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Abstract

We explore Random Scale-Free networks of populations, modelled by chaotic Ricker maps,

connected by transport that is triggered when population density in a patch is in excess of a

critical threshold level. Our central result is that threshold-activated dispersal leads to stable

fixed populations, for a wide range of threshold levels. Further, suppression of chaos is facil-

itated when the threshold-activated migration is more rapid than the intrinsic population

dynamics of a patch. Additionally, networks with large number of nodes open to the environ-

ment, readily yield stable steady states. Lastly we demonstrate that in networks with very

few open nodes, the degree and betweeness centrality of the node open to the environment

has a pronounced influence on control. All qualitative trends are corroborated by quantitative

measures, reflecting the efficiency of control, and the width of the steady state window.

Introduction

Nonlinear systems, describing both natural phenomena as well as human-engineered devices,

can give rise to a rich gamut of patterns ranging from fixed points to cycles and chaos. An

important manifestion of our understanding of a complex system is the ability to control its

dynamics, and so the search for mechanisms that enable a chaotic system to maintain a fixed

desired activity has witnessed enormous research attention [1, 2]. In early years the focus was

on controlling low-dimensional chaotic systems, and guiding chaotic states to desired target

states [3–6]. Efforts then moved on to the arena of lattices modelling extended systems, and

the control of spatiotemporal patterns in such systems [7]. With the advent of network science

to describe connections between complex sub-systems, the new challenge is to find mecha-

nisms or strategies that are capable of stabilizing these large interactive systems [8].

In this work we consider a network of population patches [9, 10], or “a population of popu-

lations” [11]. Now, in analogy with reaction-diffusion processes, diffusive coupling has been

very widely studied as a model of connections between population patches, with most models

of metapopulation dynamics considering density dependent dispersal [12–16]. However, here

we will investigate a different class of coupling, namely threshold-activated transport. The

broad scenario underlying this is that each population patch has a critical population density it

can support, and when the population in the patch, due to its inherent growth dynamics
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(which may be chaotic) exceeds this threshold, the excess migrates to neighbouring patches.

The neighbouring patch on receiving the migrant population may become over-critical too,

triggering further migrations. So this form of coupling is pulsatile and inter-patch transport

occurs only when there is excessive build-up of population density in a patch, which may initi-

ate a cascade of transport events [6, 17]. Though much less explored, in many situations this

form of coupling may be expected to offer a more appropriate description of the connections

between spatially distributed population patches.

In this study we will then aim to obtain broad insights on the dynamics of a complex net-

work under threshold-activated transport, through the specific illustrative example of spatially

distributed populations connected by threshold-activated migrations. Our principal question

will be the following: what is the effect of threshold-activated dispersal on the dynamical pat-

terns emerging in the network, and in particular, can threshold-activated coupling serve to sta-
bilize the intrinsically chaotic populations in the network to regular behaviour, such as steady

states or regular cycles? In the sections below, we will first discuss details of the nodal dynam-

ics, as well as the salient features of pulsatile transport triggered by threshold mechanisms. We

will then go on to demonstrate, through qualitative and quantitative measures, that such

threshold-activated connections manage to stabilize chaotic populations to steady states. Fur-

ther we will explore how the critical threshold that triggers the migration, and the timescales of

the nodal dynamics vis-a-vis transport, influences the emergent dynamics.

Model

Consider a network of N sub-systems, characterized by variable xn(i) at each node/site

i (i = 1, . . .N) at time instant n. Specifically, we study a prototypical map, the Ricker (Exponen-

tial) Map, at the local nodes. Such a map has been considered as a reasonably accurate model

of population growth of species with non-overlapping generations [18]. It is given by the func-

tional form:

xnþ1ðiÞ ¼ f ðxnðiÞÞ ¼ xnðiÞ exp ðrð1 � xnðiÞÞÞ ð1Þ

where r is interpreted as an intrinsic growth rate and (dimensionless) xn(i) is the population

scaled by the carrying capacity at generation n at node/site i. We consider r = 4 in this work,

namely, an isolated uncoupled population patch displays chaotic behaviour. Note that the

results we will subsequently present here, hold qualitatively for a wide class of unimodal non-

linear maps, of which the Ricker map is a specific example.

