
Dam et al. Annals of Intensive Care           (2022) 12:99  
https://doi.org/10.1186/s13613-022-01070-0

RESEARCH

Predicting responders to prone positioning 
in mechanically ventilated patients 
with COVID-19 using machine learning
Tariq A. Dam1*  , Luca F. Roggeveen1, Fuda van Diggelen2, Lucas M. Fleuren1, Ameet R. Jagesar1, 
Martijn Otten1, Heder J. de Vries1, Diederik Gommers3, Olaf L. Cremer4, Rob J. Bosman5, Sander Rigter6, 
Evert‑Jan Wils7, Tim Frenzel8, Dave A. Dongelmans9, Remko de Jong10, Marco A. A. Peters11, 
Marlijn J. A. Kamps12, Dharmanand Ramnarain13, Ralph Nowitzky14, Fleur G. C. A. Nooteboom15, 
Wouter de Ruijter16, Louise C. Urlings‑Strop17, Ellen G. M. Smit18, D. Jannet Mehagnoul‑Schipper19, 
Tom Dormans20, Cornelis P. C. de Jager21, Stefaan H. A. Hendriks22, Sefanja Achterberg23, Evelien Oostdijk24, 
Auke C. Reidinga25, Barbara Festen‑Spanjer26, Gert B. Brunnekreef27, Alexander D. Cornet28, 
Walter van den Tempel29, Age D. Boelens30, Peter Koetsier31, Judith Lens32, Harald J. Faber33, A. Karakus34, 
Robert Entjes35, Paul de Jong36, Thijs C. D. Rettig37, Sesmu Arbous38, Sebastiaan J. J. Vonk39, Tomas Machado39, 
Willem E. Herter39, Harm‑Jan de Grooth1, Patrick J. Thoral1, Armand R. J. Girbes1, Mark Hoogendoorn2 and 
Paul W. G. Elbers1 on behalf of The Dutch ICU Data Sharing Against COVID‑19 Collaborators 

Abstract 

Background: For mechanically ventilated critically ill COVID‑19 patients, prone positioning has quickly become an 
important treatment strategy, however, prone positioning is labor intensive and comes with potential adverse effects. 
Therefore, identifying which critically ill intubated COVID‑19 patients will benefit may help allocate labor resources.

Methods: From the multi‑center Dutch Data Warehouse of COVID‑19 ICU patients from 25 hospitals, we selected all 
3619 episodes of prone positioning in 1142 invasively mechanically ventilated patients. We excluded episodes longer 
than 24 h. Berlin ARDS criteria were not formally documented. We used supervised machine learning algorithms 
Logistic Regression, Random Forest, Naive Bayes, K‑Nearest Neighbors, Support Vector Machine and Extreme Gradient 
Boosting on readily available and clinically relevant features to predict success of prone positioning after 4 h (window 
of 1 to 7 h) based on various possible outcomes. These outcomes were defined as improvements of at least 10% in 
 PaO2/FiO2 ratio, ventilatory ratio, respiratory system compliance, or mechanical power. Separate models were cre‑
ated for each of these outcomes. Re‑supination within 4 h after pronation was labeled as failure. We also developed 
models using a 20 mmHg improvement cut‑off for  PaO2/FiO2 ratio and using a combined outcome parameter. For all 
models, we evaluated feature importance expressed as contribution to predictive performance based on their relative 
ranking.
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Introduction
At the start of the coronavirus disease 2019 (COVID-19) 
pandemic, prone positioning quickly became an impor-
tant treatment strategy in the armamentarium of inten-
sivists [1]. This was based on physiological plausibility 
inferred from clinical experience and clinical trials of 
proning in non-COVID-19 ARDS [2]. Proning has been 
shown to reduce mortality in moderate-to-severe ARDS. 
Proposed physiological mechanisms include improved 
gas exchange and changed lung mechanics facilitating 
lung-protective ventilation [3]. Gravitational forces may 
lead to improved drainage of respiratory secretions, re-
expansion of collapsed lung parenchyma, redistribution 
of aeration and pulmonary blood flow. This may improve 
lung compliance and improve ventilation–perfusion 
matching by reducing both shunting and dead space 
ventilation [3]. These effects in turn may facilitate lung-
protective ventilation by reducing ventilator mechani-
cal power while maintaining adequate gas exchange and 
therefore reduce the risk of ventilator induced lung injury 
[4].

