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Abstract: This paper introduces a novel entanglement-based QKD protocol, that makes use of a
modified symmetric version of the Bernstein-Vazirani algorithm, in order to achieve secure and
efficient key distribution. Two variants of the protocol, one fully symmetric and one semi-symmetric,
are presented. In both cases, the spatially separated Alice and Bob share multiple EPR pairs, each
one qubit of the pair. The fully symmetric version allows both parties to input their tentative secret
key from their respective location and acquire in the end a totally new and original key, an idea
which was inspired by the Diffie-Hellman key exchange protocol. In the semi-symmetric version,
Alice sends her chosen secret key to Bob (or vice versa). The performance of both protocols against
an eavesdroppers attack is analyzed. Finally, in order to illustrate the operation of the protocols in
practice, two small scale but detailed examples are given.

Keywords: quantum cryptography; quantum key distribution; the Bernstein-Vazirani algorithm;
EPR pairs; quantum entanglement; quantum information theory

1. Introduction

In the course of the last century, the scientific community experimented with different
ideas and forms of computation, trying to harness the power of nature and create machines
that allowed us to process immeasurable amounts of information in mere seconds, thus rad-
ically changing the world around us in the span of a few decades. However, in the present
era classical computers are reaching a point where it will be infeasible to substantially
enhance their efficiency due to the physical limitations of transistors. This has started a new
incentive to resurrect previous attempts concerning research of new types of computation.
Out of all the different proposals for a viable substitute to classical computing, undoubtedly
the most promising of them all is quantum computation, mainly due to the fact that it
allows the exploitation of the most fundamental properties of physics.

1.1. Related Work

As technology comes closer to the realization of this goal, it appears that certain
profound adaptations regarding different branches of computer science need to take place
in order to achieve a smoother transition from the classical to the quantum era. One of the
most important such branches is the field of cryptography, due to the vulnerability of the
current security algorithms against quantum computers [1,2]. This inherent weakness in
the modern security protocols and the race for building a resilient security infrastructure
against quantum computers [3] before they become a reality, were the two catalysts that
resulted in a schism of the field into two sub-fields, which are based on two different
philosophies and ideologies. The first sub-field, known as post-quantum cryptography or
quantum-resistant cryptography, relies on the complexity of mathematics as its security ba-
sis. It is an attempt to develop cryptographic systems that are secure against both quantum
and classical computers and can also be interpreted within the already existing communica-
tions protocols and networks. The second sub-field, which is called quantum cryptography,
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is being built upon the implementation of the properties of quantum mechanics and, thus,
takes advantage of nature’s own fundamental laws in order to achieve security.

The sub-field of quantum cryptography, on which the primary interest of the current
paper lies upon, has seen enormous growth of both theoretical and practical nature. Two
landmark papers, the BB84 protocol [4] and the E91 protocol [5], were the first papers that
proved that key distribution between two parties relying on the properties of quantum
mechanics was possible. These two protocols have established the two schemes that all
quantum key distribution (QKD) protocols are based on, the prepare-and-measure-based
scheme and the entanglement-based scheme. After the publications of these two protocols, a
plethora of interesting proposals for different QKD protocols based on these two schemes
were suggested, further expanding the field on a theoretical level. At the same time,
some truly remarkable real life implementations of some protocols were demonstrated as
in [6–11]. These implementations have demonstrated that quantum cryptography is not
just a mere theoretical experiment, but a possible reality in the near future.

Over the last few years, there was a noticeable increase in the effort to find new viable
applications for well-known quantum algorithms, such as the Deutsch-Jozsa algorithm [12],
the Bernstein-Vazirani algorithm [13] and Simon’s periodicity algorithm [14]. Many of these
proposals have been made in the field of quantum cryptography, using these algorithms
as viable QKD protocols [15–17]. Motivated from these attempts, this paper proposes two
novel variants of an entanglement-based QKD protocol that makes use of the Bernstein-
Vazirani algorithm. The novelty of this work lies on the fact that it uniquely combines some
key ingredients. Starting with entanglement, which is an integral part of the protocol, the
corresponding qubits in Alice and Bob’s input registers are maximally entangled. Thus, the
proposed protocols exhibit all the inherent advantages that an entanglement-based QKD
protocol provides in terms of security against an eavesdropper, as first demonstrated in
the E91 protocol [5]. Additionally, the Bernstein–Vazirani algorithm [13], a fast and useful
quantum algorithm that guarantees the creation of the key using just one application of
the appropriate function, is used in a critical manner. Furthermore, the fully symmetric
variant is inspired by the Diffie-Hellman idea [18] of deriving the final key from a random
combination of two separate keys. This idea is not just cosmetic, as the ability to obtain
a key that neither Alice or Bob know from the start, adds an additional layer of security,
further improving the strength of the protocol. Finally, the proposed protocol can be
implemented in two versions: the fully symmetric version and the semi-symmetric one.
In the fully symmetric variant, both Alice and Bob can input their tentative secret keys
from their respective locations and acquire in the end a totally new and original key. In
the semi-symmetric one, Alice (alternatively Bob) constructs the secret key that she (or he)
communicates securely to the other party.