The coupling in the system is triggered by a threshold mechanisms [6, 19–21]. Namely, the

dynamics of node i is such that if xn+1(i)> xc, the variable is adjusted back to xc and the

“excess” xn+1 − xc is distributed to the neighbouring patches. The threshold parameter xc is the

critical value the state variable has to exceed in order to initiate threshold-activated coupling.

So this class of coupling is pulsatile, rather than the more usual continuous coupling forms, as

it is triggered only when a node exceeds threshold.

Specifically, we study such population patches coupled in a Random Scale-Free network,

where the network of underlying connections is constructed via the Barabasi-Albert preferen-

tial attachment algorithm, with the number of links of each new node denoted by parameter m
[22]. The resultant network is characterized by a fat-tailed degree distribution, found widely in

nature. The underlying web of connections determines the “neighbours” to which the excess is

equi-distributed. Further, certain nodes in the network may be open to the environment, and

the excess from such nodes is transported out of the system. Such a scenario will model an

open system, and such nodes are analogous to the “open edge of the system”. We denote the

fraction of open nodes in the network, that is the number of open nodes scaled by system size
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N, by f open. In this work we also consider closed systems with no nodes open to the environ-

ment, where nothing is transported out of the system, i.e. f open = 0.

So the scenario underlying this is that each population patch has a critical population den-

sity xc it can support, and when the population in the patch, due to its inherent chaotic growth

dynamics, exceeds this threshold, the excess population moves to a neighbouring patch. The

neighbouring patch on receiving the excess may exceed threshold too. Thus a few over-critical

patches may initiate a domino effect, much like an “avalanche” in models of self-organized

criticality [23] or cascade of failures in models of coupled map lattices [24]. So the main mech-

anisms for mitigating excess is through redistribution of excess, which ensures that nodes that

are under-critical will absorb some excess population, and through the transport of excess out

of the network via the open nodes. All transport activity in the network stops, namely the cas-

cade ceases, when all patches are under the critical value, i.e. all x(i)< xc.

So there are two natural time-scales here. One time-scale characterizes the chaotic update

of the populations at node i. The other time scale involves the redistribution of population

densities arising from threshold-activated transport. We denote the time interval between cha-

otic updates, namely the time available for redistribution of excess resulting from threshold-

activated transport processes, by TR. This is analogous to the relaxation time in models of self-

organized criticality, such as the influential sandpile model [23]. TR then indicates the compar-

ative time-scales of the threshold-activated migration and the intrinsic population dynamics of

a patch.

Results

We have simulated this threshold-coupled scale-free network of populations, under varying

threshold levels xc (0� xc� 2). We considered networks with varying number of open nodes,

namely systems that have different nodes/sites open to the environment from where the excess

population can migrate out of the system. Further, we have studied a range of redistribution

times TR, capturing different timescales of migration vis-a-vis population change [25]. With

no loss of generality, in the sections below, we will present salient results for Random Scale-

Free networks with m = 1, and specifically demonstrate, both qualitatively and quantitatively,

the stabilization of networks of chaotic populations to steady-states under threshold-activated

coupling.

Emergence of steady states

First, we consider the case of large TR, where the transport processes are fast compared to the

population dynamics, or equivalently, the population dynamics of the patch is slow compared

to inter-patch migrations. Namely, since the chaotic update is much slower than the transport

between nodes, the situation is analogous to the slow driving limit [23]. In such a case, the sys-

tem has time for many transport events to occur between chaotic updates, and avalanches can

die down, i.e. the system is “relaxed” or “under-critical” between the chaotic updates. So when

the transport/migration is significantly faster than the population update (namely the time

between generations), the system tends to reach a stationary state where all nodal populations

are less than critical.

An illustrative case of the state of the nodes in the network is shown in Fig 1. Without

much loss of generality, we display results for a network of size N = 100, for a representative

large value of redistribution time TR = 5000. It is clear that all the nodes in the network gets sta-
bilized to a fixed point, namely all population patches evolve to a stable steady state.

The next natural question is the influence of the critical threshold xc on the emergent

dynamics, and this will be demonstrated through a series of bifurcation diagrams. Note that in
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all the bifurcation diagrams presented in this work we will display on the vertical axis the state

x of a representative site in the network, over several time steps after transience, with respect to

threshold xc which runs along the horizontal axis.