However, proning is not without risks. Recognized 
adverse events include endotracheal tube obstruction 
and dislodgement, decreased clearance of mucus, and 
loss of venous access [5]. In addition, turning patients 
requires a coordinated team effort, which is a logistic 
challenge especially when operating at surge capacity in 
full personal protective equipment.

Therefore, predicting which critically ill COVID-19 
patients will benefit from prone positioning may be of 
clinical value and it should come as no surprise that labe-
ling of responders and non-responders quickly became 
common practice [1]. Response to proning is defined 
based on intermediate physiological measurements 
related to shunting, dead space ventilation and respira-
tory system compliance. As recently reviewed, this short-
term physiological response is, on average, consistent 
with that known from non-COVID-19 ARDS [3]. And 

in contrast to non-COVID-19 ARDS the outcome in 
terms of survival was shown to be significantly better in 
responders than in non-responders [3].

We hypothesized that machine learning techniques 
known for their classifying power and predictive perfor-
mance could be used on highly granular electronic health 
record data from critically ill COVID-19 patients to dis-
criminate responders from non-responders. To perform 
these analyses, we focused on  PaO2/FiO2 ratio, ventila-
tory ratio, respiratory system compliance and mechani-
cal power as outcomes defining responsiveness. We used 
the Dutch Data Warehouse (DDW) which contains more 
than 3,000 critically ill COVID-19 patients in 25 hospitals 
in the Netherlands [6].

Methods
The Medical Ethics Committee at Amsterdam UMC 
waived the need for patient informed consent and 
approved of an opt-out procedure for the collection 
of COVID-19 patient data during the COVID-19 cri-
sis as documented under number 2020.156. This report 
adheres to the STROBE reporting guidelines [7].

Patients
We selected all intubated ICU patients admitted during 
the first and second COVID-19 wave between March 
2020 and February 2021 with at least one registration in 
prone position. Subsequent turns into a prone position 
were included and patients intubated for less than 24  h 
were excluded. Prone positioning events were excluded if 
prone duration was measured as longer than 24 h which 
could indicate inaccurate registration of turning events. 
Berlin ARDS criteria were not formally documented [8].

Data preprocessing
Data from the DDW were filtered for unrealistic val-
ues (Additional file  1: Table  S1). Individual measure-
ments were aggregated for each hour starting from the 

Results: The median duration of prone episodes was 17 h (11–20, median and IQR, N = 2632). Despite extensive 
modeling using a plethora of machine learning techniques and a large number of potentially clinically relevant fea‑
tures, discrimination between responders and non‑responders remained poor with an area under the receiver opera‑
tor characteristic curve of 0.62 for  PaO2/FiO2 ratio using Logistic Regression, Random Forest and XGBoost. Feature 
importance was inconsistent between models for different outcomes. Notably, not even being a previous responder 
to prone positioning, or PEEP‑levels before prone positioning, provided any meaningful contribution to predicting a 
successful next proning episode.

Conclusions: In mechanically ventilated COVID‑19 patients, predicting the success of prone positioning using clini‑
cally relevant and readily available parameters from electronic health records is currently not feasible. Given the cur‑
rent evidence base, a liberal approach to proning in all patients with severe COVID‑19 ARDS is therefore justified and 
in particular regardless of previous results of proning.

Keywords: COVID‑19, Mechanical ventilation, Acute respiratory distress syndrome
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admission time stamp. Parameters were forward filled 
for a variable amount of time based on clinical expertise 
following discussions with senior intensivists. For fre-
quently measured parameters which are likely to be influ-
enced by patient position, forward filling was limited to 
the time of position change (Additional file 1: Table S2). 
Missing values were derived (Additional file 1: Table S3). 
Further details may be found in Additional file 1.

Outcome parameters
We created 5 different definitions to determine treatment 
success or failure for proning. We based these outcome 
definitions on  PaO2/FiO2 ratio, ventilatory ratio, respira-
tory system compliance, and mechanical power, as well 
as a composite outcome. The composite outcome was 
defined as any improvement of 10% or more in  PaO2/
FiO2 ratio, ventilatory ratio or respiratory system compli-
ance, without any deterioration of 10% or more in any of 
these parameters.

Target values were determined closest to 4 h after turn-
ing to a prone position. As clinical practice introduces 
some variance in the timing of measurements, measure-
ments between 1 up to 7 h after proning were included. 
This time window was chosen as improvement was gen-
erally observable within a clinical shift and supported by 
the median difference in  PaO2/FiO2 ratio for each hour 
after prone positioning (Additional file 1: Fig. S1).

