
ARTICLE

Received 27 May 2014 | Accepted 7 Apr 2015 | Published 14 May 2015

Exploring the quantum critical behaviour in a driven
Tavis–Cummings circuit
M. Feng1, Y.P. Zhong2, T. Liu1,3, L.L. Yan1, W.L. Yang1, J. Twamley4 & H. Wang2,5

Quantum phase transitions play an important role in many-body systems and have been a

research focus in conventional condensed-matter physics over the past few decades. Arti-

ficial atoms, such as superconducting qubits that can be individually manipulated, provide a

new paradigm of realising and exploring quantum phase transitions by engineering an on-chip

quantum simulator. Here we demonstrate experimentally the quantum critical behaviour in a

highly controllable superconducting circuit, consisting of four qubits coupled to a common

resonator mode. By off-resonantly driving the system to renormalize the critical spin-field

coupling strength, we have observed a four-qubit nonequilibrium quantum phase transition in

a dynamical manner; that is, we sweep the critical coupling strength over time and monitor

the four-qubit scaled moments for a signature of a structural change of the system’s

eigenstates. Our observation of the nonequilibrium quantum phase transition, which is in

good agreement with the driven Tavis–Cummings theory under decoherence, offers new

experimental approaches towards exploring quantum phase transition-related science, such

as scaling behaviours, parity breaking and long-range quantum correlations.
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I
n a quantum phase transition (QPT)1–8, the quantum system
displays nonanalytic behaviour, which is reflected by a
discontinuous change in a property of the ground state or

the structure of the excited states, when a system parameter
traverses a critical point. In many cases this discontinuous change
has a cusp-like character, surrounding which quantum
fluctuations dominate and novel phenomena can be explored.
QPTs are studied in a variety of naturally grown condensed
matter materials such as conductors, superconductors and
magnets. With the introduction of well-controlled quantum
elements, ranging from cold atoms, photons and trapped ions to
Josephson-junction qubits, it becomes possible to engineer a
quantum simulator, an ordered arrangement of the above-
mentioned quantum elements, to mimic and investigate the
properties of complex interacting quantum materials. Achieving a
QPT using fine-tuning knobs available in an experimentally
accessible Hamiltonian presents the first step towards engineering
such a simulator for exploring QPT-related physics in few or
many-body interacting quantum systems.

Recently, there has been extensive interest to investigate a QPT
in the Dicke model9 using artificially engineered systems both
experimentally10 and theoretically11,12. As another paradigm to
investigate light–matter interactions, the Tavis–Cummings (TC)
model13 is an integrable variant of the Dicke model, which also
yields significant interests covering a wide range of configurations
such as the multimode resonator14 and the TC lattice15. The TC
model is derived from the Dicke model in the rotating-wave
approximation, which is valid when the spin-field coupling is
weak in comparison with other characteristic frequencies of the
system. It is generally understood that a QPT can occur in the
Dicke model, rather than in the TC model, with the former
critical spin-field coupling required to be equal to geometric

mean of the spin and field resonance frequencies. However, most
laboratory-achievable spin-field couplings can only reach the
strengths that are many orders smaller than the Dicke critical
coupling strength. Even for some systems with ultrastrong
couplings16,17, the Dicke coupling strength is still unreachable.
As a result, achieving the Dicke QPT with current laboratory
techniques requires additional assistance. For example, it was
shown that an external drive in a cold atom system leads to
the Dicke Hamiltonian in the rotating frame, yielding a
nonequilibrium QPT10.

Since most artificially engineered quantum systems can only
reach coupling strengths that are within the TC model18–20, it
would be of significant interest to see whether a nonequilibrium
QPT can be observed within a driven TC model21,22. In
comparison with the Dicke model under a drive, no
approximation is necessary to transfer the driven TC model
from the laboratory frame to the rotating frame. Within the
rotating frame, a QPT is indeed predicated22 at a critical coupling
strength below the Dicke critical coupling strength. This driven
TC QPT critical coupling is comparable to the geometric mean of
the spin and field detunings from the drive frequency (here and
below referred to as the TC critical coupling, in comparison with
the Dicke critical coupling).

