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Nucleoside-5’-triphosphates (NTPs) and their analogs are building blocks of DNA and
are important compounds in both pharmaceutical and molecular biology applications.
Currently, commercially available base or sugar modified NTPs are mainly synthesized
chemically. Since the chemical production of NTPs is time-consuming and generally
inefficient, alternative approaches are under development. Here we present a simple,
efficient and generalizable enzymatic synthesis method for the conversion of nucleosides
to NTPs. Our one-pot method is modular, applicable to a wide range of natural
and modified nucleotide products and accesses NTPs directly from cheap nucleoside
precursors. Nucleoside kinases, nucleoside monophosphate (NMP) kinases and a
nucleoside diphosphate (NDP) kinase were applied as biocatalysts. Enzymes with
different substrate specificities were combined to produce derivatives of adenosine
and cytidine triphosphate with conversions of 4 to 26%. The implementation of a
(deoxy)ATP recycling system resulted in a significant increase in the conversion to all NTP
products, furnishing 4 different NTPs in quantitative conversion. Natural (deoxy)NTPs
were synthesized with 60 to >99% conversion and sugar- and base-modified NTPs
were produced with 69 to >99% and 27 to 75% conversion, respectively. The presented
method is suitable for the efficient synthesis of a wide range of natural and modified
NTPs in a sustainable one-pot process.

Keywords: enzymatic cascade synthesis, nucleoside-5′-triphosphate, one-pot multi-enzyme reaction, nucleotide
analog, nucleotide kinase, nucleoside kinase, modular, ATP regeneration system

INTRODUCTION

Modified nucleotides are important small molecules in molecular biology and pharmaceutical
applications. Natural and modified nucleoside-5’-triphosphates (NTPs) are valuable building
blocks for PCR, fluorescent in situ hybridization (FISH), aptamer production as well as for next
generation sequencing (Prober et al., 1987; Zaccolo et al., 1996; Giller et al., 2003; Ni et al.,
2017). Nucleotides with an azide or alkyne function enable the post-synthetic modification of
oligonucleotides via click-chemistry (Gramlich et al., 2008).

Furthermore, the application of nucleotide prodrugs is of increasing interest (Pradere et al.,
2014) as most of the known nucleoside analog drugs are only active as the respective nucleoside
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diphosphate (NDP) or NTP and activation in vivo is often
insufficient (Deville-Bonne et al., 2010). In a number of
approaches including the application of sofosbuvir or
remdesivir, protected nucleoside monophosphates (NMPs)
were administered to overcome the first activation step in vivo
(Pradere et al., 2014; Ko et al., 2020). Additionally, methods have
been developed for the production of NDP or NTP prodrugs with
an increased biological availability of the respective nucleoside
drug as shown for sofosbuvir or remdesivir (Pradere et al., 2014).

To date, nucleotides are primarily prepared by chemical
methods such as the Yoshikawa protocol or the Ludwig-Eckstein
method (Burgess and Cook, 2000). A common disadvantage of
these multistep synthesis reactions is a limited regioselectivity
leading to the formation of different phosphorylation products,
as well as the limited control over the exclusive formation
of the triphosphate, as higher phosphorylation products can
be generated. The overall process is laborious, involves toxic
reagents and often achieves only moderate product yields.
Furthermore, some nucleotide products harboring sensitive
functional groups are not accessible in these approaches as
they do not withstand the harsh reaction conditions and
generate undesired side products (Lee and Momparler, 1976;
Burgess and Cook, 2000).

Biocatalytic routes exploiting enzymes from the nucleotide
metabolism promise improved regioselectivity and exquisite
control over the phosphorylation product. Driven by these
advantages, several attempts have been made to replace chemical
synthesis routes for NTP preparation. Natural (deoxy)NTPs have
been produced by isolation from animal extracts (Berger, 1956),
phosphorylation of RNA/DNA degradation products (Haynie
and Whitesides, 1990) or by enzymatic cascade reactions (Ding
et al., 2019). While the described methods are suitable for the
synthesis of natural NTPs they cannot be easily transferred to the
synthesis of NTP analogs bearing sugar or base modifications.
Therefore, specific enzymatic synthesis routes were only rarely
developed for few NTP analogs (Lee and Momparler, 1976; Da
Costa et al., 2007; Hennig et al., 2007).