Ventilatory ratio was calculated as (minute vol-
ume *  PaCO2)/(predicted body weight * 100 * 37.5). [9] 
Mechanical power was calculated based on peak pressure 
and plateau pressure where available (Tidal Volume * 
(Peak Pressure – (0.5 * (Plateau Pressure – PEEP)) * Res-
piratory Rate * 0.1) or based on PEEP and pressure above 
PEEP otherwise (Tidal Volume * (PEEP + Pressure Above 
PEEP) * Respiratory Rate * 0.098) where pressure above 
PEEP is defined as peak inspiratory pressure minus PEEP 
[10–12] (Additional file 1: Table S3).

These target values were compared to values obtained 
in the 3 h prior to turning. Turning patients to a prone 
position was labeled successful based on an improvement 
in outcome parameters of 10% or greater. This cut-off 
value was chosen to allow for small improvements to still 
be regarded as favorable in the most critically ill patients, 
while requiring a more pronounced effect in patients 
with more favorable physiology. Re-supination within 
4 h after pronation was labeled as failure. As the time of 
registration of patient positioning may deviate from the 
actual moment of change in position, measurements in 
the same hour as registration of position changes were 
discarded from analysis.

As a sensitivity analysis, we used 20% as a cut-off. We 
also used 20 mmHg as a cut-off for change on  PaO2/FiO2 
ratio in line with previous research [3]. In addition, we 

also created a second combined outcome defined as an 
increase of at least 10% in either  PaO2/FiO2 ratio, venti-
latory ratio or respiratory system compliance without 
a deterioration of more than 10% in the other two. This 
new combined outcome served to represent a bedside 
definition of proning success where proning should at 
least improve one physiological measure with a plausible 
association with outcome while not seriously worsen the 
clinical picture.

Features
Based on a combination of clinical expertise and corre-
lation with  PaO2/FiO2 ratio difference, a set of 80 can-
didate features were selected to prevent overfitting on 
too many features. These include feature augmentations 
created as rolling 2-h averages and 8-h slopes, as well as 
the last values of each outcome shortly before turning 
to a prone position (Additional file 1: Table S4). Missing 
data were imputed using median imputation for continu-
ous features and imputed as absent for medical history. 
To ensure the inclusion of clinically essential parameters, 
we combined the data for specific sub-parameters [9, 10]. 
Static and dynamic respiratory compliance were aggre-
gated into a single compliance parameter where static 
compliance took precedence over dynamic compliance 
if both were available. Furthermore, driving pressure and 
pressure above PEEP were combined into a delta-pres-
sure parameter. Previous medical history was aggregated 
into two groups based on respiratory system involvement 
as these were deemed likely to have a comparable effect 
on the outcome parameters. Finally, if a previous proning 
event was labeled as successful, the patient was marked 
as a previous responder to prone positioning in the next 
event. Numeric data were normalized for each analysis. 
Further details may be found in the online Additional 
file 1.

Modeling
Data were split in a training and test set, where subse-
quent turns of the same patient were kept in the same 
set to prevent leakage of information. For classification 
modeling, we used logistic regression, Random Forest, 
K-Nearest Neighbors (KNN), Support Vector Machines 
(SVM), Gaussian Naive Bayes (GNB) and XGBoost 
(XGB) for each of the classification targets. These mod-
els were selected based on their general predictive per-
formance and prevalence in medical literature [13–15]. 
For each of the models, hyper-parameter optimization 
was performed using a grid search on the training set. 
Contribution to the predictions was evaluated using fea-
ture importances, permutation importances and absolute 
coefficients (Additional file 1: Tables S5, S6).
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Results
1142 out of a total of 3600 patients were recorded with 
at least one prone position, with a total of 3619 prone 
events with a median of 2 (IQR 1–4) prone events per 
patient with a maximum of 27 prone events. The median 
last  PaO2/FiO2 ratio in the last 3  h before turning to a 
prone position was 112 mmHg (IQR 87–142, N = 2958). 
At 4 h post-prone positioning, the median difference in 
 PaO2/FiO2 ratio was 14.9 (IQR − 5–41, N = 2211). Time 
spent in a prone position was 17 h (11–20, median and 
IQR, N = 2632) (Table 1). PEEP levels before prone posi-
tioning were 12 (10–14.3, median and IQR, N = 3332) 
and after prone positioning were 12 (10–14.3, median 
and IQR, N = 3303). The overall ICU mortality of patients 
having spent time in a prone position was 424 out of 1142 
(37.1%) with a median length of stay of 15.6 days (9–26.5, 
median and IQR). Further details can be found in Addi-
tional file 1 (Additional file 1: Table S7).