The protocol is described as a quantum game, which despite the rather playful name,
it is another noteworthy field that has emerged due to the transition to the quantum era
and is used to address difficult and interesting problems within the quantum realm. This
approach was chosen in an effort to make the presentation more mnemonic and easier to
follow, due to the close connection that both fields share and the fact that any cryptographic
situation can be conceived as a game between the two fictional heroes Alice and Bob, who
play the roles of two remote parties that are trying to communicate, and the enemy Eve
who tries to eavesdrop the conversation, a case which becomes apparent with the quantum
game of coin tossing and the BB84 protocol [4,19] and references therein. This situation
has been generalized in [20] to quantum dice rolling. For the reader striving for a more
rounded understanding of the connection of the two fields, one can start with the two
important works in the field of quantum game theory dating back to 1999, which were
instrumental for the creation of the field: Meyer’s PQ penny flip game [21], which can be
regarded as the quantum analogue of the classical penny flip game, and the introduction of
the Eisert-Wilkens-Lewenstein scheme [22] that is widely used in the field. Regarding the
PQ penny flip game, some recent results can be found in [23,24], were its connection to the
dihedral groups was established. As for the Eisert-Wilkens-Lewenstein scheme, it proved
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fruitful in providing many interesting results. For example, it led to quantum adaptations
of the famous prisoners’ dilemma in which the quantum strategies are better than any
classical strategy ([22]), as well as extensions of the classical repeated prisoners’ dilemma
conditional strategies to a quantum setting ([25]).

1.2. Organization

The paper is structured as follows. Section 1 provides a brief introduction to the
subject and gives the most relevant references. Section 2 introduces and explains the
tools used for the formulation of the protocols in this article. Section 3 presents and
thoroughly analyzes the fSEBV and sSEBV protocols, so that their functionality can be
completely understood. Section 4 contains two detailed examples, one for each protocol, to
demonstrate their operation. Finally, Section 5 summarizes the proposed protocols and
discusses their potential applications in various situations.

2. Preliminaries
2.1. Quantum Entanglement and Bell States

Quantum entanglement is one of the fundamental principles of quantum mechanics
and can be described mathematically as the linear combination of two or more product
states. The Bell states are specific quantum states of two qubits, sometimes called an EPR
pair, that represent the simplest examples of quantum entanglement. From the perspective
of quantum computation, an EPR pair can be produced by a circuit with two qubits, in
which a Hadamard gate is applied to the first qubit and subsequently a CNOT gate is
applied to both qubits. These states can be elegantly described by the following equation
taken from [26].

|βx,y〉 =
|0〉 |y〉+ (−1)x |1〉 |ȳ〉√

2
, (1)

where |ȳ〉 is the negation of |y〉.
In a more detailed manner, the Bell states can be described as follows.

|Φ+〉 = |β00〉 =
|0〉 |0〉+ |1〉 |1〉√

2
(2)

|Φ−〉 = |β10〉 =
|0〉 |0〉 − |1〉 |1〉√

2
(3)

|Ψ+〉 = |β01〉 =
|0〉 |1〉+ |1〉 |0〉√

2
(4)

|Ψ−〉 = |β11〉 =
|0〉 |1〉 − |1〉 |0〉√

2
(5)

The main advantage of quantum entanglement is that if one qubit of the pair is mea-
sured, then the other will collapse immediately despite the distance between the two. This
unique characteristic of quantum entanglement can be used on quantum key distribution
as first described by Ekert in the E91 protocol. Therefore, in order to achieve quantum
key distribution, multiple EPR pairs will be needed. For this reason, the mathematical
representation of multiple EPR pairs will be expedient. If one starts with the entangled Bell
state |Φ+〉, which can be cast as

|Φ+〉 = 1√
2
(|0〉A |0〉B + |1〉A |1〉B) , (6)
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some easy computations show that

|Φ+〉⊗n
=

1√
2n ∑

x∈{0,1}n
|x〉A |x〉B , (7)

which will be required in the presentation of Section 3.

2.2. A Brief Description of the Bernstein-Vazirani Algorithm

Regarded as one of the earliest quantum algorithms, along with the Deutsch-Josza
algorithm and Simon’s periodicity algorithm, the Bernstein-Vazirani algorithm, first intro-
duced by Ethan Bernstein and Umesh Vazirani, can be considered to be a useful extension
of the Deutsch-Josza algorithm, due to the fact that it was directly inspired by it and shared
multiple common characteristics on both structure and implementation. Yet, despite the
similarities, it has proved its value by demonstrating that the superiority of a quantum com-
puter can be successfully used for more complex problems than the Deutsch-Josza problem.

The Bernstein-Vazirani problem can be described as the ensuing game between two
players, namely Alice and Bob, who are spatially separated. Alice in Athens is correspond-
ing with Bob in Corfu using letters. Alice starts the game by selecting a number x from 0 to
2n − 1 and mails its binary n-bit representation x to Bob. After Bob receives this message,
he calculates the value of some function

f : {0, 1, . . . , 2n − 1} → {0, 1} , (8)

and replies with the result, which is either 0 or 1. The rules of the game dictate that Bob
must use a function fs(x), where s = sn−1 . . . s1s0 and x = xn−1 . . . x1x0 are n-bit binary
numbers representing integers in the range 0, 1, . . . , 2n − 1, such that

fs(x) = s · x mod 2 . (9)

The inner product modulo 2 is defined as

s · x mod 2 = sn−1xn−1 ⊕ · · · ⊕ s0x0 , (10)

where ⊕ is the exclusive-or operator. Therefore, the function is guaranteed to return the
bitwise product of Alice’s input x with a secret key s that Bob has chosen. Alice’s goal in
this game is to determine with certainty the secret key s that Bob has picked, corresponding
with him as little as possible. How fast can she succeed?

