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Abstract: In this study, a new green synthesis method for two-dimensional (2D) copper nanosheets is
developed using methylsulfonylmethane (DMSO2). The chemical composition and light absorption
of 2D copper nanosheets are also studied. A new green method is mainly to utilize DMSO2, which is
environmentally friendly enough to be considered a food-grade chemical, unlike the conventional
method using toxic chemicals, such as ammonia and hydrazine (N2H4). With a reducing agent,
the aggregation of uncertain copper products was produced in the absence of DMSO2, while 2D
copper nanosheets were formed in the presence of DMSO2. The optimum concentration of DMSO2

as a surfactant was determined to be 2 M, resulting in large surface areas with regular edges. FTIR
spectrum confirmed C–H bonding from DMSO2 used to synthesize 2D copper nanosheets. The light
absorption peak was revealed at 800 nm in the UV–vis spectrum. This proposed new green method
not only has a simpler process than the conventional methods, such as hydrothermal method and
chemical bath deposition, but also substitutes toxic chemicals with DMSO2. 2D copper nanosheets
can be used for various applications, including conductive filler or ink in the flexible electronics and
laser photonics fields.

Keywords: synthesis; 2D nanomaterial; nanosheets; 2D copper nanosheets

1. Introduction

Metal nanomaterials have attracted interest due to their great transmittance and
electrical, thermal, mechanical, and catalyst properties. They enable extensive applications
in nanoscience and nanotechnology, such as flexible electronics [1]. In particular, two-
dimensional (2D) nanomaterials have unconventional exposed surface properties indicating
high electron mobility and good thermal conductivity [2–5]. Besides, 2D nanomaterials
can provide ideal morphology for vigorous electrocatalysts because the pathways of ion
and electron diffusion are significantly shortened, and electrochemically active sites are
large [6,7].

2D nanosheets are a promising nanomaterial due to their thickness of nanometers
along with in-plane lattice and pores between interlayers. 2D nanosheets offer mini-
mized transport resistance and maximized selectivity depending on molecular size [8].
Single-layer manganese dioxide (MnO2) nanosheets and ZnMn2O4–graphene (ZMO-G)
nanosheets demonstrated attractive electrochemical properties, such as high capacitance,
and better rate performance for electrical energy storage system [9–11]. Furthermore,
graphene and graphene oxide nanosheets were investigated in energy-related areas, water
desalination, and filtration as functional separation membranes [8,12]. 2D copper oxide
(CuO) nanosheet electrode film was found to be a low-cost catalyst material with great
catalytic activity for electrochemical water splitting into hydrogen and oxygen [6]. Copper
(Cu) nanosheet ink presented stable conductive performance and could be used directly on
flexible electronic circuits [13].

The synthesis methods of 2D metal nanomaterials are largely categorized into two
methods, namely top-down and bottom-up methods. Top-down methods are mainly
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employed for producing layered bulk material, while bottom-up methods are widely
utilized in practical applications [14]. 2D metal nanosheets are dominatingly synthesized
through bottom-up methods due to the advantage of practical application [15]. Among
bottom-up methods, hydrothermal and solvothermal methods are used to synthesize metal
2D nanosheets.

Dang et al. (2014) and Dehghanpour et al. (2015) employed the hydrothermal method
to produce Cu nanosheets using polyvinylpyrrolidone (PVP) and cetyltrimethylammonium
bromide (CTAB), respectively, as surface capping agent [13,16]. Hou et al. (2013) and
Duan et al. (2014) presented the synthesis of rhodium (Rh) nanosheets by the solvothermal
method in the presence of surfactants and the absence of surfactants, respectively [17,18].
Besides these methods, Hu et al. (2010) prepared metal oxide nanosheets using several
metals (e.g., Mn, Co, Fe, and Ni) by refluxing metal salt in absence of any surfactants, or
templates [19]. Dubal et al. (2010) and Pawar et al. (2017) synthesized CuO nanosheets
using ammonia as a reducing agent through chemical bath deposition [6,20]. Shaik et al.
(2016) demonstrated the synthesis of Cu nanosheets through the reduction of copper
salts at room temperature in the presence of CTAB as a surfactant and hydrazine (N2H4)
as a reducing agent [21]. The foregoing methods require complicated processes, high
temperature, and prolonged reaction time.