Here we show experimental evidence confirming the existence
of such a nonequilibrium QPT in a driven TC circuit, with four
superconducting phase qubits each coupled, at a fixed strength
smaller than the Dicke critical coupling by 200 times, to a
superconducting coplanar waveguide resonator. We witness the
nonequilibrium QPT through a dynamical measurement, by
recording the time evolution of the four-spin joint occupation
probabilities, while the TC critical coupling strength is swept over
time. In the experiment we demonstrate the high level of control
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Figure 1 | Diagrams of device and measurement sequence. (a) A false-colour device image highlighting the circuit elements such as the qubits (dark

squares) and the half-wavelength coplanar waveguide resonator (the sinusoidal line in the middle). Four superconducting qubits Qk (k¼ 1, 2, 3 and 4) are

individually coupled to the resonator (R). The microwave drive to the resonator is applied through the transmission line between Q1 and Q2 as indicated.

(b) Simplified circuit schematic. (c) Illustration of the pulse sequence, where the x axis indexes the qubits and the resonator, the y axis represents the

sequence time and the z axis represents the frequency (Supplementary Note 5 for designing the sequence). The four qubits, originally sitting at their idling

frequencies, are simultaneously tuned to the same frequency oq(t0) such that l/lc¼0.5 (at this point all qubits and the resonator are individually in their

own ground state), following which oq(t) is swept for a time t up to t, such that l/lc increases uniformly from 0.5 to 2.5 over the full period of t (see the

asymptotic curves and their shades). During the ramping, a microwave drive (the blue sinusoidal line) to the resonator R with a fixed frequency od and a

fixed drive strength O is always on (Methods for determining O). We record the four-qubit occupation probabilities as functions of the sweep time t, by

simultaneously tuning all four qubits to their measurement points at lower frequencies for joint qubit-state readout after sweeping oq(t) (see the sharp

trapezoids and their shades): in each sequence we record each qubit’s state by ‘0’ or ‘1’ in a single-shot manner, and repeating the same sequences many

times B103–104), we count the 16 probabilities P0000, P0001, P0010, ? and P1111, where ‘0’ and ‘1’ denote, respectively, the ground and excited states of each

qubit. These probabilities are used to calculate the collective spin operator hJzi (Methods).
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possible in our system by off-resonantly driving the common
resonator mode and subsequently fine-tuning the qubit frequency
to cross the TC QPT critical point, with the results measured
at different microwave drive strengths and durations in good
agreement with theory.

Results
The system and the Hamiltonian. Our driven TC circuit is built
in a circuit-quantum electrodynamics (QED) configuration23,
which realizes the on-chip analogue of cavity QED. Inheriting the
high scalability and controllability from microwave-integrated
circuits24,25 and benefiting from the significant coherence
improvement of superconducting qubits over the past
decade26,27, circuit–QED systems based on superconducting
qubits and resonators28,29 are suitable for building large-scale
quantum simulators30–33 to study fundamental many-body
problems.

Figure 1a,b presents the circuit layout, which consists of four
superconducting phase qubits coupled to a common coplanar
waveguide resonator19. The resonator frequency is fixed at
or/2pD6.2 GHz, around which the resonance frequency of each
qubit (ok

q for k¼ 1, 2, 3 or 4) can be individually adjusted. The
resonator’s energy decay rate is k1D0.4 MHz and its pure
dephasing rate k2 is negligible. Because the energy decay rate and
the pure dephasing rate for the qubits slightly vary as functions of
qubit frequency, we sample their values in a frequency range from

6 to 6.15 GHz and take the average in numerical simulation. The
qubits’ energy decay rates are, on average, G1D2.0 MHz and their
pure dephasing rates are, on average, G2D4.0 MHz. Couplings
between each qubit and the resonator are fixed by designing the
coupling capacitors to be nearly identical and therefore we
consider a homogenous coupling strength l/2p¼ 30 MHz in the
following treatment (Supplementary Note 5 and Supplementary
Fig. 1 for detailed sample parameters).