The application of nucleosides as substrates for the synthesis of
nucleotides together with purified biocatalysts offers significant
advantages over the approaches described above. Natural
nucleosides are generally cheaply available as commercial
reagents and modified nucleosides can be accessed enzymatically
via known methods in high yield (Kamel et al., 2019; Kaspar
et al., 2020; Yehia et al., 2020). The use of purified enzymes
minimizes side reactions and simplifies reaction workup. Despite
these advantages, however, there are only few examples in
the literature of NTP synthesis from nucleosides with purified
enzymes. As an example Baughn et al. (1978) used purified
adenosine kinase, adenosine monophosphate kinase, acetate
kinase and acetyl phosphate to convert adenosine to adenosine
triphosphate (ATP) in a one-pot approach with 80% conversion.
However, small amounts of nucleotide products ATP, adenosine
diphosphate (ADP) and adenosine monophosphate (AMP)
were needed to start the reaction. To our knowledge, only
a single one-pot approach for the synthesis of a modified
NTP from a nucleoside has been described by Hennig et al.
(2007) who produced 5-fluorocytidine triphosphate (5F-CTP,

4c). The compound was prepared with 78% isolated yield using
a uridine kinase, nucleoside monophosphate kinase, pyruvate
kinase as well as an enolase and 3-phosphoglycerate mutase. ATP
and 3-phosphoglycerate were used as phosphate donors.

Phosphate donor recycling systems promise increased yields
in these reactions by shifting the reaction equilibrium toward
the desired product NTP (Abu and Woodley, 2015). These
recycling systems are coupled enzymatic reactions which
constantly (re)generate NTPs from the respective NDPs and
a secondary phosphate donor. Indeed, the incorporation in
nucleotide synthesis reactions has been described to enable
higher conversions via an equilibrium shift (Wu et al., 2003). The
recovery of (d)ATP from (d)ADP lowers substrate and product
inhibition effects by decreasing the concentration of the side
product (d)ADP. At the same time, the concentration of (d)ATP
is kept high to facilitate the kinase reactions. Further advantages
of phosphate donor recycling systems include simplified product
purification and cost savings by decreasing the amount of (d)ATP
required for high conversions.

For the enzymatic regeneration of (d)NTPs acetate kinase,
pyruvate kinase and polyphosphate kinase are most commonly
used (Endo and Koizumi, 2001; Andexer and Richter, 2015).
Those enzymes possess high substrate promiscuity and are able
to (re)generate most natural and some modified (d)NTPs from
the respective (d)NDPs (Ishige et al., 2001; Gao et al., 2008; Zou
et al., 2013). For example, pyruvate kinase has been applied for
both the conversion of 5-fluorinated NDPs to 5-fluorinated NTPs
as well as the regeneration of the phosphate donor ATP for other
coupled enzymatic reactions (Hennig et al., 2007). Regeneration
systems also offer the opportunity to reduce the concentration of
non-ATP phosphate donors as shown for the enzymatic synthesis
of natural dNMPs from nucleosides using the comparably
expensive phosphate donor guanosine triphosphate (GTP). Due
to a constant regeneration from the secondary phosphate donor
acetyl phosphate only small amounts of GTP (2.5 mol%) were
needed (Zou et al., 2013). Inorganic polyphosphate is the
cheapest available secondary phosphate donor. However, energy-
rich phosphate donors such as phosphoenolpyruvate (PEP)
offer a significant thermodynamic advantage over other possible
phosphate donors (Andexer and Richter, 2015). This allows ATP
(re)generation in nearly quantitative fashion and prompted us to
employ this system for this study.

