two models is further clarified by
the observation that the quadratic form 𝜖TW𝜖∕(n − 1) in
Equation (14) is equal to H*2 in Equation (5); from
Equation (11), we have k̂ = H∗2.

4.3 Random-effects meta-regression
All of the methods for WLS regression in Sections 3, and
in particular Equations (7), (8), (9), (10), and (11), apply
in the WLS regression model for a more general regres-
sion where X is not given by 1 (the case where X = 1
was examined to derive the results for meta-analysis in the
absence of covariates). We now apply the theory of WLS
regression to random-effects meta-regression.1,2,40,41 The
random-effects meta-regression model is a generalisation
of model (1)

Yi = 𝛽0 +
q∑

𝑗=1
𝛽𝑗xi𝑗 + 𝜍i + 𝛿i, (15)

where xij is the value of the jth study level covariate in the
ith study; 𝛽0 is the model intercept and the parameters 𝛽 j,
j = 1, … , q, are the regression coefficients associated with
the q study level covariates. We continue to assume 𝜍 i ∼
N(0, 𝜏2) and 𝛿i ∼ N(0, s2

i ), but 𝜏2 is now referred to as the
residual between-study variance.

We will show, using the theory in Section 3, that
random-effects meta-regression models can be fitted as
WLS regressions where we do not simplify matters by tak-
ing X = 1. This extends the equivalences that we have

established to the random-effects meta-regression setting.
The matrix X therefore now also contains information
on the covariates in additional columns. The only other
distinction between the random-effects meta-regression
and meta-analysis model is that we continue to define
W=diag

(
1∕

(
s2

i + 𝜏2)) but 𝜏2 but is now estimated under
the meta-regression, rather than under the meta-analysis,
model.

4.3.1 WLS regression and the
conventional method for random-effects
meta-regression
The conventional method for meta-regression is simply
a WLS regression model where the weights are given by
1∕(s2

i + 𝜏2), which are treated as known to be the recipro-
cals of the total study variances.20 Knapp and Hartung20

discuss the use of a variety of alternative statistical distri-
butions when making inferences, but the first possibility
they mention is the standard normal distribution. Upon
deciding to use the standard normal distribution, the con-
ventional method for meta-regression is therefore equiv-
alent to a known variance and independent errors WLS
regression (Section 3.1) with W=diag

(
1∕

(
s2

i + 𝜏2)).

4.3.2 WLS regression and the
Hartung-Knapp method for random-effects
meta-regression
From Equations (10) and (11), Var(𝛃̂) from the WLS
regression described in Section 4.3.1 is multiplied by k̂ =
(1∕(n−p))𝜖TW𝜖 =

∑
w∗

i (Yi − Ŷi)2∕(n−p) = H∗2 to obtain
the corresponding Var(𝛃̂) under the model where the error
variances are known up to a constant of proportionality.
This H*2 is a generalisation of H*2 in Equation (5) for
random-effects meta-regression where the average effect
size 𝜇̂ is replaced by the fitted values of the model (Ŷi).

For this second WLS regression model to be equiva-
lent to the Hartung-Knapp method for random-effects
meta-regression, the Hartung-Knapp method must there-
fore also multiply conventional variances of 𝛃̂ by this more
general H*2. It must also use the tn−p-distribution when
making inferences, where q = p − 1. This is exactly
what the Hartung-Knapp method does, and its details
are fully explained (but using different notation to us) in
Section 3 of Knapp and Hartung20 for a single covariate
and in Viechtbauer et al42 in the more general situation
when there are multiple covariates. Hence, also for the
meta-regression model holds that the conventional and
Hartung-Knapp methods are equivalent to WLS regression
models where variances are known and known up to a
constant of proportionality with W=diag

(
1∕

(
s2

i + 𝜏2)).
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4.4 Summary
To summarise this discussion, the Hartung-Knapp method
for random-effects meta-analysis and meta-regression can
be implemented by fitting WLS regression models where
the outcome data are the Yi, and the weights are the
reciprocals of the estimated total study variances. This is
because standard WLS regression software assumes that
the variances are inversely proportional to the weights.
The weights 1∕(s2

i + 𝜏2) must however be manually spec-
ified. Hence, 𝜏2 has to be estimated first by means of a
random-effects meta-analysis or meta-regression, so that
the weights w∗

i = 1∕(s2
i + 𝜏2) can be calculated. The con-

ventional method for random-effects meta-analysis and
meta-regression can also be implemented by fitting closely
related WLS regression models where the variances are
treated as known.