It is clearly evident from the bifurcation diagrams in Fig 2 that a large window of threshold
values (0� xc< 1) yield spatiotemporal steady states in the network [26–28]. It is also apparent

Fig 1. State of the nodes (coded in color) in a Random Scale-Free network of intrinsically chaotic populations under threshold-

activated coupling, at different instants of time. Here the steady state value represented by the light green color. The left panel displays

the network at initial time, showing the random initial state of the network. The right panel shows the network after 50 time steps, clearly

showing that all nodes have evolved to a steady state (as evident from the uniform light green color). Here redistribution time TR = 5000 and

the critical threshold xc = 0.5, and there is a single node open to the environment.

https://doi.org/10.1371/journal.pone.0183251.g001

Fig 2. Bifurcation diagrams of the state of a representative node, with respect to critical threshold xc, in a threshold-coupled

Random Scale-Free network of intrinsically chaotic populations. Here TR = 5000 and the network has a single open node, of degree (a)

1 and (b) 15.

https://doi.org/10.1371/journal.pone.0183251.g002
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that the degree of the open node does not affect the emergence of steady states here. Further,

for threshold values beyond the window of control to fixed states, one obtains cycles of period

2. Namely for threshold levels 1< xc < 2 the populations evolve in regular cycles, where low

population densities alternate with a high population densities. This behaviour is reminiscent

of the field experiment conducted by Scheffer et al [29] which showed the existence of self-per-

petuating stable states alternating between blue-green algae and green algae. We discuss the

underlying reason for this behaviour in S1 Appendix, and offer analytical reasons for the range

of period-1 and 2 behaviour considering a single threshold-limited map.

So our first result can be summarized as follows: when redistribution time TR is large and

the critical threshold xc is small, we have very efficient control of networks of chaotic popula-

tions to steady states. This suppression of chaos and quick evolution to a stable steady states

occurs irrespective of the number of open nodes.

Influence of the redistribution time and the number of open nodes on the

suppression of chaos

Now we focus on the network dynamics when TR is small, and the time-scales of the nodal

population dynamics and the inter-patch transport are comparable. So now there will be

nodes that may remain over-critical at the time of the subsequent chaotic update, as the system

does not have sufficient time to “relax” between population updates. The network is then akin

to a rapidly driven system, with the de-stabilizing effect of the chaotic population dynamics

competing with the stabilizing influence of the threshold-activated coupling. So for small TR,

the system does not get enough time to relax to under-critical states and so perfect control to

steady states may not be achieved.

Importantly now, the fraction of open nodes f open is crucial to chaos suppression. In gen-

eral, a larger fraction of open nodes facilitates control of the intrinsic chaos of the nodal popu-

lation dynamics, as the de-stabilizing “excess” is transported out of the system more efficiently.

We investigate this dependence, through space-time plots of representative networks with

varying number of open nodes and redistribution times (cf. Fig 3), and through bifurcation

diagrams of this system with respect to critical threshold xc (cf. Fig 4).

It is apparent from Fig 3, that when there are enough open nodes, the network relaxes to

the steady state even for low redistribution times. Also notice from Fig 3(d) that the system

reaches the steady state very rapidly, namely within a few time steps, from the random initial

state. So more open nodes yields better control of the intrinsic chaos of the nodal population

dynamics to fixed populations. This is also corroborated in the bifurcation diagrams displayed

in Fig 4, where control to steady states is seen even for low TR, when there are large number of

open nodes, vis-a-vis networks with few open nodes. Further contrast this with the dynamics

of a system with large TR, shown earlier in Fig 2, where even a single open node leads to stable

steady states for a large range of threshold values. Similar qualitative trends are also borne out

in Random Scale-Free network with m = 2, where again more open nodes and longer redistri-

bution times result in better control to fixed population densities.

As a limiting case, we also studied the spatiotemporal behaviour of threshold-coupled net-

works without open nodes. Here the network of coupled population patches is a closed system.