Inspired by the initial success of Hennig and colleagues, we
herein report a pilot study to develop a generalizable method
for the synthesis of natural and modified NTPs from nucleosides
as cheaply available precursors (Scheme 1). Our modular one-
pot four-enzyme cascade with a PEP-based phosphate donor
recycling system allows the simple and efficient production
of a wide range of NTPs, as demonstrated by examples
bearing pyrimidine and purine bases as well as several different
sugars. Nucleoside, NMP and NDP kinases were applied as
biocatalysts using a standardized protocol. The application of
different enzyme combinations allowed for a rapid adjustment
to substrates of interest. Furthermore, the impact of a phosphate
donor regeneration system on NTP yields was quantified for
the first time. Significantly higher conversions were achieved for
natural (4 to 9 times) and modified NTP products (4 to 6 times)
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SCHEME 1 | Reaction sequence for the phosphorylation of natural and modified nucleosides in a multi-enzyme cascade reaction with an ATP regeneration system
based on pyruvate kinase and phosphoenolpyruvate. Depending on the substrate the enzymes Drosophila melanogaster deoxynucleoside kinase (dNK), adenosine
kinase (AK), UMP-CMP kinase (UMP-CMPK), guanylate kinase (GMPK), adenylate kinase (AMPK), nucleoside diphosphate kinase (NDPK) and pyruvate kinase (PK)
were applied. The protein structures shown belong to the PDB entries 2vqs (dNK), 3uq6 (AK), 2anc (GMPK), 1e4v (AMPK), 2cmk (UMP-CMPK), 2hur (NDPK) and
1pky (PK).

using (d)ATP regeneration in a one-pot system, providing
4 NTPs in quantitative conversion. The present study lays
the groundwork for future high-yielding syntheses of NTPs
from nucleosides.

MATERIALS AND METHODS

General Information
All chemicals and solvents were of analytical grade or higher
and purchased, if not stated otherwise, from Sigma-Aldrich
(Steinheim, Germany), Carl Roth (Karlsruhe, Germany), TCI
Deutschland (Eschborn, Germany), Carbosynth (Berkshire,
United Kingdom) or VWR (Darmstadt, Germany).

The following natural and modified nucleoside substrates were
used: Natural pyrimidine and purine nucleoside substrates were
cytidine (Cyd, 1), deoxycytidine (dCyd, 2), adenosine (Ado, 5)
and deoxyadenosine (dAdo, 6). Sugar-modified nucleosides were
arabinofuranosylcytosine (araCyd, 3) known as the anti-leukemia
drug Cytarabine and arabinofuranosyladenine (araAdo, 7), a
nucleoside antibiotic isolated from Streptomyces antibioticus.

Base-modified nucleoside substrates were 5-fluorocytidine (5F-
Cyd, 4) and 2-fluoroadenosine (2F-Ado, 8). Halogenated
nucleotides like 5F-CTP (4c) are interesting building blocks for
studies of secondary structures of DNA or RNA using NMR
analysis (Hennig et al., 2007). 2F-Ado (8) is known as Fludarabine
and its monophosphorylated form 8a is used as an anti-cancer
chemotherapy drug.

Wild-type nucleoside and nucleotide kinases were obtained
from BioNukleo GmbH (Berlin, Germany) except for wide-
spectrum deoxynucleoside kinase from Drosophila melanogaster
(DmdNK). The expression vector of DmdNK was kindly
provided by Prof. Birgitte Munch-Petersen (Roskilde University).
According to the manufacturer the kinases possess the following
substrate specificities: adenosine kinase (AK, NK14), guanylate
kinase (GMPK, NMPK21) and adenylate kinase (AMPK,
NMPK23) convert purine nucleoside/nucleotide substrates,
while uridine monophosphate-cytidine monophosphate
kinase (UMP-CMPK, NMPK22) and nucleoside diphosphate
kinase (NDPK, NDPK32) accept both purine and pyrimidine
nucleoside/nucleotide substrates. All enzymes obtained from
BioNukleo were provided as stock solutions (0.1 to 1 mg/mL)
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and aliquots stored at −0.20◦C until use. Pyruvate kinase (PK,
P9136) was obtained from Sigma Aldrich as lyophilized powder,
dissolved in 70 mM Tris–HCl pH 7.6 (1.74 mg/mL) and stored
in aliquots at −0.20◦C. All enzymes are active at 37◦C and
combinable in the same reaction buffer (70 mM Tris–HCl pH
7.6, 5 mM MgCl2).

Expression of DmdNK
Recombinant DmdNK was expressed and purified as described
before (Munch-Petersen et al., 2000). Briefly, the enzyme was
produced as a GST-fusion protein using Escherichia coli BL21.
Following glutathione sepharose purification the GST tag was
cleaved of using thrombin and the enzyme was stored at −20◦C
with 8% glycerol, 1% Triton X-100 and 1 mM DTT.