In recent years, significant attention has been given to various 2D metal nanoma-
terials such as manganese (Mn), cobalt (Co), nickel (Ni), and rhodium (Rh) [17,22–24].
However, one of the important nanomaterials is copper due to its high conductivity, low
cost, high abundance, and even flexibility in the form of nanowires. Furthermore, 2D
copper nanosheets demonstrated higher conductivity and lower resistivity than copper
nanowires or mixed products of copper nanowires and 2D nanosheets [25]. Copper-based
nanomaterials have been presented in many applications such as electrocatalysts for water
oxidation [26], photodetectors [27], conductive ink [13], supercapacitors [20], and conduc-
tive fillers [25]. Therefore, 2D copper nanosheets are considered promising nanomaterials
for the substitution of novel metal nanomaterials. However, the sources for the synthesis
of 2D copper nanosheets are scarce. In addition, the synthesis methods of 2D copper
nanosheets require toxic chemicals, such as ammonia and N2H4, and are implemented
with complicated procedures [6,20,21].

In this present study, a new green method to synthesize 2D copper nanosheets is
developed using methylsulfonylmethane (DMSO2), which has not been reported before
for the synthesis of nanomaterials. DMSO2 is environmentally friendly enough to be
used as a food-grade chemical and can be used to substitute the toxic chemicals, such as
ammonia and N2H4, used in the conventional method. In addition, two reducing agents,
namely sodium hydroxide (NaOH) and lithium hydroxide (LiOH), are employed. 2D
copper nanosheets are characterized by transmission electron microscopy (TEM), energy-
dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), and
ultraviolet–visible spectroscopy (UV–Vis).

2. Materials and Methods
2.1. Materials

For the synthesis of 2D copper nanosheets, copper sulfate (CuSO4) was utilized as
the copper precursor. Sodium hydroxide (NaOH) and lithium hydroxide (LiOH) were
used as reducing agents to reduce copper ions in the solution. Methylsulfonylmethane
(DMSO2, >99.8%, Bergstrom Nutrition, Vancouver, WA, USA) was employed to determine
whether it plays the role of a surfactant in the synthesis process. Deionized water (DI H2O)
was used to dissolve all the chemicals.

2.2. Method

2D copper nanosheets were synthesized by a new green method. In order to keep
constant reaction temperature for 2 h reaction time, the synthesis was carried out by
placing an Erlenmeyer flask containing material solution into the water bath. In addition,
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all steps were implemented under magnetic stirring at 300 rpm to keep the solution in
a homogeneous state. First, 1, 2, or 3 M of methylsulfonylmethane (DMSO2), 0.01 M of
copper sulfate (CuSO4), and 0.3 M of reducing agents were dissolved with deionized water
(DI H2O) in each Erlenmeyer flask, separately. CuSO4 solution was added to DMSO2
solution (1, 2, or 3 M) under magnetic stirring for 10 min, and then 0.05 mL of 0.3 M sodium
hydroxide (NaOH) reducing agent was added. This solution in an Erlenmeyer flask was
stirred for 30 min at a water-bath temperature of 80 °C. When using a lithium hydroxide
(LiOH) reducing agent instead of NaOH, the process of synthesis and concentration of
materials was kept the same. After 30 min, the solution was washed with methanol to
remove impurities of chemicals and dried in a vacuum desiccator at room temperature
under full vacuum for at least 2 h.

2.3. Characterization

The morphology and arrangement of 2D copper nanosheets were investigated by
transmission electron microscopy (TEM, Tecnai F-20, FEI, Hillsboro, OR, USA) with 200 kV
accelerating voltage, and energy-dispersive X-ray spectroscopy (EDX) was employed for
elemental analysis of 2D copper nanosheets. To analyze the composition of 2D copper
nanosheets, Fourier transform infrared spectroscopy (FTIR, Thermo Fisher, Hillsboro, OR,
USA) was used. The light absorption spectrum of 2D copper nanosheets was obtained by
ultraviolet–visible spectroscopy (UV–Vis, Evolution 260 BIO, Thermo Fisher, Hillsboro,
OR, USA).

3. Results and Discussion
3.1. The Formation of 2D Copper Nanosheets

2D copper nanosheets were synthesized by adding methylsulfonylmethane (DMSO2),
copper sulfate (CuSO4), and sodium hydroxide (NaOH) together. As shown in Figure 1,
2D copper nanosheets were formed under various conditions. Figure 1a,b show 2D copper
nanosheets synthesized without NaOH reducing agent and DMSO2, respectively. Figure 1c
represents 2D copper nanosheets synthesized with NaOH reducing agent and DMSO2.
The chemical reaction can be represented as follows:

CuSO4 + 2NaOH → Cu(OH)2 + Na2SO4 (1)

Cu(OH)2 + NaOH → Na2CuO2
− + H2O + H+ (2)

