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The National Institutes of Health funding for clinical research
applying machine learning techniques in 2017
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Machine learning (ML) techniques have become ubiquitous and indispensable for solving intricate problems in most disciplines. To
determine the extent of funding for clinical research projects applying ML techniques by the National Institutes of Health (NIH) in
2017, we searched the NIH Research Portfolio Online Reporting Tools Expenditures and Results (RePORTER) system using relevant
keywords. We identified 535 projects, which together received a total of $264 million, accounting for 2% of the NIH extramural

budget for clinical research.

npj Digital Medicine (2020)3:13; https://doi.org/10.1038/s41746-020-0223-9

INTRODUCTION

Machine learning (ML) is the study of computer science and
statistics that focuses on recognizing patterns and making
inferences by analyzing large amounts of data, potentially with
no explicit assumptions about these patterns. With the
unprecedented availability of medical data from electronic
health records, administrative claims, and registries, ML has
the potential to transform clinical medicine. Many studies have
highlighted the potentially transformative role of ML in
medicine, including its use in disease stratification and
diagnosis,' > to personalized risk prediction, and for imaging-
based diagnostic purposes.*

Adequate funding is essential to explore the full potential of ML
in clinical research and to develop products that could be
implemented in real-world practice. To harness the potential of
ML, the United States’ National Institutes of Health (NIH) has taken
steps to increase the use of applications of ML in research by
establishing programs, such as a program for artificial intelligence
(Al), machine learning, and deep learning (https://www.nibib.nih.
gov/research-funding/machine-learning), and by hosting work-
shops on using Al and ML to advance biomedical research (https://
videocast.nih.gov/summary.asp?live=28053&bhcp=1). Yet, little is
known about the total number or the total dollar amount that is
allotted to clinical research projects that apply ML techniques.
Moreover, there is little knowledge about which funding
agencies of the NIH fund the most clinical research applying
ML, and which grant types are funded, such as research grants
(R series) and career development grants (K series). This
knowledge could guide investigators and academic medical
centers to compile their applications competitively for the
appropriate NIH centers to increase the probability of being
funded. Additionally, such understanding could reveal gaps in
the types of ML studies being funded, which might inform
decisions about future funding. Accordingly, we sought to
describe and characterize the recipients of NIH funding for ML
in 2017.

RESULTS
Baseline characteristics

Using selected keywords, we identified 1960 projects from the NIH
Research Portfolio Online Reporting Tools Expenditures and
Results (RePORTER) system, of which 535 met our inclusion
criteria. Together, these projects received $264,941,309 in funding,
accounting for 2% of the NIH extramural budget for clinical
research for fiscal year (FY) 2017 ($12,695 million) (https://report.
nih.gov/categorical_spending.aspx). The median and maximum
amount per project was $347,944 (Interquartile range,
$187,582-586,327) and $12,560,000, respectively (Supplementary
Table 1). Of the 535 grants, 15 were subprojects with duplicate
project numbers, and 13 received awards from more than one
agency of the NIH.

Funding by NIH agency and mechanism

The projects included in this study were funded by 26 NIH
agencies. Four agencies contributed nearly half of the total
funding awarded: the National Caner Institute (15%), National
Institute of Mental Health (11%), National Institute on Aging (10%),
and National Heart, Lung, and Blood Institute (9%) (Table 1).
Grants were awarded by 54 different funding mechanisms (Table
2). Of these, investigator-initiated R0O1 research grants received the
highest amount of funding (39%) followed by U54 and U24 grants
(7% of the total amount of funding for each type). Among the nine
application types, those for non-competing continuation (type 5)
received $138,151,114, accounting for 52% of the total amount,
while funding for new applications (type 1) represented 40% of
the total amount (Supplementary Table 2). Almost half of the 535
projects received funding for 2-5 years, while one third received
funding for 1 year (Supplementary Table 3). Furthermore, 151
projects were registered at ClinicalTrials.gov.

