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Abstract: Serological assays can contribute to the estimation of population proportions with previous
immunologically relevant contact with the Severe Acute Respiratory Syndrome Corona Virus 2
(SARS-CoV-2) virus. In this study, we compared five commercially available diagnostic assays
for the diagnostic identification of SARS-CoV-2-specific antibodies. Depending on the assessed
immunoglobulin subclass, recorded sensitivity ranged from 17.0% to 81.9% with best results for
immunoglobulin G. Specificity with blood donor sera ranged from 90.2% to 100%, with sera from
EBV patients it ranged from 84.3% to 100%. Agreement from fair to nearly perfect was recorded
depending on the immunoglobulin class between the assays, the with best results being found for
immunoglobulin G. Only for this immunoglobulin class was the association between later sample
acquisition times (about three weeks after first positive PCR results) and positive serological results in
COVID-19 patients confirmed. In conclusion, acceptable and comparable reliability for the assessed
immunoglobulin G-specific assays could be shown, while there is still room for improvement
regarding the reliability of the assays targeting the other immunoglobulin classes.
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1. Introduction

The Corona Virus Disease 2019 (COVID-19) pandemic, caused by Severe Acute Respi-
ratory Syndrome Corona Virus 2 (SARS-CoV-2) and starting in Wuhan, China, in 2019 [1],
remains the most threatening global public health menace of the year 2020. On a global
scale, diagnosis, containment and surveillance of the disease were considered issues of
major concern.

For containment purposes, direct proof of virus RNA in respiratory samples is of cen-
tral importance, so molecular tools for the detection of SARS-CoV-2 virus RNA were rapidly
introduced and evaluated [2–14] at early stages of the pandemic. However, detectable
amounts of virus RNA can quickly decline over the course of the disease [12,15], so infected
individuals with lacking or mild symptoms have a good chance of going undetected if
surveillance is just based on molecular diagnostic approaches.

To close this diagnostic gap, there was an early focus on the implementation of
antibody-based surveillance. By doing so, a more realistic view on the real dimensions
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of the spread of SARS-CoV-2 in the population was aspired to and numerous benchtop-
based and point-of-care-testing (POCT)-based serological assays were introduced [16–47].
However, the limitations of this strategy rapidly emerged as well. While specificity was
usually at least >95% in the geographic regions where the tests were developed, a broad
variety of sensitivities, usually between 70% and 90% depending on the subpopulation as-
sessed [16–29] and sometimes even lower [47], were recorded with an optimum sensitivity
two weeks after infection [29] and decreasing positivity rates afterwards [30]. Further, age-
dependency of serological sensitivity has been demonstrated [33] next to higher specificity
but lower sensitivity of neutralizing antibodies compared to non-neutralizing ones [34].

More than this, it has become obvious that immunologically relevant contacts with
SARS-CoV-2, i.e., viral in-vivo replication leading to any adaptive immune response, can
occur completely without the induction of specific antibodies but just with SARS-CoV-
2-specific T cell responses [48]. This is well in line with observed low seropositivity in
patients with previous PCR-confirmed COVID-19 as observed in a recent study [47]. It
is discussed that specific T cells may provide protection against SARS-CoV-2 even in the
absence of antibodies [49].

However, the method-immanent imperfect sensitivity of diagnostic methods does not
necessarily mean that they cannot be used for surveillance purposes. If diagnostic accuracy
adjusted methods [50,51] are applied, the true prevalence can be estimated even based
on a test with imperfect but known test characteristics in epidemiological assessments.
Accordingly, the evaluation of test characteristics of serological tests for antibodies against
SARS-CoV-2 is still an issue of epidemiological relevance.