5 EXAMPLES

We now numerically demonstrate the equivalence of the
results from the conventional and Hartung-Knapp meth-
ods for random-effects meta-analysis and meta-regression
and the two types of WLS regression models.

5.1 Computation in R
The conventional and Hartung-Knapp methods, and
the two WLS regression models, can be applied using
R39 with the metafor43 and preloaded stats pack-
ages. Annotated R code illustrating how these models
were fitted to both examples that follow is available
via https://osf.io/y35m2/. Briefly, the random-effects
meta-analysis and meta-regression models were easily
fitted to outcome data using the rma.uni function using
the default restricted maximum likelihood (REML) esti-
mator for estimating 𝜏2. This estimate of 𝜏2 was then
incorporated in the weights that were computed with
1∕(s2

i + 𝜏2). Hence, WLS regression models were subse-
quently fitted using the lm function and specifying the
weights. Results from the second type of WLS regression
model (Sections 3.2 and 4.3.2) were immediately obtained
from R. By dividing the reported standard errors of esti-

TABLE 1 Results of applying the random-effects (RE) model using the conventional and Hartung-Knapp (Modified) methods and
weighted least squares (WLS) regression with error variances known (Known) and known up to a proportionality constant (Prop. constant)
to the meta-analysis on the effectiveness of open versus traditional education on student creativity

Estimate SE Test Statistic P Value 95% CI 𝜏2 k̂
Conventional (RE)/Known (WLS) 0.246 0.176 z = 1.399 0.162 (-0.099;0.591) 0.223 1
Modified (RE)/Prop. constant (WLS) 0.246 0.167 t = 1.477 0.174 (-0.131;0.623) 0.223 0.896

Note. Estimate refers to the average effect size estimates, SE refers to the standard error, p-value is the two-sided P value, 95% CI refers to the 95% confidence
interval, 𝜏2 is the restricted maximum likelihood estimate of the between-study variance, and k̂ is assumed to be one (denoted by k̂ = 1) when using the conven-
tional method/WLS regression with known error variances, and estimated using Equation (11) when using the modified method/WLS regression where error
variances are known up to a proportionality constant.

mated regression parameters from our second type of
WLS regression model by

√
k̂ as described by Thompson

and Sharp,40 we obtained the corresponding standard
errors from our first type of WLS regression model
(Sections 3.1 and 4.3.1) where all variances are treated as
fixed and known.

5.2 Example 1: Random-effects
meta-analysis
We begin by applying all methods to a meta-analysis
concerning the effectiveness of open versus traditional
education on student creativity where no covariates are
included. This meta-analysis contains 10 primary studies
with standardized mean difference (Cohen's d) as effect
size measure, and the data were obtained from Table 9 in
Hedges and Olkin.44 Student's creativity in each primary
study was measured by evaluating their ideas, figures,
or drawings in response to a verbal or figural stimulus,
and for each primary study was coded whether students
were attending open versus traditional education. A posi-
tive standardized mean difference indicates that students'
average creativity was larger in the open compared to the
traditional education.

Analysis was performed using Hedges' standardized
mean difference g as outcome data (the Yi in model 1)
in order to remove the small sample bias in Cohen's d
(see Chapter 4 of Borenstein et al2). More specifically,
Equations (4.23) and (4.24) of Borenstein et al2 were used
to convert Cohen's d to Hedges' g and their within-study
variances. However, the exact (see Equation (6e) in
Hedges45), rather than the approximate correction factor
given in Equation (4.22) of Borenstein et al,2 was used in
these two equations.