Na2CuO2
− + H+ → Cu + 2NaOH (3)
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The surfaces of 2D copper nanosheets were 0.365 µm in length and 0.1 µm in width in
the absence of a NaOH reducing agent, as shown in Figure 1a. These 2D copper nanosheets
display irregular edges and some pores on the surface. This may result from an incomplete
reduction process of copper ions due to the fast oxidation of 2D copper nanosheets. The
2D copper nanosheets produced without DMSO2 are shown in Figure 1b. A complete
reduction process seems to have occurred, as the edges are regular and improved when
compared to those shown in Figure 1a. However, the remarkable aggregation of the
uncertain copper products makes it difficult to measure the length and width of these 2D
copper nanosheets. This aggregation could be caused by the lack of surface energy due
to the absence of surfactant in the solution. As shown in Figure 1c, 2D copper nanosheets
synthesized with NaOH reducing agent and DMSO2 were 0.88 µm in length and 0.32 µm in
width, revealing regular edges and larger surface areas when compared to those shown in
Figure 1a. In addition, there is no aggregation of the uncertain copper products, unlike that
seen in Figure 1b, even though some copper nanoparticles were formed simultaneously.
This may be caused by a fast reduction reaction and nucleation rate because NaOH is a
strong reducing agent.

DMSO2 may play a role as a copper surfactant in this process and be an important
factor in forming 2D copper nanosheets of large surface areas with regular edges. This is
because copper ions cannot have a driving force to grow desirable 2D nanosheets without
copper surfactant. To synthesize 2D copper nanosheets of large surface areas with regular
edges, the concentration of DMSO2 was controlled.

Figure 2 presents the 2D copper nanosheets synthesized with various concentrations
of DMSO2. The 2D copper nanosheets synthesized with 1 M of DMSO2 shown in Figure 2a
reveal a length of 0.95 µm and a width of 0.2 µm. These 2D copper nanosheets were
irregularly synthesized, as indicated by the small surface areas and the aggregation of 2D
copper nanosheets shown in Figure 2a. Besides, copper products in the form of nanorods
and needles can be observed. When 2 M of DMSO2 was added, 2D copper nanosheets
0.955 µm in length and 0.42 µm in width were found to have large surface areas with
regular surface edges, as shown in Figure 2b. With further increase in the concentration
of DMSO2, the yield of 2D copper nanosheets began to develop as shown in Figure 2c.
However, these 2D copper nanosheets seem to be 0.4 µm in length and less than 0.2 µm in
width with surface areas that are not as large as those of nanosheets synthesized with 2 M
of DMSO2. The irregular edges and aggregation of 2D copper nanosheets can be observed.
Furthermore, Figure 2c shows that 2D copper nanosheets seem to form multiple layers,
making it difficult for them to disperse.
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The low concentration of DMSO2 is likely to cause high surface tension and low
surface energy. This makes it difficult for the copper ions to form large areas. On the
other hand, the high concentration of DMSO2 may cause low surface tension and high
surface energy, making the copper ions actively react with each other. However, the
excess amount of DMSO2 is likely to lead to fast crystallization that limits the growth of
2D copper nanosheets. Therefore, DMSO2 added at a sufficient concentration (i.e., 2 M
of DMSO2 in this study) could act as a surfactant in the synthesis process. DMSO2 is
environmentally friendly enough to be used as a food-grade chemical. Thus, DMSO2 may
be used as a substitute for the toxic chemicals, such as ammonia and N2H4, used in the
conventional method.

Lithium hydroxide (LiOH) is used as a weak reducing agent to prevent the generation
of by-products of copper nanoparticles. The chemical reaction can be represented by the
same mechanism as chemical reactions (1)–(3):

CuSO4 + 2LiOH → Cu(OH)2 + Li2SO4 (4)

Cu(OH)2 + LiOH → Li2CuO2
− + H2O + H+ (5)

Li2CuO2
− + H+ → Cu + 2LiOH (6)