In the classical version of this problem, Alice can find the secret key s by taking
advantage of the nature of the function fs(x) and, in particular, by sending Bob the inputs
shown in Table 1.

Table 1. Alice must communicate with Bob n times in order find the secret key s.

The Evolution of the Bernstein-Vazirani Game

Alice’s Input x Bob’s Response

x = 10 . . . 00 sn−1

...
...

x = 00 . . . 10 s1

x = 00 . . . 01 s0

In that way, Alice will discover a bit of the string s (the bit si) with each query she
sends. For example, with x = 10 . . . 0 she can obtain the most significant bit of s, with
x = 01 . . . 0 she will find the next most significant bit of s, and by following the same
procedure, when she reaches x = 00 . . . 1, she will have finally managed to reveal the entire
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string s. Despite, the efficiency of this method, Alice is still limited by sending to Bob only
one query at a time. Therefore, the best possible classical scenario requires from her to
correspond with Bob at least n times, in order for her to succeed in her goal.

By observing the core attributes of the aforementioned game, we can divide it into the
following three big steps, which are:

• Alice provides an input,
• Bob applies the function fs(x), and
• after multiple repetitions of the previous two steps, Alice is finally able to reveal the

secret key s.

It can be seen from the above steps that the game can easily become more efficient
by implementing certain tools from quantum mechanics. If Alice and Bob were able to
exchange information with the use of qubits instead of classical bits, then Alice could send
the superposition of these qubits to Bob with only one message. Furthermore, if Bob was
using a unitary transformation U f instead of a function fs(x), then Alice would be able to
achieve her goal with only one communication.

The quantum version of the Bernstein-Vazirani algorithm, can be described by the
following quantum game. The game initially starts with Alice preparing two quantum
registers, one of size n to store her query in and one of size 1, in which Bob will store his
answer in. We will refer to these registers as Alice’s input and output registers, respectively.
Next, she applies the Hadamard gate to every qubit, in order to acquire the even superposi-
tion state of each register and then she sends both registers to Bob. Right after Bob receives
the contents of the registers, he applies the unitary transform U f and sends them back to
Alice. In the final stage of the game, Alice concludes the algorithm by measuring her input
register and obtaining the secret key s. The whole process of the game, is summarized in
Figure 1 below.

|0〉⊗n

|1〉

H⊗n

H

U fA

H⊗n

|ψ0〉 |ψ1〉 |ψ2〉 |ψ3〉

|s〉

The Bernstein-Vazirani algorithm

Figure 1. This figures gives a schematic representation of the Bernstein-Vazirani algorithm.

Now, in order to obtain a better understanding of the nature of the algorithm, let
us examine the evolution of the quantum states more closely. First, Alice starts with the
initial state

|ψ0〉 = |0〉⊗n |1〉 . (11)

The n qubits of her input register are all prepared at state |0〉 and the qubit of the
output register is prepared at state |1〉. Next, Alice applies the Hadamard transform to
both registers and the state becomes

|ψ1〉 =
1√
2n ∑

x∈{0,1}n
|x〉
(
|0〉 − |1〉√

2

)
. (12)
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The derivation of the previous equation is based on the fact that

H⊗n |0〉⊗n =
1√
2n ∑

x∈{0,1}n
|x〉 , (13)

a standard result in the literature (for its derivation see [26,27]). At this point the input
register is in an even superposition of all possible states and the output register is in an
evenly weighted superposition of |0〉 and |1〉. Thus, Alice is now ready to send both
registers to Bob so he may apply the function fs(x) using

U f : |x, y〉 → |x, y⊕ f (x)〉 , (14)

which results in the next state

|ψ2〉 =
1√
2n ∑

x∈{0,1}n
(−1) f (x) |x〉

(
|0〉 − |1〉√

2

)
. (15)

The appearance of (−1) f (x) in Equation (15) is due to the fact that if |y〉 = |0〉−|1〉√
2

, then

|y⊕ f (x)〉 =


|0〉−|1〉√

2
if f (x) = 0

|1〉−|0〉√
2

if f (x) = 1
⇒ |y⊕ f (x)〉 = (−1) f (x)

(
|0〉 − |1〉√

2

)
. (16)

In view of (9) and (15) becomes

|ψ2〉 =
1√
2n ∑

x∈{0,1}n
(−1)s·x |x〉

(
|0〉 − |1〉√

2

)
, (17)

which is the state returned back to Alice.
Let us now recall the following well-known equation that gives in a succinct form the

result of the application of the Hadamard transformation to an arbitrary n-qubit basis ket
|x〉 (see [26,27]).