This initial dataset of prone events was reduced for 
each outcome to contain only observations with a meas-
ured outcome. This resulted in a dataset of 1289 prone 
events for the composite outcome, 1820 prone events 
for  PaO2/FiO2 ratio outcome, 1626 prone events for the 
ventilatory ratio outcome, 1829 prone events for the 
mechanical power outcome and 2140 prone events for 
the compliance outcome. Outcome labels were balanced 
for predicting  PaO2/FiO2 ratios (52.3% success rate) up to 
moderately imbalanced for predicting the composite out-
come (15.8% success rate).

Predictive performance varied across models and out-
comes with the most accurate predictions originating 
from Logistic Regression, Random Forest and XGBoost 
on relative improvement of  PaO2/FiO2 ratio, based on 
a comparable 0.59–0.62 area under the receiver opera-
tor characteristic curve (ROC AUC), while the Gaussian 
Naive Bayes and Support Vector Machine provided an 
ROC AUC close to 0.5 (Fig. 1, Additional file 1: Table S8). 
For other outcomes, the ROC AUC was relatively close 
to 0.5. The F1-score, interpreted as the weighted average 
of the precision and recall values, was between 0.64 and 
0.67 for all models predicting  PaO2/FiO2 ratio, but lower 
for most models on the other outcomes with the excep-
tion of logistic regression (0.61) and XGBoost (0.58) for 
mechanical power (Fig.  2, Additional file  1: Table  S9). 
Results were similar for sensitivity analyses where the 
cut-off was set to 20% or 20  mmHg, and for sensitivity 
analyses where no minimal prone duration was required 
(Additional file 1: Tables S10, S11).

Underlying contribution of features to the predictive 
performance was generally low and showed little con-
sistency across models for the most predictive features. 
(Table  2, Additional file  1: Tables S12, S13). Correla-
tion between successful outcome of a previous proning 

episode and successful outcome of a subsequent proning 
episode was virtually absent. Correlation between PEEP 
levels before turning to a prone position and a successful 
outcome was absent as well (Table 3).

Discussion
This is the first study to attempt to use machine learning 
techniques in predicting prone positioning responsive-
ness in intubated critically ill patients with COVID-19 
using routinely registered data in the electronic health 
records. The authors are also not aware of any papers 
using traditional statistical regression-based techniques 
to infer predictors for the success of prone positioning. 
Despite extensive modeling using a plethora of machine 
learning techniques and inclusion of a large number of 
potentially clinically relevant features, discrimination 
between responders and non-responders based on com-
monly used physiological outcomes remained poor.

Notably, not even being a previous responder to prone 
positioning showed any meaningful contribution to the 
prediction of a next response. While expecting a similar 
response as before may seem intuitive, lung and respira-
tory system physiology can change rapidly with progres-
sion of disease or through the effect of therapy. Therefore, 
relying on previous success or failure may be suboptimal.

These findings of poor predictive performance in the 
context of suggested, although debated, benefit from 
prone positioning including mortality, based on previous 
literature, are important because of their clinical impli-
cation. In this context, prone positioning should not be 
withheld in mechanically ventilated COVID-19 patients 
based on their characteristics or previous proning fail-
ure despite the extra work involved and potential adverse 
effects [3].

Among the most consistently important features were 
the last known  PaO2/FiO2 ratio, along with  FiO2 slopes. 
However, their impact varied greatly among models and 
predictive performance remained poor (Additional file 1: 
Tables S12, S13).

Mortality in proned COVID-19 patients was 424 out 
of 1142 patients (37.1%) in this study, while overall mor-
tality for all mechanically ventilated COVID-19 patients 
was previously shown to be circa 30%, and overall ICU 
mortality for all COVID-19 patients was 24.4% [6, 16]. 
This trend is expected as each step corresponds to an 
increased severity of disease and thus a decreased chance 
of survival.