In the study performed here, five commercially available serological assays targeting
SARS-CoV-2-specific antibodies were assessed. The comparison comprised previously
described products such as the assays from EUROIMMUN (Lübeck, Germany) [26,27,
35–47,52,53], Roche (Basel, Switzerland) [54–59], Mikrogen (Neuried, Germany) [60–62],
and Virotech Diagnostics (Rüsselsheim am Main, Germany) [46,55,63] as well as a newly
evaluated kit from Vircell (Vircell, Granada, Spain). As positive controls, residual serum
samples from patients with PCR-confirmed COVID-19 were used, while samples from
blood donors and patients with Epstein–Barr virus (EBV) were applied as negative controls.
With this approach, test characteristics should be calculated to guide the application of the
serological assays for both diagnostic and surveillance purposes. Surveillance purposes
include population prevalence studies and diagnostic purposes include the confirmation
of previous infections with SARS-CoV-2 in individual patients.

2. Materials and Methods
2.1. Sample Collections

In the same way as described before [47], three different serum sample collections were
assessed comprising one collection of positive controls and two negative control collections.
The positive control sample collection consisted of samples from 148 PCR-confirmed
COVID-19 patients, on whom PCR had been performed from nasopharyngeal swabs. Due
to limited sample volumes, between 100 and 148 samples were assessed with each assessed
serological assay. For those samples from PCR-confirmed COVID-19 patients, the time
between the positive PCR result and the acquisition of the serum samples was documented
in 94 out of 148 (63.5%) instances, with time periods ranging from −2 to 120 days (median:
11 days, mean: 20.3 days, standard deviation (SD): 24.2 days). The 54 specimen donors
with no clearly documented time between the positive PCR result and the acquisition of
the serum sample for data protection reasons were candidates for convalescent serum
donation who were referred via the Department of Transfusion Medicine of the University
Medical Center Göttingen. However, the time between the positive PCR result and the
acquisition of the serum sample from these specimens is at least 4 weeks.

The first negative control collection consisted of samples from 152 blood donors
acquired in 2015 and thus well before the COVID-19 pandemic began. Sufficient sample
volumes were available to allow testing of 50 to 152 out of those negative controls per assay.
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The second negative control collection contained 32 Epstein–Barr virus (EBV)-positive
serum samples, which had been collected at the beginning of 2020 when the likelihood of
COVID-19 infections was still extremely low in Germany. Sufficient volumes for the testing
of 30 to 32 samples out of those second negative control population per test assay were
available. This third serum collection was included to assess the effects of polyclonal B
cell stimulation. The used sample volumes were residual sample materials from routine
diagnostic procedures performed at the University Medical Center Göttingen.

As the ethical board allowed only a completely anonymized use of sample materials
for test comparison purposes, no patient-specific information can be provided, necessarily
resulting in an unavoidable violation of the Standards for Reporting of Diagnostic Accuracy
(STARD) criteria [64].

2.2. Serological Assays

The compared serological assays comprised:

• The EUROIMMUN COVID-19 IgG/IgA assay (EUROIMMUN, Lübeck, Germany;
referred to as “EUROIMMUN assay” in the following);

• The Roche Cobas Elecsys Anti-SARS-CoV-2 assay (Roche, Basel, Switzerland; referred
to as “Roche assay” in the following);

• The Mikrogen recomWell SARS-CoV-2 IgG assay (Neuried, Germany; referred at as
“Mikrogen assay” in the following);

• The Virotech Diagnostics assay VIROTECH SARS-CoV-2 IgA/IgM/IgG ELISA (Rüs-
selsheim am Main, Germany; referred to as “Virotech assay” in the following);

• The Vircell COVID-19 ELISA IgG/IgM+IgA assay (Vircell, Grenada, Spain; referred to
as Vircell assay in the following).

All assays were exactly performed as demanded by the manufacturers’ instructions.

2.3. Real-Time PCR Testing

To characterize the positive control samples, respiratory sample materials from the
patients with suspected or confirmed COVID-19 were analyzed using real-time PCR for
SARS-CoV-2 in a two-step procedure. In step one, screening was performed applying the
Genesig Real-Time PCR Coronavirus (COVID-19) assay (Primerdesign Ldt., Chandlers
Ford, UK). In a second step, first-time positive results were confirmed using automated
Cepheid Xpert Xpress SARS-CoV-2 PCR (Cepheid, Sunnyvale, CA, USA). Both SARS-CoV-
2-specific PCR assays were performed exactly as described by the manufacturers.