Applying an external microwave tone at od, we may generally
describe the Hamiltonian of the system in a rotating frame as,
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where N¼ 4, Dk
q ¼ ok

q�od Dr ¼ or�odð Þ is the detuning of
the qubit (resonator) resonance from the drive frequency, a (aw)
is the lowering (raising) operator of a single mode of the
resonator and sk

� ,sk
z are the kth-spin Pauli operators. O and O0k

are, respectively, the driving strengths to the resonator and to the
kth qubit. To understand the nonequilibrium QPT as derived
from equation (1), we assume four identical spins for simplicity,
and we simultaneously steer all four qubits on the same frequency
trajectory oq(t) as the system evolves, yielding Dk

q ¼ DqðtÞ. This
assumption applies to our experiment (Supplementary Fig. 5) and

0 0.5 1 1.5 2 2.5
−1

−0.5

0
� = 600 ns

1,000 ns

0
0.5

1.5

2.5

τ
t

n. s.

0 0.5 1 1.5 2 2.5
−1

−0.5

0
N = 2

4
8

∞

N

s.
d.

2 4 6 8
0.01

0.02

0.03

−40

−20

0

20

40

0.5 1 1.5 2 2.5
10−4

10−2

100

P
op

ul
at

io
n

〈J
z〉

 / 
(N

/2
)

〈J
z〉

 / 
(N

/2
)

�/�c

�/�c �/�c

�/
� c

|0〉
|1〉
|2〉

|0〉
|1〉
|2〉

E
n 

(M
H

z)

Figure 2 | hJzi’s signature behaviours across the critical point in the ground-state quantum phase transition and in the experimental dynamics,

calculated with Dr/2p¼30 MHz and X/2p¼4 MHz for example. The quantum critical region, illustrated by the light-green background in all panels,

happens around l/lc¼ 1 between the normal (n., the white region) and super-radiant (s., the green region) phases. (a) Numerical calculations of hJzi/(N/2)

by solving equation (1) for the ground state at different number of qubits N as indicated. The cusp-like behaviour at the critical point l/lc¼ 1 occurs only in the

thermodynamical limit, and the finite qubit cases (N¼ 2, 4 and 8) display the drastic rise after traversing the critical point. Inset illustrates the maximal

standard deviations (s.d.) of hJxi/(N/2) as calculated in a because of random noise (or inhomogeneity) for different number N of qubits involved. For

illustrative purpose, here we only consider the frequency uncertainty in each qubit d½ok
q=2p� ¼ � 1 MHz, relevant to our experimental set-up. It is seen that

uncertainties do not give large errors and increasing the number of qubits yields better suppression of the random noise. (b) Numerical calculations of

hJzi/(N/2) as function of l/lc following the experimental pulse sequence in Fig. 1c at different durations as indicated. Sample decoherence is included in

calculations. It is seen that hJzi/(N/2) curves rise around the same point as that in a. Inset illustrates l/lc as a function of the ramping time t during the pulse

sequence. (c) Numerically calculated energies of the lowest three energy eigenstates (top) and population distribution (in logarithmic scale) among these

three states (bottom) of the four-qubit Hamiltonian system described in equation (1) as functions of l/lc under decoherence, with t¼600 ns. Higher-energy

states are omitted for clarity. Starting with all qubits and the resonator in their own ground states at l/lc¼0.5 (at this point the system’s ground state |0i is at

E0E0 and takes the largest population as shown by the black line), En of the lowest few states significantly drop below 0 and the population distribution

quickly evolves as l/lc increases above 1 (in the light-green region), indicating a structural change of the eigenstates of the system crossing this critical point.
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reduces the complexity due to parametric inhomogeneity34,35.
Under another homogeneous approximation, that is, O0k ¼ O0,
the last two terms in equation (1), regarding the drivings on the
resonator and the qubits, are unitarily equivalent22. Since our
microwave tone in the present experiment is designed to drive the
resonator, the effect due to driving the qubits via the unwanted
but small microwave crosstalk can be absorbed into that of
driving the resonator. As a result, equation (1) is simplified by
neglecting the small terms involving O0k in the following
treatment.