In one study on COVID-19 ARDS, survival was bet-
ter in responders than in non-responders to proning in 
terms of oxygenation [3]. However, this relationship is 
subject to debate for non-COVID-19 ARDS. Notably, in 
the landmark PROSEVA trial that showed an important 
mortality benefit for proning, there was no evidence that 
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Table 1 Patient characteristics including clinically relevant features used for prediction

Parameter Missing (%) Values Units

Number of prone events 3619

Number of patients 1142

Prone events per patient, median [Q1, Q3] 2 [1, 4]

Age, median [Q1,Q3] 0.0 66.0 [58.0,72.0] Years

Gender, female, n (%) 0.0 944 (26.1)

BMI, median [Q1,Q3] 0.0 27.2 [24.6,30.0]

Comorbidities

Chronic dialysis, n (%) 30.0 43 (1.7)

Chronic renal insufficiency, n (%) 30.0 256 (10.1)

Cirrhosis, n (%) 30.0 103 (4.1)

COPD, n (%) 30.0 349 (13.8)

Diabetes, n (%) 30.0 613 (24.2)

Neoplasm, n (%) 30.0 132 (5.2)

Hematologic malignancy, n (%) 30.0 193 (7.6)

Immune insufficiency, n (%) 30.0 356 (14.1)

Respiratory insufficiency, n (%) 30.0 196 (7.7)

Cardiovascular insufficiency, n (%) 30.0 131 (5.2)

Clinical measurements, average

etCO2 2 h, mean (SD) 14.6 41.3 (11.0) mmHg

paCO2‑etCO2 2 h, mean (SD) 27.5 13.3 (10.9) mmHg

FiO2 2 h, mean (SD) 3.3 65.6 (17.6) %

Peak airway pressure 2 h, mean (SD) 10.3 27.2 (6.2) cmH2O

Delta pressure 2 h, mean (SD) 20.3 13.5 (5.4) cmH2O

PEEP 2 h, mean (SD) 8.1 12.2 (3.3) cmH2O

Respiratory system compliance 2 h, mean (SD) 10.2 43.6 (31.0) ml/cmH2O

Tidal volume per kg 2 h, mean (SD) 8.2 6.7 (1.5) ml/kg

Respiratory rate 2 h, mean (SD) 1.5 24.7 (5.5) /min

Minute volume 2 h, mean (SD) 8.3 11.0 (3.0) ml/min

PaO2/FiO2 ratio 2 h, mean (SD) 20.4 120.5 (45.4) mmHg

Ventilatory ratio 2 h, mean (SD) 12.6 2.3 (0.9)

Mechanical power 2 h, mean (SD) 12.5 32.9 (14.3) J/min

Mean arterial blood pressure 2 h, mean (SD) 3.2 78.7 (12.5) mmHg

Heart rate 2 h, mean (SD) 5.9 88.5 (19.6) /min

CRP 2 h, mean (SD) 21.0 199.2 (123.8) mg/l

Leukocytes 2 h, mean (SD) 6.5 11.5 (5.5) 109/l

Thrombocytes 2 h, mean (SD) 4.8 304.9 (135.1) 109/l

d‑dimer 2 h, mean (SD) 57.7 3061.2 (2251.5) ng/ml

Lactate arterial 2 h, mean (SD) 44.0 1.3 (0.6) mmol/l

pO2 arterial 2 h, mean (SD) 19.5 69.7 (10.2) mmHg

pCO2 arterial 2 h, mean (SD) 6.8 53.9 (14.3) mmHg

pH arterial 2 h, mean (SD) 24.8 7.4 (0.1)

Creatinine 2 h, mean (SD) 6.0 115.8 (105.2) µmol/l

Clinical measurements, slopes

Last  FiO2 2 h slope, median [Q1,Q3] 13.5 0.0 [− 5.0,2.5] %/h

PaO2/FiO2 ratio 8 h slope, median [Q1,Q3] 80.2 1.0 [− 1.7,3.7] mmHg/h

Ventilatory ratio 8 h slope, median [Q1,Q3] 47.6 − 0.0 [− 0.0,0.0] /h

Mechanical power 8 h slope, median [Q1,Q3] 32.0 0.0 [− 0.6,0.6] J/min/h

Outcomes

PaO2/FiO2 ratio 3 h last, median [Q1,Q3] 18.3 111.6 [86.8,141.7]
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this mortality effect only accrues in patients who show a 
physiological response to proning [2, 17]. In our study, 
the association between response in P/F ratio and sur-
vival was weak. This should encourage a liberal approach 
to proning regardless of short-term improvements in 
physiology given the evidence supporting its effect on 
survival.