2.4. Statistical Assessment

Due to the restricted number of samples, descriptive statistical analysis was performed
only. With the positive control sample collection taken from patients with PCR-confirmed
COVID-19, sensitivity was calculated. To assess the effect of the number of days between posi-
tive PCR results and the serum sample acquisition, Wilcoxon rank sum testing was calculated
applying the software Stata/IC 15.1 for macOS 64-bit Intel (College Station, TX, USA).

With the two negative control sample collections taken from the blood donors and
the EBV patients, specificity of the serological assays was assessed. Positive and nega-
tive predictive values were calculated for two exemplary populations with 1% and 10%
prevalence, respectively.

Cohen’s kappa [65] was calculated to assess the agreement between the test assays with
the categories of poor (below 0.00), slight (0.00–0.20), fair (0.21–0.40), moderate (0.41–0.60),
substantial (0.61–0.80) and almost perfect (0.81–1.00) for the immunoglobulin subclasses as
well as across classes targeting the meta-structure “any SARS-CoV-2-related antibodies”.

In line with common conventions of descriptive statistics, standard deviation (SD) was
calculated for mean values and interquartile range (IQR) for median values. Additional
calculation of median values next to mean values was performed to indicate left- or right-
shifted distributions of values within the different groups—i.e., information which would
have gone unreported otherwise.
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Samples were not excluded if individual data points were missing due to insufficient
amounts of sample material as stated above.

2.5. Ethics

The study was ethically approved by the institutional ethics board of the University
Medical Center Göttingen (Application number 21/05/20), allowing the use of residual
sample materials for test comparison purposes.

3. Results
3.1. Calculated Sensitivity

Assessed by immunoglobulin classes, observed sensitivities of the evaluated test
assays as recorded exclusively with samples from patients with previous positive results of
SARS-CoV-2 PCR differed considerably. For IgG, sensitivities ranged from 63.0% to 81.9%,
for IgA from 21.0% to 81.8%, for IgM from 17.0% to 20.0% and for the overarching assays
measuring different immunoglobulin classes from 66.6% to 76.1%. The values slightly
varied depending on whether borderline results were interpreted as positive or as negative.
Details of individual assays are provided in Table 1.

Table 1. Sensitivities of the assessed assays.

Test N Positives 1 Sensitivity
(0.95 CI) Positives 2 Sensitivity

(0.95 CI)

EUROIMMUN assay IgA 148 121 0.818 (0.746, 0.872) 110 0.743 (0.666, 0.808)

EUROIMMUN assay IgG 148 120 0.811 (0.739, 0.866) 120 0.811 (0.739, 0.866)

Mikrogen assay IgG 105 82 0.780 (0.690, 0.850) 79 0.752 (0.659, 0.826)

Vircell assay IgG 105 86 0.819 (0.732, 0.882) 84 0.800 (0.711, 0.866)

Vircell assay IgM/IgA 105 79 0.752 (0.659, 0.826) 70 0.666 (0.570, 0.750)

Roche assay 105 80 0.761 (0.670, 0.834) 80 0.761 (0.670, 0.834)

Virotech assay IgA 100 23 0.230 (0.157, 0.324) 21 0.210 (0.140, 0.302)

Virotech assay IgG 100 71 0.710 (0.613, 0.791) 63 0.630 (0.530, 0.720)

Virotech assay IgM 100 20 0.200 (0.132, 0.291) 17 0.170 (0.108, 0.258)
1 Borderline results were counted as positive. 2 Borderline results were counted as negative. N = numbers. CI = confidence interval.
IgA/G/M = immunoglobulin A/G/M.