The original undriven TC model possesses, in theory, a critical
coupling at lo

c ¼
ffiffiffiffiffiffiffiffiffiffiffioqor
p

, which is impossible to reach in our
circuit. In a rotating-frame variant of the driven TC Hamiltonian
shown in equation (1), the qubit (resonator) resonance frequency
oq (or) is replaced by the associated detuning Dq (Dr), yielding a
QPT whose critical point now scales with the geometric mean of
the spin and field detunings, that is, lc ¼

ffiffiffiffiffiffiffiffiffiffi
DqDr

p
. For such an

off-resonantly driven TC system, the QPT can be traversed
by engineering the homogenous coupling strength l to pass
through lc.

Since l is fixed in our case, to experimentally observe the QPT,
we sweep lc through l, that is, we sweep Dq such that l/lc

increases linearly with time from 0.5 to 2.5 over a duration of t
(see Fig. 2b inset). The detailed pulse sequence for performing the
experiment is illustrated in Fig. 1c: starting with all qubits and the
resonator in their own ground states, we turn on the microwave
drive at a fixed resonator-drive detuning Dr and then immediately
tune all four qubits to the same frequency such that l/lc¼ 0.5.
Following this, we sweep the qubit frequency on an asymptotic
trajectory (achieving a constant ramping rate for l/lc) for a time
duration t. Dynamics of the system during the ramping of l/lc

are measured by recording the four-qubit joint occupation
probabilities as functions of the sweep time. Evidence of the
QPT can be witnessed in the change of the inferred mean values
of the collective spin operator, that is, Jz ¼

P4
k¼1 sk

z=2, as l/lc

increases above 1.
We note that our qubit is not an exact spin-1/2 system because

of its weak anharmonicity, that is, there exists a next higher
energy state. The pulse sequence, shown in Fig. 1c, is designed to
avoid significant state population leakage to the qubit’s next
higher energy state. When probing the four-qubit dynamics we
specifically parametrize some relevant Hamiltonian parameters
such as the drive strength O/2p, the resonator-drive detuning
Dr/2p and the total sweep duration t under experimental
constraints (Supplementary Note 5 for detailed discussions).

The QPT in the driven TC model. Before presenting our
experimental results, we first describe the ideal QPT as predicted
by theory22, and relate it to our experimental reality. In particular,
we try to clarify the quantum critical behaviour in the context of a
few qubits coupled to a common resonator mode and discuss the
connection between the few-qubit case and the case in the
thermodynamic limit; we also try to clarify how the dynamical
measurement via a swept oq(t) (equivalent to uniformly varying
l/lc over time) correlates with a signature of the QPT. According
to ref. 22, the QPT is present when the system switches from a
normal phase to a super-radiant phase in the rotating frame. In
this generic ground state QPT, around the QPT’s critical point
(l/lc¼ 1) we may observe a sharp cusp in the scaled moments
Jxh i=ðN=2Þ � l=lc� 1j jgx (with gx¼ 1/2) and Jzh i=ðN=2Þ �
l=lc� 1j jgz (with gz¼ 1) for l/lcZ1, and also in the mean

number of photons with aya
D E

=ðNÞ � l=lc� 1j jga (with ga¼ 1)
for l/lcZ1. The critical exponents gx,z,a represent the critical
scaling behaviour observable in the thermodynamical limit
(Supplementary Note 1). In contrast to the cusp-like behaviour
in the thermodynamic limit, the QPT in the few-qubit case yields

hJzi/(N/2) curves that rise in a smooth but abrupt manner
(Fig. 2a). Nevertheless, the critical point for the few-qubit case
can still be visually identified proximal to l/lc¼ 1. Owing to the
dissipative nature of our system and the hardware limitation we
focus our observation on hJzi/(N/2), whose behaviour around
l/lc¼ 1 can be a sufficient evidence of the QPT (Discussion and
Methods).