H⊗n |x〉 = 1√
2n ∑

z∈{0,1}n
(−1)z·x |z〉 . (18)

Thus, after Alice receives the registers back, she applies the Hadamard transform to
the input register for a second time. Via the use of Equation (18), the resulting state can be
written as

|ψ3〉 = 1√
2n ∑

x∈{0,1}n
(−1)s·x H⊗n |x〉

(
|0〉−|1〉√

2

)
= 1√

2n ∑
x∈{0,1}n

(−1)s·x
(

1√
2n ∑

z∈{0,1}n
(−1)z·x |z〉

)(
|0〉−|1〉√

2

)
= 1

2n ∑
x∈{0,1}n

∑
z∈{0,1}n

(−1)s·x⊕z·x |z〉
(
|0〉−|1〉√

2

)
= 1

2n ∑
z∈{0,1}n

∑
x∈{0,1}n

(−1)(s⊕z)·x |z〉
(
|0〉−|1〉√

2

)
= |s〉

(
|0〉−|1〉√

2

)
(19)

The last equation is due to the following fact: if s = z, then ∀ x ∈ {0, 1}n (s⊕ z) · x = 0,
otherwise for exactly half of the inputs x the exponent will be 0 and for the remaining half
the exponent will be 1. This is typically written in a more concise manner as follows:

∑
x∈{0,1}n

(−1)(s⊕z)·x = 2nδs,z . (20)
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The algorithm terminates with the final measurement of the input register by Alice
whereby she obtains the secret key s and concludes the whole process.

3. QKD Based on Symmetric Entangled B-V

In this section, the two versions of the proposed symmetric entangled QKD protocol
based on the Bernstein-Vazirani algorithm are presented and described in great detail.
These are the fully symmetric version of the protocol, or fSEBV for short, and the semi-
symmetric version of the protocol, or sSEBV for short.

3.1. The fSEBV Protocol

Starting with the fSEBV protocol we consider a slight alteration of the aforementioned
Bernstein-Vazirani game. As before, the game starts with the two players Alice and Bob
who are spatially separated. This time, instead of using normal qubits in a separable state,
they use maximally entangled EPR pairs, and they both share a qubit from each pair. An
important rule of the game is that there are no limitations on which entity will actually
create the EPR pairs in the first place. The pairs can be created and distributed accordingly
by Alice or Bob, or they can be acquired from a third party source. This last situation
is depicted in Figure 2. Exactly as in the previous game, the goal of the current game
is to acquire a secret key s. However, in this specific protocol symmetry plays a crucial
role, as Alice and Bod behave in a perfectly symmetrical way by both having their own
secret keys, which they will attempt to input into the system, exactly as in the original
algorithm. Alice’s key is denoted by sA, Bob’s key by sB and they both take identical
actions. Please note that neither Alice nor Bob need apply the Hadamard transform onto
their input registers because they are already in the desired even superposition of all basis
states, as they are populated by n pairs in the |Φ+〉 Bell state. In this respect the fSEBV
protocol differs from the vanilla Bernstein-Vazirani algorithm.

Source of |Φ+〉 pairs

Alice BobQuantum Channel

Public Channel

|q0〉A |q0〉B
. . . . . .
|qn−1〉A |qn−1〉B

Figure 2. Alice and Bob are spatially separated. A third party, the source, creates n pairs of |Φ+〉
entangled photons and sends one qubit from every pair to Alice and the other qubit to Bob.

Following the aforementioned steps of the fSEBV protocol, a valid question may arise
regarding what will Alice and Bob acquire after they both apply their starting secret keys
sA and sB into their own pieces of the EPR pairs? To provide the answer, let us examine
the algorithm more closely. With the help of Equation (7), the initial state of the protocol
can be written as

|ψ0〉 = |Φ+〉⊗n |1〉A |1〉B =
1√
2n ∑

x∈{0,1}n
|x〉A |x〉B |1〉A |1〉B . (21)
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Subscripts A and B are consistently used to designate Alice’s and Bob’s registers
respectively. Alice and Bob initiate the protocol by applying the Hadamard transform to
their output registers, which produces the ensuing state

|ψ1〉 =
1√
2n ∑

x∈{0,1}n
|x〉A |x〉B

(
|0〉 − |1〉√

2

)
A

(
|0〉 − |1〉√

2

)
B

. (22)

Now, both Alice and Bob can apply their functions on their registers using the
standard scheme

U f : |x, y〉 → |x, y⊕ f (x)〉 . (23)

Consequently, the next state becomes

|ψ2〉 =
1√
2n ∑

x∈{0,1}n
(−1) fA(x) |x〉A (−1) fB(x) |x〉B

(
|0〉 − |1〉√

2

)
A

(
|0〉 − |1〉√

2

)
B

. (24)

At this stage, let us recall that Alice’s and Bob’s functions are

fA(x) = sA · x mod 2 (25)

fB(x) = sB · x mod 2 , (26)

where sA and sB are the keys chosen by Alice and Bob, respectively. Based on (24)–(26) can
be written as

|ψ2〉 =
1√
2n ∑

x∈{0,1}n

(−1)sA ·x |x〉A (−1)sB ·x |x〉B
(
|0〉 − |1〉√

2

)
A

(
|0〉 − |1〉√

2

)
B

=
1√
2n ∑

x∈{0,1}n

(−1)sA ·x⊕sB ·x |x〉A |x〉B
(
|0〉 − |1〉√

2

)
A

(
|0〉 − |1〉√

2

)
B

(27)

=
1√
2n ∑

x∈{0,1}n

(−1)(sA⊕sB)·x |x〉A |x〉B
(
|0〉 − |1〉√

2

)
A

(
|0〉 − |1〉√

2

)
B

.