3.2. Influence of the Time between Positive PCR Results and Serum Sample Acquisition

Significance for higher likelihood of detecting positive signals after prolonged duration
of about 3 weeks between the first recorded positive PCR result and serum acquisition
was calculated for all IgG-specific assays and Roche’s immunoglobulin class-overarching
assay. When focusing on the median instead of the mean numbers of days, significance
for higher likelihood of positive results for SARS-CoV-2-specific IgG was detectable after
about two weeks in most instances, indicating a left-shifted distribution of the recorded
values. In contrast, the Virotech IgA assay was associated with a higher reliability after a
short time period of little more than a week. For the other assays targeting IgA or IgM, no
time-dependency could be confirmed. Details are provided in Table 2.

3.3. Calculated Specificity Based on Blood Donor Samples as Negative Contol Samples

Recorded specificity with blood donor samples, which had been collected prior to
the COVID-19 pandemic, used as negative control samples ranged from 90.2% to 100%.
Recorded specificities <95% were seen for the Mikrogen IgG assay only if borderline results
were counted as positives. For the EUROIMMUN IgA assay, the Vircell IgM/IgA assay and
Virotech IgM assay, specificity remained below this threshold even if borderline samples
were considered as negative. Details are provided in Table 3.
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Table 2. Comparison of the time (in days) between positive PCR results and serum sample acquisition of the different assays.

Test N Positives
Days

Mean (SD)
Median (IQR)

Negatives
Days

Mean (SD)
Median (IQR)

p Value *

EUROIMMUN assay IgA 88 74 19.27 (21.44)
12.5 (4, 29) 14 23.21 (37.43)

3.5 (2, 29) 0.2755

EUROIMMUN assay IgG 94 74 24.08 (25.38)
16.5 (6, 35) 20 6.10 (10.96)

3 (1.5, 6) 0.0001

Mikrogen assay IgG 68 54 21.31 (18.63)
16 (7, 35) 14 9.36 (14.56)

3.5 (2, 9) 0.0086

Vircell assay IgG 70 57 20.37 (18.59)
15 (4, 34) 13 7.31 (13.39)

3 (2, 4) 0.0059

Vircell assay IgM/IgA 66 51 16.49 (15.80)
13 (3, 22) 15 17.20 (21.22)

4 (2, 36) 0.5865

Roche assay 71 54 21.33 (18.61)
16 (7, 35) 17 8.06 (13.46)

3 (1, 8) 0.0014

Virotech assay IgA 58 14 8.07 (12.44)
4.5 (1, 7) 44 30.02 (30.51)

21.5 (3.5, 48) 0.0098

Virotech assay IgG 55 36 27.97 (26.54)
21.5 (6, 38.5) 19 12.42 (20.15)

4 (1, 11) 0.0047

Virotech assay IgM 58 12 9.08 (12.83)
3.5 (3, 9) 46 28.37 (30.44)

20.5 (4, 48) 0.0571

* Wilcoxon ranksum test; N = number; mean = arithmetic mean (average); SD = standard deviation; median = middle value separating the
greater and lesser halves of a data set; IQR = interquartile range; IgA/G/M = immunoglobulin A/G/M.

Table 3. Specificity of the test assays as calculated based on the blood donor sera.

Test N Negatives 1 Specificity (0.95 CI) Negatives 2 Specificity (0.95 CI)

EUROIMMUN assay IgA 152 142 0.934 (0.882, 0.964) 144 0.947 (0.898, 0.974)

EUROIMMUN assay IgG 152 150 0.989 (0.948, 0.997) 152 1 (n.e.)

Mikrogen assay IgG 102 95 0.931 (0.862, 0.967) 102 1 (n.e.)

Vircell assay IgG 102 100 0.980 (0.924, 0.995) 101 0.990 (0.932, 0.999)

Vircell assay IgM/IgA 102 92 0.902 (0.826, 0.947) 94 0.922 (0.850, 0.961)

Roche assay 102 102 1 (n.e.) 102 1 (n.e.)

Virotech assay IgA 100 100 1 (n.e.) 100 1 (n.e.)

Virotech assay IgG 100 100 1 (n.e.) 100 1 (n.e.)

Virotech assay IgM 50 47 0.940 (0.826, 0.981) 47 0.940 (0.826, 0.981)
1 Borderline results were counted as positive; 2 Borderline results were counted as negative; N = numbers; CI = confidence interval;
IgA/G/M = immunoglobulin A/G/M; n.e. = not estimable.