The QPT as evidenced in Fig. 2a, by the rise of hJzi/(N/2), is a
generic ground-state QPT in the rotating frame22. Starting from
the normal ground state at l/lcoo1, to reach the super-radiant
ground state at l/lc41 we have to ramp up l/lc very slowly, in
accordance with the adiabatic condition. For an open quantum
system, the adiabatic condition can be difficult to satisfy since
dissipation plays a decisive role, given long enough evolution
times. As such, we examine the QPT in a nonadiabatic manner:
we ramp up l/lc quickly and linearly over durations that range
from a few hundred to a thousand nanoseconds (comparable to
the qubit energy relaxation time 1/G1), in order to minimize the
impact of dissipation on the dynamics. During the process we
constantly monitor the four-qubit occupation probabilities, from
which we calculate hJzi/(N/2) to study its behaviour over time.
As a comparison, we numerically model the time evolution
of hJzi/(N/2) under open system dynamics as described
by equation (1) based on a master equation approach
(Supplementary Note 3). As our numerical simulation suggests,
excited states of the system can be populated during the
evolution, and the population distribution among different
eigenstates tends to stabilize after l/lc increases above 1.5
(Fig. 2c). In particular, in the nonadiabatic process and under
decoherence, hJzi/(N/2) still rises up around l/lc¼ 1, in a style
(Fig. 2b) very similar to that in Fig. 2a. Therefore, the onset where
hJzi/(N/2) rises up abruptly from � 1 should correlate well with
the critical point of the generic ground-state QPT, which in itself
reflects a situation where a qualitative change occurs in the
properties of the system’s eigenstates as a function of the
Hamiltonian parameter in equation (1) (here lc ¼

ffiffiffiffiffiffiffiffiffiffi
DqDr

p
). Our

experiment, although involving the system’s higher energy states,
should still provide strong evidence for the QPT via the observed
abrupt change of hJzi/(N/2) as l/lc is tuned through unity.

Experimental observation of the QPT. Following the experi-
mental sequence outlined in Fig. 1c, in Fig. 3a we show the typical
dynamics measured at Dr/2p¼ � 30 MHz, O/2p¼ 4 MHz and
t¼ 600 ns, with the 16 four-qubit joint occupation probabilities
(P0000, P0001, P0010,?) evolving with the sweep time t. The choice
of a negative Dr is to minimize the state leakage caused by the
microwave drive, which should not affect the dynamics and the
QPT physics as calculated using a positive Dr in Fig. 2. The 16
probabilities can be grouped according to their excitation quanta,
and the very close dynamics of the probabilities in the same group
suggest that four qubits behave similarly, validating the identical
spin assumption in the QPT theory. hJzi/(N/2) can be calculated
using these 16 probabilities, as processed in Fig. 3b (points with
error bars). By mapping the x axis in time to l/lc, we display the
hJzi/(N/2) versus l/lc curves, with values of O as listed and
Dr/2p¼ � 30 MHz, for the cases of t¼ 600 and 1,000 ns in
Fig. 3c,d, respectively (more experimental data for Dr/2p¼
� 20 MHz can be found in Supplementary Fig. 2). Comparing
with those shown in Fig. 2a,b, it is seen that the experimental
results have unambiguously caught the main feature of the off-
resonantly driven QPT, that is, a signature rise of the scaled
moment hJzi as l/lc increases above 1, the critical point. We note
that the spectral line widths for the qubits and the resonator are
defined by their energy relaxation and dephasing rates (G1, G2, k1

and k2), all less than values of |Dq| (for example, E2p� 13 MHz
at l/lc¼ 1.5 where hJzi rises to a high level. Note that Dqo0) and
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|Dr| (¼ 2p� 30 MHz) used in measurements for data in Fig. 3.
We also verify that state leakage to the next higher energy state of
the qubits is reasonably small during these measurements
(Supplementary Fig. 3). As such, the rise around l/lc¼ 1 is
compatible with the critical point quoted in the context of the
nonequilibrium QPT, which reflects a structural change of the
system’s eigenstates.