Enzymatic Cascade Reaction
Enzymatic cascade reactions were performed in a total volume
of 50 µL with 70 mM Tris–HCl pH 7.6 (measured at 25◦C),
5 mM MgCl2, 1 mM nucleoside substrate and 3.6 mM ATP.
2’-Deoxyadenosine triphosphate (dATP) was used as phosphate
donor for reactions with adenosine as substrate to enable
substrate and product differentiation. Reactions were started
by adding 0.016-0.02 mg/mL (ratio 1:1:1; Supplementary
Table SI) of each enzyme. Concentrations were chosen based
on preliminary experiments. Reactions were incubated at 37◦C
in a thermocycler with a heatable lid. An equal volume of
methanol (50 µL) was added after 19 h to stop the reaction. After
centrifugation at 21.500× g and 4◦C for 15 min (Himac CT15RE,
Hitachi, Tokyo, Japan) 75 µL of the quenched reaction mixture
were diluted with 25 µL water and analyzed by high performance
liquid chromatography (HPLC) as described below.

Enzymatic Cascade Reaction With
Phosphate Donor Recycling System
The phosphate donor regeneration system applied in this study
consisted of a regeneration kinase (pyruvate kinase, PK) and a
phosphate donor (phosphoenolpyruvate, PEP). Both ATP and
dATP were accepted as substrates and were regenerated from
the respective (deoxy)nucleoside diphosphates at 37◦C. The
enzymatic cascade reactions with phosphate donor recycling
system were performed in a total volume of 50 µL with 70 mM
Tris–HCl pH 7.6, 5 mM MgCl2, 1 mM nucleoside substrate,
3.6 mM ATP or dATP, 5 mM PEP and 0.17 mg/mL PK. Reactions
were started by adding 0.016-0.02 mg/mL of each of the enzymes
(ratio 1:1:1, Supplementary Table SI) and were incubated at
37◦C for 19 h. The reactions were stopped by adding equal
volumes of methanol (50 µL) followed by centrifugation at
21.500× g and 4◦C for 15 min. After centrifugation, 75 µL of the
samples were mixed with 25 µL water and analyzed by HPLC.

Time Course of the Enzymatic Cascade
Reaction With and Without Regeneration
System
To analyze the enzymatic reactions over time, reaction volumes
were scaled up to 0.7 mL with and 1 mL without ATP
regeneration system. Enzymatic reactions were performed as

described above, but incubated in a thermoblock without
lid-heating. The reaction tubes were incubated at 300 rpm for
33 h. Regular samples of 50 µL were taken and mixed with equal
volumes of methanol followed by centrifugation at 21.500 × g
and 4◦C for 15 min. After centrifugation, 75 µL of the samples
were mixed with 25 µL water and analyzed by HPLC.

High Pressure Liquid Chromatography
(HPLC)
Samples from nucleoside/nucleotide kinase reactions were
analyzed by HPLC-DAD (Agilent 1200 series) with a detection
wavelength of 260 nm using a Kinetex Evo column (C18, 100
A, 250 × 4.6 mm, Phenomenex, Aschaffenburg, Germany).
The method was adapted from literature (Ryll and Wagner,
1991). The flow rate was set to 1 mL/min at 34◦C and the
gradient consisted of A (0.1 M KH2PO4/K2HPO4, 8 mM
tetrabutylammonium bisulfate, pH ca. 5.4) and B (70% A, 30%
methanol): 0 min – 80% A, 4 min – 80% A, 14 min – 40% A,
26 min – 38% A, 26.5 min – 80% A, and 29 min – 80% A.
Reactions with compound 2F-Ado (8) as substrate were analyzed
using a prolonged gradient: 0 min – 80% A, 4 min – 80% A,
14 min – 40% A, 35 min – 36.5% A, 35.5 min – 80% A, and
38 min – 80% A. Natural nucleosides and nucleotides as well
as nucleoside analogs were identified using authentic standards.
Nucleotide analog peaks were assigned based on analogy of
retention times and characteristic UV absorption spectra. Typical
retention times [min] were: Cyd (1) – 2.8, CMP (1a) – 3.3, CDP
(1b) – 5.5, CTP (1c) – 12.9, dCyd (2) – 2.6, dCMP (2a) – 3.4,
dCDP (2b) – 6.3, dCTP (2c) – 14.5, araCyd (3) – 3, araCMP (3a) –
3.5, araCDP (3b) – 6.2, araCTP (3c) – 13.7, 5F-Cyd (4) – 2.8, 5F-
CMP (4a) – 3.2, 5F-CDP (4b) – 5.4, 5F-CTP (4c) – 12.8, Ado
(5) – 5.9, AMP (5a) – 7.3, ADP (5b) – 14, ATP (5c) – 20.8, dAdo
(6) – 6.4, dAMP (6a) – 10.1, dADP (6b) – 17.3, dATP (6c) – 26.3,
araAdo (7) – 5.5, araAMP (7a) - 8, araADP(7b) – 15.5, araATP
(7c) – 23, 2F-Ado (8) - 9, 2F-AMP (8a) – 12.8, 2F-ADP (8b) –
19.3, 2F-ATP (8c) – 29.9 (Supplementary Figures 2, 3).