3.4. Calculated Specificity Based on Samples from EBV-Positive Patients

Recorded specificity with samples from EBV-positive patients collected at the very
beginning of the COVID-19 pandemic (used as negative samples) ranged from 84.3% to
100%. Recorded specificities <95% were seen for the Mikrogen IgG assay and the Vircell
IgG assay only if borderline results were counted as positives. For the Vircell IgM/IgA
assay, specificity remained below 90% even if borderline samples were considered negative.
Details are provided in Table 4.
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Table 4. Specificity of the test assays as calculated based on the sera from the Epstein–Barr virus (EBV) patients.

Test N Negatives 1 Specificity (0.95 CI) Negatives 2 Specificity (0.95 CI)

EUROIMMUN assay IgA 32 31 0.968 (0.796, 0.995) 31 0.968 (0.796, 0.995)

EUROIMMUN assay IgG 32 31 0.968 (0.796, 0.995) 31 0.968 (0.796, 0.995)

Mikrogen assay IgG 32 30 0.937 (0.771, 0.985) 31 0.968 (0.796, 0.995)

Vircell assay IgG 32 30 0.937 (0.771, 0.985) 31 0.968 (0.796, 0.995)

Vircell assay IgM/IgA 32 27 0.843 (0.666, 0.935) 28 0.875 (0.701, 0.954)

Roche assay 32 32 1 (n.e.) 32 1 (n.e.)

Virotech assay IgA 30 30 1 (n.e.) 30 1 (n.e.)

Virotech assay IgG 30 30 1 (n.e.) 30 1 (n.e.)

Virotech assay IgM 30 29 0.967 (0.784, 0.996) 29 0.967 (0.784, 0.996)
1 Borderline results were counted as positive; 2 borderline results were counted as negative; N = numbers; CI = confidence interval;
IgA/G/M = immunoglobulin A/G/M; n.e. = not estimable.

3.5. Positive and Negative Predictive Values as Calculated for Exemplary Populations with 1% and
10% Prevalence

Based on the results as shown above, positive and negative predictive values were
calculated in a mathematical modelling for two hypothetical exemplary populations with
1% and 10% prevalence of SARS CoV 2-specific antibodies. Over the different assessed
assays, the negative predictive value was excellent with 99.1% till 99.8% for the 1% preva-
lence population but dropped to 91.3% till 97.9% for the 10% prevalence population. In
contrast, for the 1% prevalence population, positive predictive values ranged from 3.9% till
100%, while this range was narrowed to 30.7% till 100% for the 10% prevalence population.
Details are provided in Table 5.

Table 5. Positive and negative predictive values * as calculated for two exemplary populations with 1% and 10% preva-
lence, respectively.

Test
Prevalence 1% Prevalence 10%

PPV NPV PPV NPV

EUROIMMUN assay IgA 0.147 0.998 0.655 0.975
EUROIMMUN assay IgG 0.304 0.998 0.828 0.979

Mikrogen assay IgG 0.159 0.998 0.675 0.974
Vircell assay IgG 0.207 0.998 0.742 0.979

Vircell assay IgM/IgA 0.059 0.997 0.408 0.965
Roche assay 1 0.998 1 0.974

Virotech assay IgA 1 0.992 1 0.920
Virotech assay IgG 1 0.997 1 0.965
Virotech assay IgM 0.039 0.991 0.307 0.913

* All sensitivities and specificities are weighted equally; PPV = positive predictive value; NPV = negative predictive value.

3.6. Agreement Kappa

Almost perfect agreement (0.81–1.00) between the compared assays according to
the definitions by Landis and Koch [65] was observed for the IgG immunoglobulin class
only. For immunoglobulin class-overarching comparisons, only moderate (0.41–0.60) to
substantial (0.61–0.80) agreement could be seen with worse results if IgM was included.
For the IgA immunoglobulin class, agreement even dropped to the fair level (0.21–0.40).
Details are provided in Table 6.
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Table 6. Agreement between the tests by immunoglobulin classes and in overarching assessments.