Different from the ideal QPT case in the isolated system, the
interplay between the external drive and decoherence irreversibly
evolves the system into a nonequilibrium quasi-steady state,
where the term quasi refers to the fact that hJzi/(N/2) tends to
approximately level off at longer sweep times t. Using typical
coherence parameters of our device, we also simulate the
experimental conditions for the experimental data shown in
Fig. 3b–d (lines). The numerical results show that the system
reaches the quasi-steady state approximately after l/lc41.5, and
the situation slightly varies with Dr. Nevertheless, our experi-
mental data are in good agreement with numerical simulations
taking into account decoherence with no fitted parameters.

Moreover, a faithful simulation requires a clear understanding
of the operational imperfections, particularly when the under-
lying problem is otherwise intractable. As discussed in the
Supplementary Note 5, we specifically design the pulse sequence
to minimize the dominant experimental imperfections in
equation (1), including using appropriate negative detunings of
{Dr, Dq} and ramping rates of l/lc (or equivalently the sweep
durations t). Nevertheless, there are other experimental subtleties

that we cannot avoid, for example, slight state leakage
(miscounted as hJzi’s signal in the measurements). By taking
into account of the state leakage, we find better agreement
between the experimental data and theory (details in the
Supplementary Note 5).

Discussion
To further understand quantum critical behaviour beyond the
observed QPT, we have to return to the noiseless model. We first
refer to an undriven TC model in comparison with the driven TC
model (equation (1)), in the latter of which the ground-state QPT
is related to a breaking of the parity symmetry22. The undriven
TC Hamiltonian Htc ¼ oqJz þorayaþ l

2ðaJþ þ ayJ� Þ commutes
with a parity operator P¼ eipL, where L¼ Jzþ awaþN/2
represents the total number of excitations of the collective
system. Parity conservation ensures that hJxi remains zero and
hJzi increases in a staircase manner as the spin-field coupling l
increases. With increasing l, it is shown22 that level crossings
occur, for example, between the ground state and the excited
states, after crossing the critical point (that is, l4 ffiffiffiffiffiffiffiffiffiffiffioqor

p
purely

for theoretical discussion only. Note that by definition l�ffiffiffiffiffiffiffiffiffiffiffioqor
p

is required in the TC model), and this results in discrete
parity changes in the state of the system. However, in the driven
TC model, with critical point changed from

ffiffiffiffiffiffiffiffiffiffiffioqor
p

to
ffiffiffiffiffiffiffiffiffiffi
DqDr

p
,

the QPT really happens; however, parity is no longer conserved
since [H0,P]a0. The broken parity can be associated with
avoided level crossings in the eigenspectra, and the excitation
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Figure 3 | The four-qubit quantum phase transition experimental results in comparison with numerical simulation. (a) Four-qubit joint occupation

probabilities (in logarithmic scale) as functions of the sweep time t for Dr/2p¼ � 30 MHz, O/2p¼4 MHz and t¼ 600 ns (error bars, on the order of 1%,

are not shown for clarity). lc/2p varies from 60 MHz at t¼0 ns to 12 MHz at t¼600 ns. The 16 probabilities are grouped by their corresponding excitation

quanta as marked by different colours: green for no excitation (P0000), purple for one quantum excitation (P0001, P0010, P0100, P1000), blue for two quantum

excitation (P0011, P0101, ?, P1100), red for three (P0111, P1101, P1011, P1110) and black for four (P1111). The critical point is approached when the two-quantum-

excitation curves start to gain finite probability values. Curves in the same group behave similarly, validating the identical spin assumption in the QPT

theory. (b) hJzi/(N/2) dynamics calculated from data in a (points with error bars). Line is a numerical simulation. Error bars are s.d. of repetitive

measurements, during each measurement we add a random bias sequence to each qubit to simulate the frequency uncertainties of ±1 MHz (the