Subsequently, both Alice and Bob apply the Hadamard transformation to their input
registers. This drives the system into the next state, which, by utilizing Equation (18) twice,
can be written as

|ψ3〉 =
1√
2n ∑

x∈{0,1}n
(−1)(sA⊕sB)·x H⊗n |x〉A H⊗n |x〉B

(
|0〉 − |1〉√

2

)
A

(
|0〉 − |1〉√

2

)
B

=
1√
2n ∑

x∈{0,1}n
(−1)(sA⊕sB)·x

 1√
2n ∑

z∈{0,1}n
(−1)z·x |z〉A

 1√
2n ∑

w∈{0,1}n
(−1)w·x |w〉B


(
|0〉 − |1〉√

2

)
A

(
|0〉 − |1〉√

2

)
B

(28)

=
1

(
√

2n)3 ∑
x∈{0,1}n

∑
z∈{0,1}n

∑
w∈{0,1}n

(−1)(sA⊕sB⊕z⊕w)·x |z〉A |w〉B
(
|0〉 − |1〉√

2

)
A

(
|0〉 − |1〉√

2

)
B

=
1

(
√

2n)3 ∑
z∈{0,1}n

∑
w∈{0,1}n

∑
x∈{0,1}n

(−1)(sA⊕sB⊕z⊕w)·x |z〉A |w〉B
(
|0〉 − |1〉√

2

)
A

(
|0〉 − |1〉√

2

)
B

.

When z⊕w = sA ⊕ sB, then ∀x ∈ {0, 1}n, the expression (−1)(sA⊕sB⊕z⊕w)·x becomes
(−1)0 = 1 and the sum ∑x∈{0,1}n(−1)(sA⊕sB⊕z⊕w)·x = 2n.
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Whenever z⊕w 6= sA ⊕ sB, the sum is just 0 because for exactly half of the inputs x
the exponent will be 0 and for the remaining half the exponent will be 1. Hence, one may
write that

∑
x∈{0,1}n

(−1)(sA⊕sB⊕z⊕w)·x = 2nδsA⊕sB ,z⊕w . (29)

Using Equation (29), and ignoring for the moment the two factors
(
|0〉−|1〉√

2

)
A

and(
|0〉−|1〉√

2

)
B

, the following two equivalent and symmetric forms can be derived

∑
z∈{0,1}n

∑
w∈{0,1}n

∑
x∈{0,1}n

(−1)(sA⊕sB⊕z⊕w)·x |z〉A |w〉B = 2n ∑
z∈{0,1}n

|z〉A |sA ⊕ sB ⊕ z〉B , (30)

and

∑
w∈{0,1}n

∑
z∈{0,1}n

∑
x∈{0,1}n

(−1)(sA⊕sB⊕z⊕w)·x |z〉A |w〉B = 2n ∑
w∈{0,1}n

|sA ⊕ sB ⊕w〉A |w〉B . (31)

By combining (28) with (30) and (31), state |ψ3〉 can be written in two different ways:

|ψ3〉 = 1√
2n ∑

z∈{0,1}n
|z〉A |sA ⊕ sB ⊕ z〉B

(
|0〉−|1〉√

2

)
A

(
|0〉−|1〉√

2

)
B

= 1√
2n ∑

w∈{0,1}n
|sA ⊕ sB ⊕w〉A |w〉B

(
|0〉−|1〉√

2

)
A

(
|0〉−|1〉√

2

)
B

.
(32)

Finally, Alice and Bob measure their EPR pairs in the input registers, obtaining

|ψ4〉 = |z0〉A |sA ⊕ sB ⊕ z0〉B = |sA ⊕ sB ⊕w0〉A |w0〉B , for some z0, w0 ∈ {0, 1}n . (33)

Please note that in general z0 6= w0. The quantum part of the protocol is now complete.
The final secret key is the string sA ⊕ sB ⊕ z0 that Bob measured in his input register. In the
highly unlikely event that |sA ⊕ sB ⊕ z0〉 = |0〉⊗n, Bob should inform Alice through the
use of the public channel that the whole procedure must be repeated once again, since such
a key is clearly unacceptable. However, for a n-bit key the probability of this happening
is negligible, specifically 1

2n , which rapidly tends to 0 as n → ∞. Hence, it may be safely
assumed that Bob possesses a viable secret key, namely sA ⊕ sB ⊕ z0. Now the final step is
for Alice to obtain the secret key too. This is easily achieved by simply having Bob publicly
announce his tentative secret key sB to Alice via the use of the public channel. Alice, who
has measured the binary string z0 and she is already aware of her initial secret key sA,
can easily obtain the final key, by simply calculating the XOR of sA, her measurement z0
and Bob’s initial key sB, which she learns from the public channel. This concludes the
fSEBV protocol.

The symmetry inherent in this protocol, enables the seamless reversal of roles. The
protocol, as stated above, grants the initiative to Bob: it is his measurement sA ⊕ sB ⊕ z0
that produces the secret key and it is his task to send his initial key sB to Alice, in order
to successfully complete the procedure. It is equally feasible to have Alice instead of Bob
drive the whole process by taking her measurement sA ⊕ sB ⊕w0 to be the secret key, as
shown in (33). In such an implementation of the fSEBV protocol, Alice must reveal her
initial key sA to Bob via the public channel.