The first row of Table 1 shows the results of conven-
tional meta-analysis (Section 2.1) and the WLS regression
with error variances assumed to be known (Section 3.1).
Here, we show the estimated average effect size (Esti-
mate), their standard errors (SE), the test statistics used
to test the null hypothesis of no effect, the correspond-
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TABLE 2 Results of applying the random-effects (RE) model using the conventional and Hartung-Knapp (Modified) methods and
weighted least squares (WLS) regression with error variances known (Known) and known up to a proportionality constant (Prop. constant) to
the meta-analysis on the efficacy of the pneumococcal polysaccharide vaccine against pneumonia

Conventional (RE)/Known (WLS) Modified (RE)/Prop. constant (WLS)
Estimate (SE) 𝛽0 -0.312 (0.178) -0.312 (0.179)

𝛽1 0.201 (0.281) 0.201 (0.284)
𝛽2 -0.242 (0.286) -0.242 (0.289)

Test statistic (P value) 𝛽0 z = -1.759 (0.079) t = -1.742 (0.105)
𝛽1 z = 0.714 (0.475) t = 0.707 (0.492)
𝛽2 z = -0.846 (0.397) t = -0.838 (0.417)

95% CI 𝛽0 (-0.661;0.036) (-0.700;0.075)
𝛽1 (-0.350;0.751) (-0.412;0.813)
𝛽2 (-0.803;0.319) (-0.866;0.382)

𝜏2 or k̂ 𝜏2 = 0.146 𝜏2 = 0.146
k̂ = 1 k̂ = 1.009

Note. 𝛽0 is the estimated model intercept; 𝛽1 and 𝛽2 are estimated log odds ratios that describe how the two study level covariates affect the average log odds ratio;
SE refers to the standard error of 𝛽0, 𝛽1, and 𝛽2; P value is the two-sided P value; 95% CI refers to 95% confidence interval; 𝜏2 is the restricted maximum likelihood
estimate of the residual between-study variance; and k̂ is assumed to be one (denoted by k̂ = 1) when using the conventional method/WLS regression with known
error variances, and estimated using equation (11) when using the modified method/WLS regression where error variances are known up to a proportionality
constant.

ing two-sided P values, 95% CIs for the average effect size,
the estimated between-study variance obtained with the
REML estimator,1 and the estimate of the proportionality
constant k. The second row of Table 1 contains the same
information for the Hartung-Knapp method (Section 2.2)
and WLS regression with error variances known up to pro-
portionality constant k (Section 3.2). Table 1 shows that
the conventional method for meta-analysis produces the
same results as our first WLS regression model and the
Hartung-Knapp method produces the same results as our
second WLS regression model.

5.3 Example 2: Random-effects
meta-regression
We also show the equivalence of the results from the
methods using a random-effects meta-regression model
with two covariates on the efficacy of the pneumococ-
cal polysaccharide vaccine against pneumonia.46 Each
participant was clinically and radiographically examined
to determine whether a patient had pneumonia. The
meta-analytic dataset contains sixteen 2 x 2 frequency
tables of randomized clinical trials on the efficacy of the
vaccine. Moreover, two covariates were included in the
model because healthy adults in low-income countries and
adults with a chronic disease in high-income countries
were predicted to be at greater risk of pneumonia than
healthy adults in high-income countries. Hence, these two
covariates could affect studies' treatment effects. A nega-
tive log odds ratio implies that the vaccine was efficacious.

Log odds ratios (the Yi in model 15) and their
within-study sampling variances were estimated using
Equations (5.8), (5.9), and (5.10) as described in Boren-
stein et al.2 Two study level covariates were included in

the random-effects meta-regression model. That is, two
dummy variables were created that provide the xi1 and xi2

in model (15), so that q = 2. The first of these covari-
ates took the values 0 and 1 for randomized clinical trials
that recruit participants with or without chronic illness,
respectively. The second of these covariates took the values
0 and 1 for randomized clinical trials conducted in high or
low-income countries, respectively. Hence, the parameter
𝛽0 in model (15) is the average log odds ratio in random-
ized clinical trials conducted in high-income countries
that recruited patients with a chronic illness (reference
category). The parameters 𝛽1 and 𝛽2 are log odds ratios
that describe the differences in average log odds ratio of
the reference category versus patients of randomized clin-
ical trials conducted in high-income countries that did not
have a chronic illness and patients of randomized clinical
trials conducted in low-income countries with a chronic
illness, respectively.