Conversion was calculated as:

Conversion (X)[%] = 100×
PX
Ptotal

(1)

where PX is the peak area of compound X and Ptotal is the sum
of all peak areas of the substrate and product(s) in the reaction.
Consumption of the cofactor (d)ATP was not considered in
the calculation.

RESULTS

Time Course of Enzymatic Cascade
Reactions Using Nucleoside and
Nucleotide Kinases
We aimed to use a modular enzymatic cascade system to
synthesize a range of natural as well as sugar- and base-modified
NTPs using the respective nucleosides as substrates. Specifically,
starting from nucleosides 1-8 we aimed to access cytidine-5′-
triphosphate (1c) and its 2’-deoxy (2c), arabinofuranosyl (3c) and
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5-fluoro analogs (4c) as well as adenosine-5′-triphosphate (5c)
and its 2′-deoxy (6c), arabinofuranosyl (7c) and 2-fluoro analogs
(8c) through a one-pot enzyme cascade reaction (Scheme 1).
Based on literature data (Serra et al., 2014) we anticipated that
a slight excess of ATP would enable access to the NTP products
and performed initial experiments with 1.2 equivalents of ATP
per product phosphate (3.6 eq. per nucleoside).

In a first set of experiments we sought to confirm if
the envisioned enzyme cascade could deliver the expected
NTP products and to identify suitable reaction times for the
synthesis of these nucleotides. To this end the time course of
the conversions of cytidine (Cyd, 1) and arabinosyl cytosine
(araCyd, 3) (Figure 1A) were analyzed over a period of 33 h
as exemplary transformations. In both reactions the enzymes
DmdNK, UMP-CMPK and NDPK were used as catalysts with
ATP serving as the phosphate donor. Enzymes were either chosen
based on substrate specificities given by the supplier (UMP-
CMPK, NDPK) or due to a known wide substrate spectrum
(DmdNK) (Serra et al., 2014).

HPLC analysis of the reaction samples revealed the
formation of the desired products, confirming the successful
implementation of the enzymatic cascade. With the applied
enzyme combination nucleoside analog 3 was faster converted
than the natural counterpart 1. In both reactions NTP products
were already detectable at the first time point of sampling
(1 h for 1 and 0.5 h for 3) and maximum concentration was
reached after 2 h (25% araCTP, 3c) and 6 h (28% CTP, 1c)
(Figures 1B,C). Although the amount of the NTP products
1c and 3c did not change further at that point, conversion
of the nucleosides to the NDPs 1b and 3b continued until
4 and 19 h after reaction initiation. An equilibrium of the

FIGURE 1 | Time course for the synthesis of natural (B, 1a–1c) and modified
nucleotides (C, 3a–3c) in an one-pot multi-enzyme cascade reaction (A).
Experimental conditions: 1 mM substrate, 3.6 mM phosphate donor, 70 mM
Tris–HCl pH 7.6, 5 mM MgCl2, 0.016-0.02 mg/mL of each enzyme, 37◦C.
The formation of NMP (yellow square), NDP (green diamond) and NTP (blue
triangle) was analyzed over 33 h using the natural nucleoside cytidine (1, B)
and sugar-modified nucleoside analog arabinosylcytosine (3, C) as substrates
(red circle). The enzyme combination DmdNK/UMP-CMPK/NDPK was
applied. The first datapoint was taken 30 s after reaction initiation.

reaction was reached after 19 and 4 h for 1 and 3, respectively,
confirmed by datapoints after 24 and 33 h showing no change
in reactant concentrations. At the end of the reaction at 33 h,
the final nucleotide ratios (nucleoside:NMP:NDP:NTP) were
0:31:47:22% for 1 and 0:30:53:18% for 3, respectively. These
experiments showed that the selected enzymes indeed delivered
the desired phosphorylated products directly from the nucleoside
through cascade catalysis. Thus, stability and performance of
these biocatalysis under the selected conditions encouraged
further exploration of this system. Furthermore, since the
equilibrium was reached after 19 h even for the rather sluggish
reaction of these enzymes with 1, we selected this time for the
following reactions.