Again the intrinsic chaos of the populations is suppressed to regular behaviour, for large ranges

of threshold values. However, rather than steady states, one now obtains period-2 cycles. This

is evident through the bifurcation diagram of a closed network (cf. Fig 5) vis-a-vis networks

with at least one open node (cf. Fig 2). Also, note the similarity of the bifurcation diagram of

the closed system with that of a system with low TR and few open nodes. This similarity stems

from the underlying fact that in both cases the network cannot relax to completely under-
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critical states by redistribution of excess between the population updates, either due to paucity

of time for redistribution (namely low TR) or due to the absence of open nodes to transport

excess out of the system.

Further, we explore the case of networks with very few (typically 1 or 2) open nodes, and

study the effect of the degree and betweenness centrality of these open nodes on the control to

steady states. Betweenness centrality of a node is given as bðiÞ ¼
P

s;t2I
sðs;tjiÞ
sðs;tÞ , where I is the set

of all nodes, σ(s, t) is the number of shortest paths between nodes s and t and σ(s, t|i) is the

number of shortest paths passing through the node i. We expect the degree and betweenness

centrality of the open nodes to play a significant role for the following reason: the main mecha-

nism for mitigating excess is through the transport of excess out of the network via the open

nodes. This implies that the emergence of steady states is crucially dependent on the move-

ment of excess occuring at any node in the network to an open edge in TR steps. So if an open

Fig 3. Space-time plots displaying the spatiotemporal behaviour of a Random Scale-Free network of intrinsically chaotic

populations. Here time runs along the vertical axis and site index displayed along the horizontal axis. Panel (a) shows the case of

uncoupled chaotic populations evolving from a representative random initial state. Panels (b), (c) and (d) show the evolution of the

same populations connected through threshold-activated coupling. System size N = 50, redistribution time TR = 50, the critical threshold

xc = 0.5 and the number of open nodes in the network is (b) 1, (c) 10, (d) 30.

https://doi.org/10.1371/journal.pone.0183251.g003
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node has more links to other nodes (namely, is of high degree), this would naturally facilitate

the transport of excess to it, in parallel, through its many links. Also, an open node with high

betweeness centrality implies that the node lies on many shortest paths connecting pairs of

nodes. So this too should aid the process, as excess can reach the open node in fewer time

steps.

Our expectations above are indeed verified through extensive simulations, where we

observe the following: when there are very few open nodes, the degree and betweenness cen-

trality of the open node is important, with the region of control being large when the open

node has the high degree/betweenness centrality, and vice versa [30]. This interesting behav-

iour is clearly seen in the bifurcation diagrams shown in Fig 6a–6d, which demonstrate that

the degree and betweeness centrality of the open node has a pronounced influence on control.

Quantitative measures of the efficiency of chaos suppression

We now investigate a couple of quantitative measures that provide indicators of the efficiency

and robustness of the suppression of chaos in the network. The first quantity is the average

Fig 4. Bifurcation diagrams for one representative node in a threshold-coupled Random Scale-Free network of intrinsically

chaotic populations, with respect to critical threshold xc. Here TR = 50 and the number of open nodes is (a) 1, (b) 10, (c) 30 and (d) 60.

https://doi.org/10.1371/journal.pone.0183251.g004
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redistribution time hTi, defined as the time taken for all nodes in a system to be under-critical

(i.e. xi< xc for all i), averaged over a large sample of random initial states and network configu-

rations. So hTi provides a measure of the efficiency of stabilizing the system, and reflects the

rate at which the de-stabilizing “excess” is transported out of the network. Fig 7 shows the

dependence of hTi on system size N. Clearly, while larger networks need longer redistribution

times in order to reach steady states, this increase is only logarithmic. This can be rationalized

as follows: the average redistribution time needed for all nodes in a system to be under-critical

reflects the average time taken by the excess from any over-critical node in the network to

reach some open edge. So this should be determined by the diameter of the random scale-free

graph, namely the maximum of the shortest path lengths over all pairs of nodes in the network,

which scales with network size as ln N.

This is further corroborated by calculating the average fraction of nodes in the network that

go to steady states with respect to the redistribution time TR, for networks of different sizes,

with varying number of open nodes (cf. Fig 8). Clearly for small systems, with sufficiently high

Fig 5. Bifurcation diagram displaying the state of a representative site, for threshold-coupled populations in a Random Scale-Free

network. Here TR = 5000 and there are no open nodes.

https://doi.org/10.1371/journal.pone.0183251.g005
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f open, very low TR can lead to stabilization of all nodes. Importantly, when the fraction of open

nodes is very small, the average redistribution time hTi depends sensitively on the betweenness

centrality of the open node, and to a lesser extent its degree. Fig 9a and 9b present illustrative

results demonstrating this observation.