Table 2 shows that the same equivalences hold in the
context of random-effects meta-regression. The results
of conventional meta-analysis and the WLS regression
model with known error variances (first column) and
Hartung-Knapp method and the WLS regression model
with error variances known up to proportionality constant
k (second column) are numerically identical.

Now that we have established the equivalences between
the two types of methods for random-effects meta-analysis
and meta-regression, and the two WLS regression models,
we will discuss the implications of these findings.
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6 NEW INSIGHTS FROM THE NEW
JUSTIFICATION FOR THE
HARTUNG-KNAPP METHOD

We have now established important links between two
methods for meta-analysis and two WLS regression mod-
els. Our main reason for establishing these connections
is to provide further insight into the nature of the
Hartung-Knapp method. Two main types of additional
insights are provided by our findings.

6.1 Intuition for why the Hartung-Knapp
method has been found to be more
accurate in simulation studies
As we have already explained, the usual justifications of
the conventional and Hartung-Knapp methods explicitly
require that all variances are treated as if fixed and known.
We have also explained that simulation studies indicate
that the Hartung-Knapp method is more accurate, but
both methods can be justified by the same random-effects
meta-analysis model. Hence, except for the suspicion that
the uncertainty in 𝜏2 may be taken into account by the
Hartung-Knapp method because a t-distribution is used,
there has previously been no intuitive reason for the bet-
ter performance of the Hartung-Knapp method. Our links
with WLS regression models enable us to provide this
intuition.

This is because we have established that inferences for
the average effect from the Hartung-Knapp method are
equivalent to fitting an intercept only WLS regression
model, with weights w∗

i , where the error variances are
known only up to a constant of proportionality. We have
therefore established a new type of justification for using
the Hartung-Knapp method for meta-analysis. In this
new justification, the variances are not assumed known.
Although the strong assumption that the total study vari-
ances s2

i + 𝜏2 are known to within a constant of propor-
tionality is required ; this is a weaker assumption than the
usual assumption that these are completely known. Our
new justification for the Hartung-Knapp method there-
fore helps to explain why it has been found to perform
better in simulation studies. For example, in situations
where the total variances s2

i + 𝜏2 are likely to be positively
biased, the Hartung-Knapp method may be able to per-
form better if E(k̂) < 1. That is, the likely positively biased
total variance is in these cases scaled down if k̂ < 1 (see
Equation 10). The Hartung-Knapp method may also be
able to better describe real datasets where, for example,
the estimated between-study variance is much larger or
smaller than the true value by compensating with a small
or large k̂, respectively. To summarise, the Hartung-Knapp
method has some potential to reduce the problems asso-
ciated with the estimation of the variance components in

meta-analysis, albeit in a very direct and crude manner.
The conventional method is not able to do this and so can
be expected to perform worse, exactly as simulation studies
have found.

6.2 Ad hoc adjustments to the
Hartung-Knapp method
We have already discussed the undesirable feature of the
Hartung-Knapp method that it may result in shorter CIs
for the average treatment effect than the conventional
method.16,19 One solution to this has been the ad hoc sug-
gestion to constrain H*2

≥ 1 in Equation (5), so that
V HK
𝜇̂

≥ V𝜇̂. The use of quantiles from the t distribu-
tion by the Hartung-Knapp method then ensures that the
CI of this method is wider than the CI of the conventional
method. However, it is hard to justify constraints such as
this on any grounds other than a desire to be conservative
or cautious when using the established justification of the
Hartung-Knapp method.