One-Pot Enzymatic Cascade Reaction to
Produce Natural and Modified
Nucleoside Triphosphates
To investigate if this one-pot cascade system is a generalizable
method for the synthesis of natural and modified NTPs
a wider spectrum of substrates was tested (Scheme 1 and
Figure 2A). Therefore, base- and sugar-modified derivatives
of both cytidine (2-4) and adenosine (6-8) were subjected to
enzymatic phosphorylation to access the respective NTPs in one
pot. ATP was used as phosphate donor, except for reactions with
adenosine as substrate, where dATP was applied as phosphate
donor to enable differentiation between substrates and products.
All reactions were run for 19 h at 37◦C before analysis by
HPLC. In initial experiments to produce pyrimidine NTPs 1c-
4c DmdNK, UMP-CMPK and NDPK were used as biocatalysts
while reactions toward purine nucleotides 5c-8c reactions were
performed using AK, GMPK, and NDPK.

Reactions with pyrimidine substrates yielded 11 to 26% of
the respective NTP (Figure 2B). In reactions with 1-3 nearly no
nucleoside substrate was left after 19 h reaction time. In contrast,
28% residual 4 was detected at the end of the reaction suggesting
a lower activity of first cascade enzyme DmdNK toward the base-
modified cytidine analog. In reactions with 1 and 3 comparable
amounts of NTP (24 to 26%), NDP (46 to 49%) and NMP
(25 to 26%) were formed. With 2 as the substrate only 11% of
the corresponding triphosphate 2c were formed. Conversions to
the NMP 2a and the NDP 2b of 43% and 46% were observed,
respectively. These observations suggest that the second cascade
enzyme UMP-CMPK and/or the final enzyme NDPK prefer ribo-
and arabino-sugar moieties over deoxyribose.

Contrary to the initial success of the reactions with
pyrimidines 1-4, we failed to detect a conversion of purine
nucleosides 6-8 with the applied enzyme system (Table 1). Only
Ado (5) was efficiently transformed to the corresponding NTP 5c
in 24% conversion.

Therefore, we aimed to improve the product yields for
these compounds by employing different enzyme combinations.
The exchange of the first cascade enzyme AK with the more
promiscuous DmdNK resulted in over 90% conversion of the
2’-deoxyribosyl nucleoside 6 and the arabinosyl nucleoside 7 to
the corresponding NMP (Table 1). Additionally, the formation
of the fluorinated species 8 to the NMP 8a was improved
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FIGURE 2 | Production of natural and modified NTPs in an one-pot multi-enzyme cascade reaction with and without phosphate donor regeneration system.
Experimental conditions: 1 mM substrate, 3.6 mM phosphate donor, 70 mM Tris–HCl pH 7.6, 5 mM MgCl2, 0.016-0.02 mg/mL each enzyme, 37◦C, 19 h.
Reactions with phosphate donor regeneration (C) additionally contained 5 mM phosphoenolpyruvate and 0.17 mg/ml pyruvate kinase. (A) Eight natural and modified
nucleosides were used as substrates for the multi-enzyme cascade reactions. Applied enzymes: dNK = Drosophila melanogaster deoxynucleoside kinase,
AK = adenosine kinase, UMP-CMPK = UMP-CMP kinase, GMPK = guanylate kinase, AMPK = adenylate kinase, NDPK = nucleoside diphosphate kinase. (B,C)
Percentages of Nucleoside, NMP, NDP and NTP without (B) and with (C) phosphate donor regeneration system. Without ATP regeneration system dCTP conversion
could not be determined by HPLC and was therefore calculated based on the dCMP and dCDP conversions.