Next we examine the range of threshold values yielding steady states, averaged over a large

sample of network configurations and initial states, denoted by hRi. Larger hRi implies that

steady states will be obtained in a larger window in xc space, thereby signalling a more robust

control. We have explored the dependence of this quantity on redistribution time TR, and also

on the fraction of open nodes in the network, denoted by f open. From Fig 10 we see that the

steady-state window in xc rapidly converges to *1 (namely, the range 0� xc < 1), as the num-

ber of open nodes increases. So the window yielding suppression of chaos is almost indepen-

dent of the number of open nodes, after a sufficiently large fraction of open nodes. Also notice

that there is a critical fraction of open nodes f open
c , after which the network yields a non-zero

Fig 6. Bifurcation diagrams displaying the state of a representative node, with respect to critical threshold xc, in a threshold-

coupled Random Scale-Free network of intrinsically chaotic populations. Here TR = 500 and there is a single open node, with this

open node having (a) the highest betweenness centrality, (b) the lowest betweenness centrality, (c) the highest degree and (d) the lowest

degree in the network.

https://doi.org/10.1371/journal.pone.0183251.g006

Threshold-activated transport stabilizes chaotic populations to steady states

PLOS ONE | https://doi.org/10.1371/journal.pone.0183251 August 25, 2017 9 / 17

https://doi.org/10.1371/journal.pone.0183251.g006
https://doi.org/10.1371/journal.pone.0183251


range of steady states, namely hRi> 0 for f open > f open
c . We observe that f open

c tends to zero as

the redistribution time increases and system size decreases, implying that very few open nodes
are necessary in order to lead the network to a steady state [31].

One can understand these observations by noting that f open
c is determined by the time aval-

able to the system for threshold-activated transport (i.e. TR), and the system size N. Now, as

mentioned earlier, the average redistribution time needed for all nodes in a system to be

under-critical, which reflects the time taken by the excess from any over-critical node in the

network to reach some open edge, should scale with the diameter of the random scale-free net-

work. This is known to scale with network size as ln N. Further, note that not all nodes are

open, and so the probability of reaching an open edge is inversely proportional to f open. This

implies that it takes longer to move all the excess to the open node(s) when f open is smaller. In

order to reach a steady state the average time for cascades to cease should be less than the avail-

able time TR. So if the available redistribution time TR is low, and the network size N is large,

the cumulative excess from all the over-critical nodes in the system will not manage to reach

the open edge. So no steady states will emerge (i.e. hRi = 0). However, once f open > ln N/TR, a

Fig 7. Average redistribution time hTi, as a function of the logarithm of the network size N. Here hTi is defined as the time taken for all

nodes in a system to be under-critical (i.e. xi < xc, 8i), averaged over a large sample of random initial states and network configurations, the

fraction of open nodes in the network is 0.2 and xc = 0.5.

https://doi.org/10.1371/journal.pone.0183251.g007

Threshold-activated transport stabilizes chaotic populations to steady states

PLOS ONE | https://doi.org/10.1371/journal.pone.0183251 August 25, 2017 10 / 17

https://doi.org/10.1371/journal.pone.0183251.g007
https://doi.org/10.1371/journal.pone.0183251


global steady state will emerge. This offers as estimate of f open
c . For instance, for N = 100 and

TR = 50, this argument suggests that f open
c � 0:09, which is close to the numerically obtained

value. This also implies that for sufficiently large redistribution time, or small enough network

size, the system can attain steady state even when there is a single open node (i.e. f open
c ! 0). In

fact we can also obtain an estimate for the minimum TR, which we denote as Tmin
R , neccessary

for allowing the network to reach a steady state with just a single open node, namely

f open
c ¼ 1=N . So for networks of size N = 100 one obtains Tmin

R � N lnN � 460, while for net-

works of size N = 10 one obtains Tmin
R � 23. This estimate is consistent with the numerical

results shown in Fig 10, from where it is clear that for when TR > Tmin
R , e.g. for N = 10, TR = 50

and for N = 100, TR = 500, 1000, 5000, hRi is always non-zero, while for N = 100, TR = 50 (i.e.