uncertainty level of our calibration of the qubit frequency). Experimentally measured error bars agree with numerical calculations considering all known

uncertainties in our experiments, with the majority of the errors coming from the frequency uncertainties in biasing the qubits, which accumulate over the

sweep time, and the readout uncertainties of the occupation probability. (c,d) hJzi/(N/2) as functions of l/lc showing the existence of QPT (points with

error bars). Lines are numerical simulations including decoherence. Error bars are obtained similarly to those in b. The choice of a negative Dr is to

experimentally minimize the state leakage, which should not affect the dynamics and the QPT physics as calculated using a positive Dr in Fig. 2.

Experimental signal of hJzi is slightly larger than theory prediction because of the slight state leakage, which is miscounted as hJzi’s signal in the

measurements (Supplementary Figs 3 and 4).
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number L is no longer conserved. This results in a smooth rise,
that is, a ‘rounded’ staircase for hJzi, after crossing the critical
point, if the microwave drive is weak enough (note that in the
present experiment the weak drive limit is not reached since
equation (1) assumes four identical spins, which requires that the
drive strength O has to cover, at least, the frequency uncertainties
while simultaneously tuning all four qubits to follow the same
frequency trajectory oq(t)).

The QPT under consideration also behaves differently from the
Dicke QPT10 as regards parity. It is a generic Dicke model, rather
than a driven Dicke model, achieved in ref. 10, for which parity is
conserved in the normal phase. In contrast, no parity is conserved
in our driven TC system in either the normal or the super-radiant
phase. Parity breaking is responsible for some scaling behaviour,
and the parity symmetry is relevant to various types of quantum
correlations36,37.

The driving in our case not only breaks the parity symmetry of
the original TC system, but also helps circumventing the ‘no-go’
theorem due to the restriction from the Thomas–Reiche–Kuhn
sum rule38–40. As discussed in Supplementary Note 2, the small
A2 term (with A2¼k(aþ aw)2), which is neglected in the above
treatment but whose appearance might forbid the QPT, turns to
be a harmless shift in Dr in the rotating frame. Therefore, the
introduction of the driving profoundly alters the resulting
physics, enabling the observation of a nonequilibrium QPT.

Although our data are fully compatible with the none-
quilibrium QPT picture as predicted by the off-resonant driven
TC theory, it is worth noting that currently we cannot exclude the
possibility of a semiclassical interpretation of our experiment. In
contrast to our experimental condition that involves only finite
quantum elements and finite excitation levels in each element,
semiclassical treatments employ continuous variables that would
work better in the thermodynamic limit. Unfortunately, the
relevant semiclassical treatments that we are aware of only deal
with specific conditions and are not suitable for interpreting our
off-resonant driven TC experiment (Supplementary Note 4).
Therefore, whether a semiclassical alternative is possible to
explain the data remains an open question. Along this route, the
tomography measurement of the QPT dynamics, although
technically challenging, could allow the exploration of any
possible quantum correlations encoded in the QPT, which would
be useful to answer the open question as regards a semiclassical
alternative in future experiments.

In addition, following on from this work we expect
demonstrations of a staircase behaviour in hJzi and a cusp-like
behaviour in hJxi around the critical point, both hallmarks of the
generic ground-state QPT, in future experiments using larger
numbers of closely identical qubits with improved coherence and
more sophisticated control. By further suppressing decoherence
we may enable the demonstration of the ground-state QPT in a
configuration similar to the present device strictly following the
proposed implementation in ref. 22. With recent progress in
superconducting quantum information technology and the
promising outlook to develop intermediate-scale complex
quantum circuits, we believe that further exploration of many-
body physics in a nonequilibrium condition by building a solid-
state quantum simulator with only weak spin-field couplings can
be expected in the near future. This will help improve our
understanding of the interplay between nonequilibrium and
quantum correlations as well as the role of parity symmetry in
many-body systems.