During the transmission of Bob’s key sB using a public channel, any potential eaves-
dropper, namely Eve, does not gain any advantage by listening to the public channel. Due
to the fact that she is oblivious of z0 and sA, she has no way of knowing or computing the
final secret key. Hence, the fSEBV protocol ensures that if Alice and Bob can create their
keys using a random number generator, in order to avoid possible patterns in the keys, Eve
will be left with 2n different combinations to test in order to find the secret key.
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The steps of the protocol from Alice’s and Bob’s side are shown below in an algorithmic
manner. Figure 3 depicts the protocol graphically in the form of a quantum circuit.

Figure 3. This figures gives a schematic representation of the proposed protocol.

Protocol fSEBV: Alice’s actions
Alice’s input register is populated with entangled qubits
• Alice’s output register is set to |1〉
• Alice applies the Hadamard transform to her output register
• Alice applies her tentative key sA
• Alice applies the Hadamard transform to her input register
• Alice measures her input register to find the random binary string z0
• Alice receives information from Bob whether the process was a success or must
be repeated
• If the procedure was successful, Alice receives from Bob his key sB and, by
already knowing sA and z0, she computes the final key sA ⊕ sB ⊕ z0

Protocol fSEBV: Bob’s actions
• Bob’s input register is populated with entangled qubits
• Bob’s output register is set to |1〉
• Bob applies the Hadamard transform to his output register
• Bob applies his tentative key sB
• Bob applies the Hadamard transform to his input register
• Bob measures his input register to find the final secret key sA ⊕ sB ⊕ z0
• In the unlikely event that |sA ⊕ sB ⊕ z0〉 = |0〉⊗n, Bob informs Alice that the
process must be repeated from the start
• Otherwise Bob communicates his tentative key sB to Alice via the public channel

3.2. The sSEBV Protocol

The sSEBV protocol explores a special but important case of the fSEBV protocol, which
differs from the latter in one important aspect. Alice possesses her random initial key
sA, but Bob’s key sB is not a random binary string anymore; it is specifically taken to be
0 = 0 . . . 0. Essentially, sSEBV protocol answers the question of what will happen, if one
of the players, either Alice or Bob, decides not to send a key. As before Alice and Bob are
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spatially separated and they both share n EPR pairs. In this variant, Alice and Bod behave
in a semi-symmetrical way. Alice still uses her random initial key sA, but Bob is obliged to
use 0 as his initial key.

In this case, by using Equation (7), it can seen that the initial state of the system
is the following

|ψ0〉 = |Φ+〉⊗n |1〉A |1〉B =
1√
2n ∑

x∈{0,1}n
|x〉A |x〉B |1〉A |1〉B . (34)

Similarly, Alice and Bob initiate the protocol by applying the Hadamard transform to
their output registers, which produces the ensuing state

|ψ1〉 =
1√
2n ∑

x∈{0,1}n
|x〉A |x〉B

(
|0〉 − |1〉√

2

)
A

(
|0〉 − |1〉√

2

)
B

. (35)

Next Alice and Bob apply their corresponding functions on their registers via the
standard scheme

U f : |x, y〉 → |x, y⊕ f (x)〉 , (36)

only now the situation is quite different because Bob must necessarily use 0:

fA(x) = sA · x mod 2 (37)

fB(x) = 0 · x mod 2 = 0 . (38)

In view of Equations (37) and (38), the next state becomes

|ψ2〉 =
1√
2n ∑

x∈{0,1}n
(−1) fA(x) |x〉A (−1)0 |x〉B

(
|0〉 − |1〉√

2

)
A

(
|0〉 − |1〉√

2

)
B

=
1√
2n ∑

x∈{0,1}n
(−1)sA ·x |x〉A |x〉B

(
|0〉 − |1〉√

2

)
A

(
|0〉 − |1〉√

2

)
B

. (39)

Subsequently, both Alice and Bob apply the Hadamard transformation to their input
registers. Taking into account Equation (18), one can see that their combined actions drive
the system into the next state

|ψ3〉 =
1√
2n ∑

x∈{0,1}n
(−1)sA ·x H⊗n |x〉A H⊗n |x〉B

(
|0〉 − |1〉√

2

)
A

(
|0〉 − |1〉√

2

)
B

=
1√
2n ∑

x∈{0,1}n
(−1)sA ·x

 1√
2n ∑

z∈{0,1}n
(−1)z·x |z〉A

 1√
2n ∑

w∈{0,1}n
(−1)w·x |w〉B


(
|0〉 − |1〉√

2

)
A

(
|0〉 − |1〉√

2

)
B

(40)

=
1

(
√

2n)3 ∑
x∈{0,1}n

∑
z∈{0,1}n

∑
w∈{0,1}n

(−1)(sA⊕z⊕w)·x |z〉A |w〉B
(
|0〉 − |1〉√

2

)
A

(
|0〉 − |1〉√

2

)
B

=
1

(
√

2n)3 ∑
z∈{0,1}n

∑
w∈{0,1}n

∑
x∈{0,1}n

(−1)(sA⊕z⊕w)·x |z〉A |w〉B
(
|0〉 − |1〉√

2

)
A

(
|0〉 − |1〉√

2

)
B

.