Our new justification of the Hartung-Knapp method
also provides insight concerning this issue and gives
additional credence to the idea of placing constraints on
H*2. This is because usually when fitting WLS regres-
sion models using standard methods, we assume that the
error variances are known to within a constant of propor-
tionality where we have no further information about the
magnitude of the residual variance. Hence, we may quite
reasonably estimate k to be any positive number. However,
in meta-analysis we will usually have estimated both s2

i
and 𝜏2 to at least a reasonable degree of precision, and so
we know that s2

i + 𝜏2 is approximately the variance of Yi.
This implies that k ≈ 1, but usually, when fitting WLS
regression models we do not have this insight.

Furthermore, and as explained above, we have k̂ = H∗2.
This suggests that we should consider constraining H*2 to
be close to one in the estimation. This gives, in particular,
credence to the idea of constraining H*2

≥ 1 to prevent
otherwise very small H*2 resulting in artificially short CIs,
but constraining H*2

≥ 1 is overly conservative17,20 and
our analysis suggests that we should consider constraining
H*2 ≈ 1, rather than H*2

≥ 1. Converting this suggestion
to a recommendation for constraining H*2 in a particular
way is very difficult, because it depends on characteris-
tics of the meta-analysis (eg, the number of effect sizes
included in a meta-analysis).

Despite this, we can make one concrete recommenda-
tion. Jackson et al19 propose an approach that selects the
CI based on the conventional or Hartung-Knapp method
depending on which is the widest (this is their second
hybrid method). This conservative approach can also be
implemented by constraining H*2, because the widths of
the CI of the conventional and Hartung-Knapp method are
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equal to 2z𝛼∕2

√
1∕

∑
w∗

i and 2H∗tn−1,𝛼∕2

√
1∕

∑
w∗

i , respec-
tively. Hence, the CI from the Hartung-Knapp method is
the same as the conventional one if H* = z𝛼/2∕tn−1,𝛼/2,
is shorter if H* < z𝛼/2∕tn−1,𝛼/2, and is wider if H* >

z𝛼/2∕tn−1,𝛼/2. Taking the widest CI of the two methods is
therefore equivalent to constraining H*

≥ z𝛼/2∕tn−1,𝛼/2
when using the Hartung-Knapp method. This constraint
can also be expected to result in a conservative analysis
since the widest of the two CIs is presented. However, this
adjustment is less conservative than the one proposed by
Knapp and Hartung20 where H* (or equivalently H*2) is
constrained to be greater than or equal to one. Hence, we
suggest that any meta-analysts who may have adopted the
convention of constraining the scaling factor to be greater
than one should consider instead applying the constraint
H*

≥ z𝛼/2∕tn−1,𝛼/2. This will also prevent very small H*2

resulting in artificially small standard errors.

7 CONCLUSIONS

The Hartung-Knapp method has been recommended
for general use because it provides more accurate infer-
ences (ie, coverage probabilities closer to the nominal
coverage rate) for the average effect than the con-
ventional random-effects meta-analysis method.15-17

The contribution of our paper to the literature is
threefold. First, we have shown that the conven-
tional and Hartung-Knapp methods for random-effects
meta-analysis and meta-regression are equivalent to
WLS regression models where the error variances are
assumed to be known, and assumed to be known up to
a constant of proportionality, respectively. In particular,
this provides a new, and more insightful, justification of
the Hartung-Knapp method. By using standard meth-
ods for WLS regression models to motivate some of the
main methods for meta-analysis, we hope that this work
will show that these methods are essentially just (albeit
slightly adapted) standard statistical methods. Second, we
provide intuition using this equivalence for why coverage
of the CI based on the Hartung-Knapp method has been
found to be closer to the nominal coverage rate than the
conventional method in simulation studies.15-17 Finally,
we explain why this equivalence gives greater credence on
placing ad hoc constraints on the scaling factor H*2, and
we therefore suggest that methods using a variety of such
constraints are worthy of further consideration.