Strengths of this study include the use of large amounts 
of routinely collected granular data from a large multi-
center database, the rigorous and extensive modeling 

attempts and the broad approach to defining short-term 
response to proning based on the principles of shunt-
ing, dead space ventilation and respiratory system 
compliance.

However, the physiological effect of proning may be 
difficult to predict at least partly due to limitations inher-
ent in the chosen outcome variables. Ventilatory ratio is 
a poor surrogate for dead space ventilation and ventila-
tion/perfusion match.  PaO2/FiO2 ratio is a relatively poor 

For clinical parameters, the mean of the past 2 h was aggregated per patient and slopes were calculated based on mean values in the hour before proning

Table 1 (continued)

Parameter Missing (%) Values Units

Ventilatory ratio 3 h last, median [Q1,Q3] 32.2 2.2 [1.7,2.9]

Mechanical power 3 h last, median [Q1,Q3] 23.5 32.0 [20.9,44.7] J/min

Respiratory system compliance 3 h last, median [q1, q3] 9.8 32.8 [24.4,48.5] ml/cmH2O

PaO2/FiO2 ratio difference, median [Q1, Q3] 27.3 14.9 [− 5.3,40.5]

Ventilatory ratio difference, median [Q1, Q3] 37.4 0.0 [− 0.3,0.4]

Mechanical power difference, median [Q1, Q3] 26.7 0.2 [− 9.8,9.2] J/min

Respiratory system compliance difference, median [Q1, Q3] 12.9 − 0.6 [− 5.8,3.6] ml/cmH2O

Fig. 1 Model performance by ROC AUC score for predicting 
improvement in various outcome parameters after turning patients 
to a prone position. The ROC AUC compares the true positive 
rate to the false positive rate where a performance of 1.0 reflects 
perfect scores where 0.5 describes complete randomness. LR logistic 
regression, RF  random forest, KNN  K‑Nearest Neighbors, SVM  support 
vector machine, GNB Gaussian Naïve Bayes, XGB  eXtreme Gradient 
Boosting

Fig. 2 Model performance by F1‑score for predicting improvement 
in various outcome parameters after turning patients to a prone 
position. The F1‑score combines the precision (positive predictive 
value) and recall (sensitivity) scores to provide a single metric to 
compare model performance where a performance of 1.0 reflects 
perfect scores while 0.0 reflects the worst performance. LR logistic 
regression, RF  random forest, KNN  K‑Nearest Neighbors, SVM  support 
vector machine, GNB Gaussian Naïve Bayes, XGB  eXtreme Gradient 
Boosting
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surrogate for shunt and ventilation/perfusion match. 
Pressure above PEEP is a weak surrogate for plateau pres-
sure, feeding into static respiratory system compliance, 
which is itself a poor surrogate for lung compliance.

Defining the exact cut-off for success is therefore non-
trivial. Based on previous literature, we may select an 
absolute change of at least 20  mmHg [3]. But a relative 
change may be closer to clinical practice in which physi-
cians may still consider smaller improvement successful 
in the most severe cases. Nevertheless, sensitivity analy-
ses showed no major differences in predictive perfor-
mance when adjusting these cut-off values.

This study also comes with limitations. For some poten-
tial features, data availability was limited due to varying 
frequencies of measurements and imputation strategies 
were necessary. Also imaging data as well as measure-
ments requiring maneuvers such as inspiratory hold were 
mostly unavailable. Individual data points were not man-
ually validated due to the vast amount of data, although 
most evident data entry errors were removed through 
preprocessing. These models were trained on 25 different 
hospitals, but external validation is needed to generalize 
these findings. Furthermore, as disease and treatment 
change over time, this drifting data may influence future 

applicability. Finally, our absence of evidence should not 
be regarded as evidence of absence. It is certainly think-
able that future developments in machine learning com-
bined with increasing availability of data might facilitate 
better discrimination between physiological responders 
and non-responders.

Conclusion
The physiological response to prone positioning of 
COVID-19 ARDS patients could not be reliably pre-
dicted with highly granular EHR data using novel 
machine learning techniques. Predictors for physiologi-
cal improvement were inconsistent and earlier response 
to proning showed no correlation to future responses. 
Although a definitive proof of unpredictability can-
not be provided, we have shown that current EHR data 
are insufficient to aid in the decision to turn patients 
to a prone position. Therefore, the decision to turn a 
patient to a prone position should be based on group 
level evidence and only be omitted based on individual 
contra-indications.
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