When z ⊕ w = sA, then ∀x ∈ {0, 1}n, the expression (−1)(sA⊕z⊕w)·x becomes
(−1)0 = 1 and the sum ∑x∈{0,1}n(−1)(sA⊕z⊕w)·x = 2n. Whenever z⊕w 6= sA, the sum is
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just 0 because for exactly half of the inputs x the exponent will be 0 and for the remaining
half the exponent will be 1. Therefore, again one may write that

∑
x∈{0,1}n

(−1)(sA⊕z⊕w)·x = 2nδsA ,z⊕w . (41)

Using Equation (41), and ignoring for the moment the two factors
(
|0〉−|1〉√

2

)
A

and(
|0〉−|1〉√

2

)
B

, the following two equivalent and symmetric forms can be derived

∑
z∈{0,1}n

∑
w∈{0,1}n

∑
x∈{0,1}n

(−1)(sA⊕sB⊕z⊕w)·x |z〉A |w〉B = 2n ∑
z∈{0,1}n

|z〉A |sA ⊕ z〉B , (42)

and

∑
w∈{0,1}n

∑
z∈{0,1}n

∑
x∈{0,1}n

(−1)(sA⊕z⊕w)·x |z〉A |w〉B = 2n ∑
w∈{0,1}n

|sA ⊕w〉A |w〉B . (43)

By combining (40) with (42) and (43), state |ψ3〉 can be written in two different ways:

|ψ3〉 = 1√
2n ∑

z∈{0,1}n
|z〉A |sA ⊕ z〉B

(
|0〉−|1〉√

2

)
A

(
|0〉−|1〉√

2

)
B

= 1√
2n ∑

w∈{0,1}n
|sA ⊕w〉A |w〉B

(
|0〉−|1〉√

2

)
A

(
|0〉−|1〉√

2

)
B

.
(44)

Now, when Alice and Bob measure their input registers, they will obtain

|ψ4〉 = |z0〉A |sA ⊕ z0〉B = |sA ⊕w0〉A |w0〉B , for some z0, w0 ∈ {0, 1}n . (45)

As in the fSEBV protocol, here also holds that z0 6= w0 in general. This time, there are
two ways in which the final part of the protocol can unfold. One way, exactly like before,
is to take Bob’s measurement as the new secret key. The other, equally viable choice, is to
take Alice’s initial key sA as the final secret key. In that case Alice must publicly announce
z0 to Bob via a public channel, so that he can compute sA. This is a suitable choice in
cases where, for whatever reason, Alice must set the secret key herself, not wanting to
leave anything to chance. In that way she may securely communicate her chosen key to
Bob. As before, during the transmission of Alice’s measurement z0 using a public channel,
Eve does not gain any advantage by eavesdropping on their communication. Due to the
fact that she is oblivious to sA, she has no way of knowing or computing the final secret
key. Hence, the sSEBV protocol also ensures that if Alice devises her key using a random
number generator, in order to avoid possible patterns in the keys, Eve will be left with 2n

different combinations to test in order to find the secret key.
The detailed actions for the implementation of the sSEBV protocol from Alice’s and

Bob’s side are given below. Although the sSEBV protocol is not perfectly symmetric,
reversal of Alice’s and Bob’s roles is still trivially easy. As can be seen from the following
description, not only is Alice the one to choose the secret key, but it is also she that sends
the final measurement z0 to Bob so that he can successfully derive the secret key. It is
equally feasible to have Bob instead of Alice choose the secret key and have Alice use 0 in
the first stage. In such a realization of the sSEBV protocol, Bob must also reveal his final
measurement w0 to Alice via the public channel.

4. Examples Illustrating the Operation of the Protocols

This section presents and analyzes two small scale but detailed examples in order to
illustrate the operation of the fSEBV and sSEBV protocols in practice. The fSEBV and sSEBV
protocols were simulated using IBM’s Qiskit open source SDK ([28]). Specifically, the Aer
provider using the high performance qasm simulator for simulating quantum circuits [29]
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in its default settings was used. Please note that during our tests it was not possible to
simulate in Qiskit Alice and Bob being spatially separated or a third party source providing
the entangled EPR pairs. So these important assumptions cannot be accurately reflected in
the simulation and for that reason the examples do not represent a real life environment. As
a result Alice and Bob appear in the same circuit. Specifically, Alice’s input register consists
of the qubits |q2q1q0〉 and her output register is |q3〉. Symmetrically, Bob’s input register
consists of the qubits |q6q5q4〉 and his output register is |q7〉. Moreover, the entangled EPR
pairs are created by the circuit itself. This is depicted in Figures 4, where in the initial stage
of the corresponding circuits Hadamard and CNOT gates are used to populate Alice’s and
Bob’s input registers with entangled EPR pairs, exactly as explained in Section 2.

Protocol sSEBV: Alice’s actions
• Alice’s input register is populated with entangled qubits
• Alice’s output register is set to |1〉
• Alice applies the Hadamard transform to her output register
• Alice applies her chosen key sA
• Alice applies the Hadamard transform to her input register
• Alice measures her input register to find the random binary string z0
• Alice announces the binary string z0 to Bob via the public channel

Protocol sSEBV: Bob’s actions
• Bob’s input register is populated with entangled qubits
• Bob’s output register is set to |1〉
• Bob applies the Hadamard transform to his output register
• Bob applies his key 0
• Bob applies the Hadamard transform to his input register
• Bob measures his input register to find the binary string sA ⊕ z0
• Bob receives z0 and computes the key sA

4.1. Example for the fSEBV Protocol

In this example it is assumed that sA = 101 and sB = 110. The resulting circuit in
displayed in Figure 4.

Figure 4. The circuit for the fSEBV protocol.