We do not recommend as ad hoc constraint H*2
≥ 1,

as has previously been proposed.20 In situations where
such caution is required, we suggest instead imposing
the constraint H*

≥ z𝛼/2∕tn−1,𝛼/2 that is less conserva-
tive and is tantamount to presenting the most conservative
of the conventional CI and the CI of the Hartung-Knapp

method. Currently, only a limited number of papers17,20

study the properties of the CI of the Hartung-Knapp
method when constraining H*2

≥ 1 but these papers
do not consider alternative, and less conservative, con-
straints. Hence, future research could explore how the cov-
erage probabilities, and other properties such as interval
length, of the CI are affected by applying a variety of con-
straints on H*2. Moreover, Jackson and Riley47 generalised
the Hartung-Knapp method to multivariate meta-analysis
where also a scaling factor similar to H*2 is involved, so an
opportunity for future research is also to explore whether
statistical properties of the CIs with the Hartung-Knapp
method are improved if constraints are placed on this
scaling factor.

Our new justification for the Hartung-Knapp method
opens doors for applying meta-analysis models with stan-
dard statistical software for linear models, because the
error variances are usually assumed to be known up to
a constant of proportionality in this software. Hence, the
random-effects meta-analysis and meta-regression models
can be fitted using popular linear model software pack-
ages (ie, SPSS,37 SAS,38 and R39) as long as an estimate
for the (residual) between-study variance is available that
can be used to compute the weights. We suggest that the
Hartung-Knapp method is, in many respects, more closely
related to other statistical methodologies than the more
conventional approach. For example, the Hartung-Knapp
method is similar to the methodology applied in particle
physics (for a discussion see Baker and Jackson48 and Jack-
son and Baker49) and in economics where meta-analyses
are usually conducted with WLS regression models with-
out including an estimate of the between-study variance
in the weights.50 By using methods that are implemented
in standard software and widely used, the Hartung-Knapp
method enables meta-analysts to more directly use stan-
dard WLS regression model results and algorithms, for
example, those that relate to model diagnostics and check-
ing. Moreover, using the Hartung-Knapp method does not
limit the applicability of model diagnostics51 and graph-
ical methods (eg, forest plot52,53) that have been devel-
oped in the context of meta-analysis. This is because the
Hartung-Knapp method's estimated average effect is the
same as that of the conventional method whereas differ-
ences in the variance of this point estimate only have a
minor influence on model diagnostics and graphical rep-
resentations.

Our new justification applies to all types of data were the
random-effects meta-analysis or meta-regression model is
used. However, the approximations made by these models
are not necessarily very accurate in datasets that con-
tain a small number of studies with small sample sizes.6,7

The assumption that the total variances are known up
to a constant of proportionality, as required by our new
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justification of the Hartung-Knapp method, is also gen-
erally implausible in such situations. However, for the
Hartung-Knapp method to provide an improvement over
the more conventional approach, this assumption merely
needs to be more plausible than assuming that these vari-
ances are completely known. The Hartung-Knapp method
is therefore conceptualised as providing an improvement
because it requires less implausible, rather than plausi-
ble, assumptions about our knowledge of the variance
components.

Our new justification also emphasises the normality
assumptions made by standard methods for meta-analysis
as these are explicitly made when presenting WLS regres-
sion models. Models that avoid normal within-study
approximations, for example, generalised linear mixed
models for binary outcome data,54,55 should be considered
more often in application because, for example, inaccu-
rate normal within-study approximations can result in
bias.10,56 These more sophisticated models will result in
a different point estimate as well as CI and have the
potential to overcome concerns about biases that might
result from making strong normality assumptions when
using the conventional random-effects model. However,
the most appropriate way to use generalised linear mixed
models for random-effects meta-analysis remains an open
question that we do not attempt to address in this paper.

To summarise, we have provided a new justification
for the Hartung-Knapp method. This new justification
requires that the total study variances are known only up
to a constant of proportionality. This helps to explain why
the Hartung-Knapp method has been found to be more
accurate than the conventional method and gives more
credence to placing constraints on H*2 when computing
the variance of the estimated average effect. We suggest
that our new justification of the Hartung-Knapp method
should replace the established one because it provides
valuable additional insights and makes greater connec-
tions between methods for meta-analysis and statistical
methods more generally. We hope that our new insights
will help to inform the meta-analysis community as it
determines which, if any, of the many alternative meth-
ods for meta-analysis might ultimately replace the current
approach.
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