with this strategy, increasing the conversion from 4 to 22%
(Table 1). However, the near absence of NDP products in all
reactions indicated that conversion from the respective NMP
was a limiting factor. Therefore, the second cascade enzyme
GMPK was replaced with the more promiscuous UMP-CMPK.
This substitution enabled smooth conversion of NMPs 6a and
7a to the respective NDPs and NTPs, yielding 6c and 7c in
6% and 14% conversion, respectively. Nonetheless, UMP-CMPK
showed no activity on the fluorinated 8a in the one-pot cascade
reaction, which delivered only the monophosphorylated product
and no detectable formation of the NDP and NTP. Lastly,
another purine-specific nucleotide kinase, namely AMPK, when
incorporated in the cascade reaction yielded 5% conversion of the
fluorinated purine nucleoside to its triphosphate 8c (Table 1).

Taken together, these experiments demonstrate the general
feasibility to access several NTPs from their corresponding

nucleosides in a one-pot cascade reaction by adjusting the applied
enzymes. However, the conversion to the NTPs 1c-8c did not
reach satisfactory levels (≤26% in all cases). This spurred us
to investigate if a PEP-based (d)ATP recycling system could be
employed to improve conversions.

One-Pot Enzymatic Cascade Reaction to
Produce Natural and Modified
Nucleoside Triphosphates Using a
Phosphate Donor Recycling System
Next, the reactions described so far were repeated under the
same conditions with a (d)ATP recycling system based on PK
and PEP to investigate the impact of cofactor recycling on the
one-pot enzymatic cascade reactions. A ratio of substrate to PEP
to (d)ATP of 1:5:3.6 was applied, with the aim to avoid the
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TABLE 1 | Phosphorylation of adenosine derivatives in a one-pot kinase cascade reaction using different enzyme combinations.

Substrate Kinase 1 Kinase 2 Kinase 3 Relative amount [%]*

DmdNK AK GMPK UMP-CMPK AMPK NDPK Nucleoside NMP NDP NTP

Ado (5) x x x 0 49 27 24

dAdo (6) x x x 100 0 0 0

x x x 0 93 4 3

x x x 0 86 8 6

araAdo (7) x x x 100 0 0 0

x x x 0 100 0 0

x x x 0 80 5 14

2F-Ado (8) x x x 96 4 0 0

x x x 76 24 0 0

x x x 77 23 0 0

x x x 71 22 3 5

*Experimental conditions: 1 mM substrate, 3.6 mM phosphate donor, 70 mM Tris HCl pH 7.6, 5 mM MgCl2, 0.016-0.02 mg/mL of each enzyme, 37◦C, 19 h.
The enzyme combinations resulting in the largest NTP formation are depicted in bold. Applied enzymes: DmdNK = Drosophila melanogaster deoxynucleoside kinase,
AK = adenosine kinase, UMP-CMPK = UMP-CMP kinase, GMPK = guanylate kinase, AMPK = adenylate kinase, NDPK = nucleoside diphosphate kinase.

formation of (d)ADP. In experiments with and without (d)ATP
regeneration the same substrate to (d)ATP ratio was used to
enable direct a comparison of the substrate conversion in both
reaction set ups. In literature it was shown before that different
ATP to substrate ratios influenced product formation (Serra et al.,
2014). All reactions were run for 19 h with 5 equivalents of
PEP per nucleoside.

The incorporation of the coupled enzymatic (d)ATP recycling
reaction had a strikingly positive effect on the NTP yield for all
tested substrates, as determined by HPLC (Figure 2C). Natural
nucleosides 1, 2, 3 and 5 were nearly completely converted
to the respective (d)NTPs (≥97%), which is four to nine
times higher than the conversions observed without (d)ATP
recycling (6 to 24%).

Pyrimidine nucleoside analogs 3 and 4 were converted to
their corresponding NTPs in >99% and 75%, respectively. Non-
etheless, 25% residual 4 was detected in the reaction mixture
after 19 h reaction time. Without ATP recycling approximately
the same amount of residual nucleoside substrate was detected
while only 12% NTP were formed (Figure 2B), indicating that
conversion of 4 to the monophosphate 4a clearly represents a
bottleneck in the cascade.

HPLC analysis further revealed that the NTP yield of modified
purine nucleotides 7c and 8c was improved by factors of 5
and 6, respectively. The conversion to 7c was increased from
14% to 69% (Figures 2B,C). By including the ATP recycling
system, the conversion to 8c increased from 4 to 27% while the
percentage of the remaining nucleoside substrate 8 decreased
from 71 to 37%. This observation highlights that the inadequate
conversion of these nucleosides without cofactor recycling was
not due to a kinetically limited step (as seen for 4), but due to
thermodynamic limitations.