Test Groups N Kappa 0.95 CI

IgA 1 160 0.220 (0.142, 0.329)
IgG 2 67 0.803 (0.734, 0.886)

IgA/IgG/IgM/Roche 3 57 0.509 (0.445, 0.593)
IgA/IgG/Roche 3 142 0.721 (0.748, 0.800)

1 EUROIMMUN IgA assay, Virotech IgA assay; 2 EUROIMMUN IgG assay, Mikrogen IgG assay, Virotech IgG
assay, Vircell IgG assay; 3 immunoglobulin class positive, if at least one assay for this class shows a positive result;
immunoglobulin class negative, if at least one assay for this class shows negative result and no other test shows
positive result; immunoglobulin class uncertain, if at least one test with respective specificity is borderline and
others are neither positive nor negative; N = numbers; CI = confidence interval; IgA/G/M = immunoglobulin
A/G/M.

4. Discussion

The study was conducted to provide information on performance characteristics of
commercially available serological assays. Thus, it contributes to previously described
assessments [16–47,52–63] and provides an additional piece of the puzzle in terms of inter-
preting the results of serological approaches for the retrospective diagnosis of infections
with SARS-CoV-2.

One major result of the study is the confirmation of acceptable sensitivity and good
specificity, associated with nearly perfect agreement, for the assays detecting SARS-CoV-
2 antibodies of the immunoglobulin class IgG. While interpreting the less than perfect
sensitivity, one has to consider the variance in the periods of time between the first recorded
positive SARS-CoV-2 PCRs and sample acquisition for serological assessments. In case
of longer periods of about 3 weeks, all IgG assays scored significantly better than in the
case of shorter periods. This is well in line with previous reports [29]. Further, detectable
immunoglobulins are not always detectable in individuals with confirmed immunologically
relevant contact with SARS-CoV-2 [47–49]. Though a more detailed assessment of clinical
data of SARS-CoV-2 infected patients without recorded seroconversion would have been
desirable, the strict focus of the study design on the test comparison prevented this option,
an undeniable limitation of this approach.

Focusing on other immunoglobulin classes such as IgM and IgA, the performance
characteristics of the assessed assays were considerably worse, also confirming previous
results [47]. This phenomenon was shown to affect sensitivity, specificity and also intertest
agreement. A comparably good specificity as observed for the Virotech IgM and IgA assays
was traded for particular poor sensitivity in these assays, while the other test producers
seem to have aimed at a compromise between sensitivity and specificity. Thereby, sensitivity
of the Virotech IgA assay was better in the early stages of infection about one week after
the first positive PCR test, a phenomenon which could be shown for no other assay.

Polyclonal B-cell proliferation, as associated with EBV infection [66], particularly
affected the Vircell IgM/IgG assay. For the other assays, specificity with sera from blood
donors and with sera from EBV patients was quite comparable.

The study has a number of limitations beyond the one stated above. Firstly, limited
volumes of residual sample materials did not allow the assessment of all samples with all
assays. Secondly, ethical considerations did not allow the inclusion of patient data which is
an undeniable violation of the recommendations by the STARD guideline [64]. Thirdly, the
assessed assays are not representative of all respective products available on the market.
Fourthly, not all immunoglobulin classes were represented with equal numbers of assays,
preventing the calculation of Cohen’s kappa for immunoglobulin class M. Fifthly, economic
restrictions limited the assessments to reasonable but still low sample numbers.

In spite of these limitations, the study provides another piece in the diagnostic puzzle,
allowing a better interpretation of results of serological assays targeting antibodies against
SARS-CoV-2.
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5. Conclusions

This study indicates acceptable reliability of immunoglobulin class G-based serology
for SARS-CoV-2-specific antibodies with a variety of test assays with increased sensitivities
about 3 weeks after first positive PCR results compared with earlier time points. Assays
for other immunoglobulin classes scored worse with less obvious associations to the time
points of testing.
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