Of the institutions that received grants, the ones that received
most of the funding (25% of the total amount) were Stanford
University (8.6%), University of Pittsburgh (4.9%), University of
North Carolina (4.7%), University of Wisconsin-Madison (3.3%),
Indiana University-Purdue University at Indianapolis (3.1%), and
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Table 1. Machine learning grants awarded by an institute of the National Institutes of Health (NIH).
Institute/center code Total number Proportion Total grant Proportion
of grants of total amount ($) to total value
grants (%) of grants (%)
National Cancer Institute (NCI) 66 11.7 39,298,859 14.8
National Institute of Mental Health (NIMH) 57 10.1 28,927,076 10.9
National Institute on Aging (NIA) 45 8.0 26,303,801 9.9
National Heart, Lung, and Blood Institute (NHLBI) 44 7.8 22,602,244 8.5
National Institute of General Medical Sciences (NIGMS) 40 7.1 18,585,533 7.0
Office of the Director, NIH (OD) 30 5.3 17,103,011 6.5
National Institute on Neurological Disorders and Stroke (NINDS) 37 6.6 16,830,246 6.4
National Library of Medicine (NLM) 39 6.9 14,473,321 5.5
National Institute of Biomedical Imaging and Bioengineering (NIBIB) 30 53 12,640,025 4.8
National Institute on Drug Abuse (NIDA) 26 46 10,917,625 4.1
National Institute of Allergy and Infectious Diseases (NIAID) 20 3.6 10,480,116 4.0
National Institute of Child Health and Human Development (NICHD) 28 5.0 8,047,239 3.0
National Institute on Deafness and Other Communication Disorders (NIDCD) 15 2.7 7,658,753 2.9
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) 14 2.5 5,112,183 1.9
Center for Information Technology (CIT) 5 0.9 5,038,047 1.9
National Center for Advancing Translational Sciences (NCATS) 5 0.9 4,624,239 1.7
National Institute of Nursing Research (NINR) 8 1.4 2,548,731 1.0
National Institute on Alcohol Abuse and Alcoholism (NIAAA) 9 1.6 2,471,394 0.9
National Human Genome Research Institute (NHGRI) 8 1.4 2,424,273 0.9
National Eye Institute (NEI) 7 1.2 2,296,364 0.9
National Institute of Environmental Health Sciences (NIEHS) 11 2.0 2,025,184 0.8
National Center for Complementary and Integrative Health (NCCIH) 4 0.7 1,581,038 0.6
National Institute on Minority Health and Health Disparities (NIMHD) 3 0.5 1,271,018 0.5
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) 5 0.9 1,260,046 0.5
National Institute of Dental and Craniofacial Research (NIDCR) 3 0.5 226,522 0.1
Fogarty International Center (FIC) 2 0.4 194,421 0.1
DISCUSSION

Table 2. The NIH grants by funding mechanism.

Activity Total number Proportion of Total grant Proportion to

code of grants total number amount ($) total value of
of grants (%) grants (%)
RO1 208 389 108,606,595 41.0
us54 20 37 19,550,967 7.4
u24 11 2.1 18,959,934 7.2
uo1 17 3.2 16,548,928 6.2
P50 19 3.6 11,192,516 4.2
R44 15 2.8 10,234,849 3.9
R56 5 0.9 9,763,193 3.7
ZIA 17 3.2 9,210,836 3.5
R21 39 7.3 8,201,484 3.1
oT2 1 0.2 5,360,833 2.0
P30 16 3.0 3,862,098 1.5
PO1 8 1.5 3,649,816 14
R43 18 34 3,476,503 1.3
K01 20 3.7 3,376,740 1.3
ZIH 2 0.4 3,123,589 1.2
DP2 1 0.2 2,542,500 1.0

University of California Los Angeles (2.7%). Overall, 77 out of 207
(37%) institutions and 49 out of 469 (10%) principal investigators
received multiple grants.
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Our study provides a snapshot of federal funding for clinical
research projects using ML techniques in the United States. In FY
2017, 535 projects received $264 million, accounting for a
relatively small proportion of the NIH budget for clinical research.
This study highlights the small proportion of NIH funding that is
allotted for clinical research projects applying ML, techniques that
have immense potential to transform health care and add to the
ongoing debate about NIH funding priorities.

ML is applied in various disciplines of medicine, yet 12 out of 27
agencies of the NIH each funded fewer than 10 clinical research
projects applying ML. Therefore, these findings could represent
opportunities for increasing future funding for ML by these NIH
centers. Consistent with the general trend of NIH funding patterns,
investigator-initiated projects were comparatively well funded
through the RO1 mechanism, constituting more than one third of
the total number of grants.’ In contrast, funding mechanisms to
train the next generation of scientists, including fellowships (F
series), research training (T series), and career development grants
(K series), which represent less than one fifth of the total number
of grants, received less support. Training and career development
awards in ML are critical for fostering interest among early-career
scientists and/or physicians by providing protected time, and for
ensuring successful transformation to R awards; studies have
reported the 10-year K-to-R successful conversion rate to be
between 30-40%.°

Another important finding is the concentration of funding in a
small number of research institutions. It may be useful for the NIH
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to consider how best to increase the capacity of more institutions
to participate in producing knowledge for the next generation of
medicine and health care. There may be mechanisms to
strengthen the expertize across a broader range of institutions.

The NIH has been focused on building infrastructure for ML and
has endorsed its importance. In 2013, the NIH launched the Big
Data to Knowledge (BD2K) program to support research and
development of innovative and transformative approaches and to
maximize and accelerate the integration of big data and data
science into biomedical research.” Recently, the NIH launched the
All of Us Research Program (https://allofus.nih.gov) as part of its
precision medicine initiative, with the objective to collect
environmental, clinical, imaging, and laboratory data from 1
million or more people, with plans to make the data publicly
available for investigators. In addition, the NIH mandated that all
clinical trials funded by the NIH should be made publicly available.
Dr. Francis Collins, director of the NIH, stated that “the advent of
artificial intelligence and machine learning, big data, cloud comput-
ing, and robotics may represent the Fourth Industrial Revolution”
(https://datascience.nih.gov/sites/default/files/Al_workshop_report_
summary_01-16-19_508.pdf). Our study suggests that in clinical
research, however, NIH funding for ML remains modest.