Methods
Tuning X. The microwave drive strength O in equation (1) depends on both the
microwave drive amplitude A and the coupling capacitance for feeding energy into
the resonator, with the latter being set once the device and the measurement set-up

are fixed. A is what we usually quote using the room-temperature electronics. More
importantly, the O–A relation could weakly depend on the off-resonance magni-
tude of Dr because of the frequency dependence of the transmission coefficient of
the microwave cables at cryogenic temperatures, and the interference by various
box modes and spurious two-level defect modes. To find out the exact O used in
our experiment, we start with determining the on-resonance O by calibrating the
relation between O and A. We resonantly drive the resonator using a single-tone
microwave pulse with an amplitude A for a period of t (typically 50 ns), after which
we bring a qubit, originally in its ground state, to resonantly interact with the
resonator for detecting the resonator state24. The microwave drive generates a
coherent state in the resonator and the subsequent qubit–resonator interaction
results in multitone vacuum Rabi oscillations whose frequencies depend on the
resonator populations. We record the time evolution of the qubit probabilities in
the excited state for the first 300 ns, from which the energy-level population
probabilities of the resonator (Pn for n¼ 0, 1, 2, ?) are inferred. The resonator
energy-level populations satisfy the Poisson distribution and we quote the
displacement a, which is the square root of the average photon number in the
resonator, by a¼ (

P
nnPn)1/2. For a fixed experimental set-up and a fixed t, the

ratio g¼ |a|/A is a constant, and can be experimentally determined by sampling a
group of A and a values. The drive strength is thus O¼ gA/t.

To calibrate the off-resonance O, we carry out the 2-qubit experiment with a
similar set-up as discussed in Fig. 1, using the on-resonance O value
(¼ 2p� 4 MHz) as an initial trial. The measured results are then compared with
numerical simulation, which verifies that O values calibrated on resonance are also
applicable at small detuning values of Dr used in the four-qubit experiment
(Supplementary Fig. 6 for more detail).

Qubit readout and the correction. The qubit readout is performed using an
integrated superconducting quantum interference device (SQUID), which can tell
the flux difference between the qubit’s ground and excited states. The readout
details can be found in ref. 41. We simultaneously read out all the states of the four
qubits (one SQUID for each qubit), therefore, obtaining the 16 probabilities P0000,
P0001, P0010,..., P1111. These values are corrected before being further processed. The
readout fidelities for |gi (Fk,g) and |ei (Fk,e) for qubit Qk are obtained using the
single-qubit measurement. The correction matrix for Qk is the inverse of

Fk ¼
Fk;g 1� Fk;e

1� Fk;g Fk;e

� �
: ð2Þ

We correct all 16 values using the inverse of the tensor–product matrix
F1 � F2 � F3 � F4. The correction matrix may be slightly off because of the
small flux crosstalk when simultaneously reading out all four qubits, which is a
possible reason for that the experimental hJzi/(N/2) value does not start from � 1.0
at l/lc¼ 0.5 in Fig. 3.

Expectation values of the spin operator Jz. After correcting the 16 qubit-state
probabilities, we calculate the scaled hJzi using

Jzh i= N=2ð Þ ¼
X

i1 ;i2 ;i3 ;i4¼0;1

i1 þ i2 þ i3 þ i4

2
� 1

	 

Pi1 ;i2 ;i3 ;i4 ; ð3Þ

where ik¼ 0, 1 represents the ground and excited states of qubit Qk, respectively,
and the summation runs over all four-qubit eigenstates corresponding to the
16 probabilities.

To calculate hJxi/(N/2), the four-qubit state tomography must be performed,
which requires p/2 rotations on all four qubits (in addition to the microwave tone
on the resonator) before readout. We are unable to measure hJxi/(N/2) mainly
because of our limited hardware resource. In addition, the involved dynamical
phase when performing the tomography could cause extra complexity in
calculating hJxi/(N/2). Since Jz is not affected by the dynamical phase and its rise
traversing l/lc¼ 1 can be sufficient proof of the QPT, we choose to only measure
hJzi/(N/2) in the experiment.
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