The final measurement by Alice and Bob will produce one of the 8 outcomes shown in
Figure 5 along with their corresponding probabilities as given by running the qasm simula-
tor for 2048 shots. A simple inspection of the possible outcomes confirms Equation (33).
This is because every possible outcome can be written either as |z0〉A |sA ⊕ sB ⊕ z0〉B or as
|sA ⊕ sB ⊕w0〉A |w0〉B, for some, generally different, z0, w0 ∈ {0, 1}n. Hence, Bob, after
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measuring (and accepting) the secret key sA ⊕ sB ⊕ z0, just needs to send his secret key
sB = 110 to Alice so that she too can derive the secret key.

Figure 5. The possible outcomes of the measurement and their corresponding probabilities for the
circuit in Figure 4.

To avoid any confusion, we clarify that the measurements shown in Figure 5 depict
both Alice’s and Bob’s input registers as |q6q5q4q2q1q0〉. In particular, every one of the
eight possible outcomes is shown along with the probability of measuring this outcome, as
computed by the qasm simulator. The three most significant bits represent Bob’s measure-
ment or |sA ⊕ sB ⊕ z0〉B and the three least significant bits represent Alice’s measurement
or |z0〉A. Thus, for this specific example, if Bob announces his initial key sB = 110 to Alice,
and Alice performs a XOR operation upon her measurement with Bob’s initial key and
her own initial key sA = 101, then Alice will obtain Bob’s final measurement, which is the
secret key.

4.2. Example for the sSEBV Protocol

In this example too, the entangled EPR pairs are created by the circuit itself. In the
initial stage of the corresponding circuits Hadamard and CNOT gates are used to populate
Alice’s and Bob’s input registers with entangled EPR pairs, as explained in Section 2.
Moreover, it is assumed that sA = 101 and sB = 000. The resulting circuit in displayed in
Figure 6.

Figure 6. The circuit for the sSEBV protocol.
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This time the final measurement by Alice and Bob will produce one of the 8 outcomes
shown in Figure 7 along with their corresponding probabilities as given by running the
qasm simulator for 2048 shots. As noted in the previous case, it suffices to inspect the
possible outcomes in order to confirm Equation (45). Now the correct interpretation of the
outcomes means viewing them either as |z0〉A |sA ⊕ z0〉B or as |sA ⊕w0〉A |w0〉B, for some,
generally different, z0, w0 ∈ {0, 1}n. Hence, Alice, after making her final measurement and
finding a random binary string z0, she just needs to send z0 to Bob. Then Bob will be able
to derive Alice’s chosen secret key sA = 101.

Figure 7. The possible outcomes of the measurement and their corresponding probabilities for the
circuit in Figure 6.

Again, all of the eight possible outcomes are shown along with the probability of
measuring each one of them, as computed by the qasm simulator. The measurements
shown in Figure 7 depict both Alice’s and Bob’s input registers as |q6q5q4q2q1q0〉, that is
the three most significant bits represent Bob’s measurement or |sA ⊕ z0〉B and the three
least significant bits represent Alice’s measurement or |z0〉A. In this specific example, if
Alice announces her measurement |z0〉A to Bob, and Bob performs a XOR operation upon
his measurement, with Alice’s measurement, then Bob will obtain the secret key sA = 101
chosen by Alice.

5. Discussion and Conclusions

QKD protocols have surely proved by now that they are the future of key distribu-
tion. Their advantage stems from the fact that they allow us to harness the power of
quantum-mechanics and nature’s own laws, without having to rely on the complexity
of certain mathematical problems. In this paper, we tried to further expand the field of
quantum cryptography, by proposing a novel use for the Bernstein-Vazirani algorithm as a
symmetrical entanglement-based QKD protocol, coming in two flavors.

These two flavors differ on the degree of symmetry employed by the protocol. In the
fully symmetric variant, Alice and Bob take completely identical actions. This variant has
the ability to create a totally new and original key, a key that both Alice and Bob were
initially oblivious of. This can be useful in many situations as it ensures an additional
advantage security wise. Furthermore, it provides a degree of fairness, by putting both
parties on an equal footing, in the sense that neither Alice nor Bob can solely determine the
secret key.
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On the other hand, the semi-symmetric variant, which can technically be viewed as a
special case of the first protocol, deviates from this symmetry. In effect, the semi-symmetric
protocol answers the question of what will happen if one of the two players wants to
specify the secret key. In the presentation given in Section 3 it was Alice that chose the
secret key, but it is trivial to adjust the protocol so that Bob can be the party to decide the
secret key. This protocol can be useful in situations where a specific key must be chosen by
either Alice or Bob, and this key must be securely transmitted to the other party.

Additionally, we demonstrated two small scale but comprehensive examples, illus-
trating the operation of the two protocols in practice. Finally, we explained the protocols
strength against an eavesdropping attack by Eve. Both variants exhibit the inherent ro-
bustness of entanglement-based protocols against Eve’s attacks, as originally described
by Ekert. Moreover, the use of extra inputs in order to acquire the final secret key, adds
another layer of security.

In closing, we remark that we also believe that the rest of the old quantum algo-
rithms, such as the Deutsch-Jozsa algorithm and Simon’s periodicity algorithm, can all
be implemented as a symmetrical entanglement-based QKD protocols, posing a viable
suggestion for future work, along with the performance of these proposals against different
quantum attacks.
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