The study should be interpreted in the context of some
limitations. We used a systematic approach to identify projects
that applied ML techniques to population and clinical research.
Because RePORTER makes available only the abstract section of a
grant, some qualified projects with insufficient information might
have been excluded. More sharing of proposals would benefit the
field. Nevertheless, previous studies followed an approach similar
to ours in characterizing data from RePORTER.>® In addition, we
do not have access to information about unfunded NIH
applications. Hence, we cannot measure the proportion of
projects using ML that received funding. We focused on modeling
techniques implemented regardless of the learning tasks, because
learning tasks, such as supervised learning, can also be
implemented in traditional regression models. Additionally, we
did not include linear regression, logistic regression, or regressions
with regularizations (e.g., a ridge regression that uses the L2
penalization) for models. However, this approach is consistent
with the manner in which the majority of published papers self-
identify as having used ML approaches for model-building.’

In conclusion, our study provides information on contem-
porary funding for clinical research projects that apply ML
techniques, which we found represents a small percentage of
NIH-funded research. Almost all agencies of the NIH support
projects that use ML through different grant mechanisms, with
training and career development grants receiving the least
support. Therefore, to harness advances in ML and computa-
tional power, more NIH-sponsored support for clinical research
using these techniques, especially for training future scientists,
is necessary.

METHODS
Study sample and search strategy

We searched for all NIH-funded studies for the 2017 FY (October
2016-September 2017) by using the RePORTER system (https://
projectreporter.nih.gov/reporter.cfm), a publicly accessible tool that con-
tains comprehensive information about research projects funded by the
NIH. We specifically sought out information on clinical research projects
using ML. For this study, to determine if ML was utilized, we defined ML by
the modeling techniques, rather than the specific learning tasks. The
algorithms, namely Trees (e.g., random forest), Support vector Machine,
and neural networks, are modeling approaches that can be used with
different types of learning tasks, including supervised, unsupervised, semi-
supervised, and reinforcement learning. We searched project titles, project

abstracts, and project terms using the following keywords:'>'" “artificial
intelligence,” “Bayesian learning,” “boosting,” “gradient boosting,” “com-
putational intelligence,” “computer reasoning,” “deep learning,” “machine
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intelligence,” “machine learning,

networks analysis,”

o

neural network,” “neural
networks,” “ natural language processing,” “support
vector machines,” “random forest,” “computer vision systems,” and “deep
networks.” Alternative versions of these keywords have been tested to
ascertain if abstracts could be identified, and those found useful have been
included in the final list of keywords. We restricted our search to centers
affiliated with the NIH and excluded projects funded by the Centers for
Disease Control and Prevention, the Food and Drug Administration, the
Agency for Healthcare Research and Quality, the Health Resources and
Services Administration, and the Department of Veterans Affairs because
RePORTER did not have comprehensive data on these grants.

For this study, we were primarily interested in the funding for projects
using population health data, and applied inclusion and exclusion criteria
to obtain the grants related to those projects. We included projects that
used population or clinical research data and that explicitly mentioned the
use of one of the above-named ML techniques in their abstract. We
considered a project to be population or clinical research if it contained
data related to demographics, imaging, anatomopathologics, and biomar-
kers, or if it had direct involvement of humans such as social science
research. We excluded projects that used ML only on basic science
research to gain biological insights into mechanisms of disease (e.g., ML
approaches for electrophysiological cell classification); those that used ML
on solely biological data, such as genomic, proteomic, or RNA sequencing
data without incorporating clinical or demographic data (e.g., a study to
use state-of-the-art methods from the fields of ML, statistics, or natural
language processing to improve the ability to make sense of large tandem
mass spectrometry data sets); and those that used ML only on data from
animal experiments.

naive Bayes,

Data collection and analysis

We used Covidence (Covidence, Melbourne, Australia), an online software
tool to screen the project abstracts (https://www.covidence.org/home).
Two investigators (SA and CC) independently screened each abstract for
inclusion and exclusion criteria and agreement was required to include or
exclude a project. When there was disagreement, a third investigator (ARA)
resolved the conflict. Numbers and titles of the projects included in the
final analysis are listed in the Supplementary Table 4.

We described total dollar amounts, number of grants, and median dollar
amount per grant. Additionally, we calculated proportion of total dollar
amounts and total number of grants by funding agency of the NIH (e.g.,
NCI, NAl, and NIGMS), application type (new application, continuity of
application), funding mechanism (e.g., R01, U01, and F32), and number of
supported years. Stata Version 15.0 (StataCorp, College Station, Texas) and
Microsoft Excel” were used for analysis. Since the data used were publicly
available and did not contain patient information, the study was exempted
from review by the Yale University Institutional Review Board.

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY

The data for the current study were generated from the NIH's Research Portfolio
Online Reporting Tools Expenditures and Results (RePORTER) system, which are
publicly available at https://projectreporter.nih.gov/reporter.cfm. The numbers and
titles of the NIH projects included in the final analysis are listed in Supplementary
Table 4.
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