Figure 3 shows the morphology of 2D copper nanosheets synthesized with LiOH.
These 2D copper nanosheets had a length greater than 1 µm in and a width of 0.24–0.4 µm.
The length of these 2D copper nanosheets was longer than that found when using NaOH as
a reducing agent. However, the width of 2D copper nanosheets was formed randomly. In
addition, aggregation of the small-sized 2D copper nanosheets that are difficult to measure
in length and width was seen, as shown in Figure 3. However, 2D copper nanosheets were
synthesized without the formation of copper nanoparticles as by-products, unlike when
using a NaOH reducing agent. This is because LiOH is basically a weaker reducing agent
than NaOH and could cause a slower reduction process. Therefore, LiOH, as a reducing
agent, can start to react with copper precursor without the formation of unnecessary
product. However, the use of LiOH is likely to control the concentration of DMSO2
simultaneously in order to reduce the difference in the width of 2D copper nanosheets.
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Figure 4 shows the energy-dispersive X-ray spectroscopy (EDX) pattern of 2D copper
nanosheets. The element analysis from the EDX spectrum was conducted for copper (Cu)
in 2D copper nanosheets. Some unexpected elements such as carbon (C) and oxygen (O)
were revealed in the EDX spectrum, but with weak peaks. C detected from the TEM sample
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grid likely consisted of lacey carbon. O could be detected through the sealed thin window
in the X-ray detector. It does not allow high counts, as shown in Figure 4. C and O peaks are
not important for element analysis because the EDX spectrum results in the proportional
weight percent. In Figure 4, a strong peak of Cu is observed at 8.04 keV, which means that
the element of Cu is dominant in 2D copper nanosheets. Therefore, the formation of 2D
copper nanosheets is confirmed by the presence of dominant Cu.
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3.2. FTIR Study

Figure 5 displays the FTIR spectrum of 2D copper nanosheets produced with LiOH.
The region below 700 cm−1 has very small peaks that represent the vibration of Cu–O
stretching and bending. The peak around 1100 cm−1 may reveal O–H bending vibration
that is from either copper hydroxide (Cu(OH)2) generated during the copper ion reduction
process or a LiOH reducing agent [28]. Therefore, 2D copper nanosheets could be reduced
by a LiOH reducing agent. The strong and sharp peak at 3138 cm−1 indicates C–H bonding
that is likely to be from the methyl group of DMSO2. Therefore, the successful use of
DMSO2 to synthesize 2D copper nanosheets was confirmed by the observation of C–H
bonding. The FTIR spectrum in Figure 5 indicates the presence of some amount of water
bound to the 2D copper nanosheet solution [11,20].
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3.3. UV–Vis Study

Figure 6 shows the UV–Vis spectrum of 2D copper nanosheets prepared by adding
LiOH as a reducing agent. As shown in Figure 6, the change in absorbance to a longer
wavelength, i.e., the redshift, indicates that elongated 2D copper nanosheets were pro-
duced [21]. Besides, the large aspect ratio of 2D copper nanosheets has a large peak shift.
A better absorbance ability indicates a larger aspect ratio. Therefore, 2D copper nanosheets
produced are likely to have a large aspect ratio and high absorbance ability. As shown
in Figure 6, the absorption peak of 2D copper nanosheets was around 800 nm. 2D cop-
per nanosheets can likely be used in laser photonic applications with a wavelength of
800 nm [29].
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4. Conclusions

In conclusion, a new green synthesis method of 2D copper nanosheets was successfully
developed by using methylsulfonylmethane (DMSO2), the use of which has not been
reported before for the synthesis of nanomaterials. 2D copper nanosheets were formed
in different morphologies with or without NaOH as a reducing agent and DMSO2 as a
surfactant. With both NaOH and DMSO2, 2D copper nanosheets of 0.88 µm in length
and 0.32 µm in width were obtained without aggregation. The concentration of DMSO2
was crucial for the formation of 2D copper nanosheets of large surface areas with regular
edges. 2 M of DMSO2 was desirable for 2D copper nanosheets, resulting in 0.955 µm length
and 0.42 µm width. The addition of LiOH instead of NaOH as a weak reducing agent
and DMSO2 formed 2D copper nanosheets of 1 µm in length and 0.24–0.4 µm in width.
Therefore, 2D copper nanosheets could be produced with the addition of either NaOH or
LiOH as a reducing agent and DMSO2, which is an essential material. The EDX spectrum
exhibited the presence of the dominant copper (Cu) in 2D copper nanosheets, as indicated
by a strong peak of Cu. The FTIR study confirmed the formation of 2D copper nanosheets
with DMSO2 by indicating C–H bonding. In addition, the UV–Vis spectrum of 2D copper
nanosheets revealed a large peak shift and high absorbance ability. The light absorption
peak at 800 nm indicates that this material has potential applications in laser photonics.

This study was focused on developing a new green synthesis method of 2D copper
nanosheets. For future work, structural studies should be conducted, the material prop-
erties of 2D copper nanosheets should be evaluated, and the production of 2D copper
nanosheets should be realized on a large scale for practical applications.
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