when TR < Tmin
R ) hRi = 0 for f open < f open

c , after which there is a transition to non-zero hRi.
Lastly we explore the scenario of very few open nodes (f open << f open

c ) in greater depth,

through the quantitative measures hRi and hTi. In particular, we investigate the limiting case

of a single open node. Our attempt will be to understand the influence of the degree k and

betweeness centrality b of the open node on the capacity to suppress chaos. We have already

observed the significant effect of the betweeness centrality of the open node on the efficiency

of control to steady states through bifurcation diagrams in Fig 6. This is now further

Fig 8. Fraction of nodes in the network that go to steady states, denoted by ffixed, with respect to the redistribution time TR. Here

ffixed is averaged over different network configurations and initial states, xc = 0.5 and the fraction of open nodes f open in the network is 0.01,

0.02, 0.05, 0.1 for N = 100 (i.e. 1, 2, 5, 10 open nodes in the network respectively) and 0.1 for N = 10 (i.e. 1 open node in the network). Inset:

data collapse indicating the scaling relation ffixed * g(TR fopen).

https://doi.org/10.1371/journal.pone.0183251.g008
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corroborated quantitatively by the dependence of hRi and hTi, displayed in Figs 11 and 12(b).

The effect of the degree of the open node is less pronounced, though it also does have a

discernable effect on the suppression of chaos. As evident from Fig 12(a), when the open node

has a higher degree, it has a higher hRi, indicating that open nodes with higher degree yield

larger steady state windows.

Finally, note that the different centrality measures are most often strongly correlated and

therefore do not offer new insights. For instance, we have also studied the network with respect

to open nodes of varying closeness centrality, where closeness centrality is the average length

of the shortest path between the node and all other nodes in the graph. We find that qualita-

tively same broad trends emerge with respect to closeness centrality, as observed for between-

ness centrality (cf. Fig 11 and its inset).

These results can be understood intuitively as follows: the emergence of steady states is cru-

cially dependent on the efficacy of the excess being transported out of the network. Namely,

excess population from any over-critical node in the network needs to reach an open node

within TR steps. So if an open node has high degree transport of excess is facilitated, as the

excess can flow to the node simultaneously through its many links. Further one can rationalize

the effect of the betweeness centrality of an open node on the stabilization of the steady state,

as betweeness is a measure of centrality in a graph based on shortest paths. If an open node has

high betweenness centrality, a large number of shortest paths pass through it. This naturally

aids the cascading process, as excess reaches the open node in fewer time steps. The trends

expected from these arguments are corroborated in the results from simulations shown in Figs

11 and 12.

Fig 9. Average redistribution time hTi, as a function of the fraction of open nodes in the network f open. Here hTi is defined as the time

taken for all nodes in the threshold-coupled Random Scale-Free Network of chaotic populations, to be under-critical (i.e. xi < xc, 8i),

averaged over a large sample of random initial states and network configurations. There are 100 chaotic populations connected via

threshold-activated transport in a Random Scale-Free network. In panel (a) the case of open nodes chosen in descending order of degree

starting from nodes with the highest k (marked as khigh) and the case of open nodes chosen in ascending order of degree starting from nodes

with the lowest k (marked a klow), are displayed. In panel (b) the case of open nodes chosen in descending order of betweeness centrality

starting from nodes with the highest b (marked as bhigh) and the case of open nodes chosen in ascending order of betweeness centrality

starting from nodes with the lowest b (marked a blow), are displayed. In both panels, the case of open nodes chosen at random is also shown

for reference.

https://doi.org/10.1371/journal.pone.0183251.g009
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Conclusions

We have explored Random Scale-Free networks of populations under threshold-activated

transport. Namely we have a system comprising of many spatially distributed sub-populations

connected by migrations triggered by excess population density in a patch. We have simulated

this threshold-coupled Random Scale-Free network of populations, under varying threshold

levels xc. We considered networks with varying number of open nodes, namely systems that

have different nodes/sites open to the environment from where the excess population can

migrate out of the system. Further, we have studied a range of redistribution times TR, captur-

ing different timescales of migration vis-a-vis population change.

Our first important observation is as follows: when redistribution time TR is large and the

critical threshold xc is small (0� xc < 1), we have very efficient control of networks of chaotic

populations to steady states. This suppression of chaos and quick evolution to a stable steady

states occurs irrespective of the number of open nodes. Further, for threshold values beyond

the window of control to fixed states, one obtains cycles of period 2. Namely for threshold

Fig 10. Range of threshold values that yield steady states, hRi, as a function of the fraction ofopen nodes in the network fopen.

Here hRi is averaged over different network configurations and initial states and the open nodes are randomly chosen. Results from different

redistribution times (TR = 50, 500, 1000, 5000) and system sizes (N = 10, 100) are shown.

https://doi.org/10.1371/journal.pone.0183251.g010
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levels 1< xc < 2 the populations evolve in regular cycles, where low population densities alter-

nate with a high population densities. This behaviour is reminiscent of field experiments [29]

that show the existence of alternating states. We offer an underlying reason for this behaviour

through the analysis of a single threshold-limited map.

For small redistribution time TR, the system does not get enough time to relax to under-

critical states and so perfect control to steady states may not be achieved. Importantly, now the

number of open nodes is crucial to chaos suppression. We clearly demonstrate that when there

are enough open nodes, the network relaxes to the steady state even for low redistribution

times. So more open nodes yields better control of the intrinsic chaos of the nodal population

dynamics to fixed populations. We corroborate all qualitative observations by quantitative

measures such as average redistribution time, defined as the time taken for all nodes in a sys-

tem to be under-critical, and the range of threshold values yielding steady states.

We also explored the case of networks with very few (typically 1 or 2) open nodes in detail,

in order to gauge the effect of the degree and betweenness centrality of these open nodes on

the control to steady states. We observed that the degree of the open node does not have signif-

icant influence on chaos suppression. However, betweenness centrality of the open node is

important, with the region of control being large when the open node has the high between-

ness centrality, and vice versa.

Fig 11. Average redistribution time hTi, as a function of the betweeness centrality b of the open node. Here hTi is defined as the time

taken for all nodes in the threshold-coupled Random Scale-Free Network of chaotic populations, to be under-critical (i.e. xi < xc, 8i),

averaged over a large sample of random initial states and network configurations, in a network with a single open node. The solid curve

shows the best quadratic polynomial fit. Inset: Average redistribution time hTi, as a function of the closeness centrality C of the open node.

https://doi.org/10.1371/journal.pone.0183251.g011
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The emergence of steady states in this system, not only suggests potential underlying mech-

anisms for stabilization of intrinsically chaotic populations, but also has bearing on the broad

problem of control in complex networks. When a steady state is the desired state of the nodal

populations in the network, the threshold mechanism offers a very simple and potent strategy

for achieving this, as we have demonstrated clearly. If the aim is to prevent steady states, as

may be the case in variants of this model relevant to neuronal dynamics, our results suggest

what threshold levels need to be avoided in order to prevent evolution to global fixed points.

Note that a large class of control strategies entail complicated algorithms to calculate feedback,

and these require knowledge of the global network topology and details of the network dynam-

ics, which are often unknown. Here on the other hand, the nodes respond independently at

the local level to a simple threshold limiter condition, requiring knowledge of only the local

state at any point in time.

Lastly, interestingly, analogs of this class of coupling have been realized in CMOS circuit

implementation using pulse-modulation approach [32, 33]. So some of these results may be of

potential interest to the engineering community as well. In the biological context, some experi-

ments have studied similar dynamics in replicate laboratory metapopulations of Drosophila

[34]. So our results have the potential to be demonstrated in extensions of such experiments in

the future.

In summary, threshold-activated transport yields a very potent coupling form in a network

of populations, leading to robust suppression of the intrinsic chaos of the nodal populations

on to regular steady states or periodic cycles. So this suggests a mechanism by which chaotic

populations can be stabilized rapidly through migrations or dispersals triggered by excess pop-

ulation density in a patch.
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Fig 12. Range of threshold values that yield steady states hRi, as a function of the (a) degree k, and (b) betweeness centrality b, of

the open node. Here hRi is averaged over different network configurations and initial states, in a network with a single open node, (with the

solid curve showing the best quadratic polynomial fit).
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