The incorporation of the phosphate donor regeneration
system further led to reduced reaction times. The time courses
of conversion of 1 and 3 to 1c and 3c with the ATP regeneration
system showed a 4 to 6 times faster product formation compared

to our initial experiments (Supplementary Figure S1). The
maximum amount of both NTPs was approximately 25% without
ATP regeneration after 6 and 2 h. HPLC analysis indicated that
those NTP yields were already reached after 1 h (1c) and 30 min
(3c) with ATP regeneration. NTP formation continued after that
and reached a maximum of >97% after 18 h (1c) and 4 h (3c)
when including the ATP regeneration system.

DISCUSSION

The one-pot enzyme cascade reaction described in this study
allows for the efficient synthesis of natural and modified NTPs
from nucleosides as substrates. A standardized protocol was
used which includes a fixed reaction buffer, enzyme amount and
reaction time. This system succeeded in delivering all desired
NTPs in various conversions up to 26%. The integration of a
phosphate donor regeneration system further improved product
yields and reduced reaction times. Highest NTP formation
was reached with this system using nucleosides 1, 2, 3 and
5 (all >97%).

The synthesis of NTPs from nucleosides offers the advantage
that nucleosides are readily available and inexpensive substrates.
Furthermore, the use of purified enzymes promises minimization
of side reactions and an easier purification process. The feasibility
of this approach for the synthesis of modified NTPs has already
been successfully demonstrated, albeit only for selected examples.
For example, Hennig et al. synthesized 5F-CTP (4c) in a one-pot
approach with near complete conversion (Hennig et al., 2007).
We were also able to show that high conversions can be achieved
with nucleoside 4, since the corresponding triphosphate 4c was
produced with 75% yield after integration of an ATP regeneration
system. Nonetheless, a modular enzyme system for the synthesis
of multiple NTPs has not been reported to date. We addressed
this gap by assaying a number of kinases for their potential to
furnish NTPs directly from nucleosides through cascade catalysis.
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A crucial factor for the development of a generalizable method
is the identification of suitable enzymes. This became evident
in the synthesis of ATP derivatives in this study. Significantly
higher product yields were observed with DmdNK and UMP-
CMPK compared to AK and GMPK as the latter were only
suitable enzymes for the phosphorylation of adenosine (5). This
observation is in good accordance with the available literature,
showing that AK and GMPK performed suboptimally with
deoxyribose- and arabinose-derivatives (Van Rompay et al.,
2000, 2003), while DmdNK and UMP-CMPK were described
to accept a wide variety of sugar-modified substrates (Liou
et al., 2002; Serra et al., 2014). Interestingly, the time course
experiments performed with Cyd (1) and araCyd (3) even
revealed a higher reaction rate of the applied enzymes (DmdNK,
UMP-CMPK, NDPK) toward the sugar-modified pyrimidine
nucleoside analog 3 compared to the natural counterpart 1.
We ascribed this to DmdNK’s preference for deoxyribose-
and arabinose-sugar moieties over ribose-containing nucleosides
(Munch-Petersen et al., 2000) as well as the fact that CMP (1a)
but not araCMP (3a) leads to significant substrate inhibition of
UMP-CMPK (Pasti et al., 2003). In summary, wide-spectrum
nucleoside kinases proved most suitable for the synthesis of
sugar-modified nucleotides.

In contrast, for the synthesis of base-modified nucleotides
like 4c the use of a pyrimidine specific nucleoside kinase
as the first cascade enzyme might be advantageous over
the wide substrate-spectrum DmdNK. Mammalian enzymes
like uridine-cytidine kinase (UCK) and deoxycytidine kinase
(dCK) were described to phosphorylate a variety of base-
modified nucleoside analogs like 4, 5-fluororuridine, 2’-deoxy-
5-methylcytidine and 2-thiocytidine (Van Rompay et al.,
2003; Hazra et al., 2010). Thus, UCK might be superior
over dCK and the DmdNK employed in this study for the
phosphorylation of 4 because of a higher activity of UCK
toward ribonucleoside substrates (Van Rompay et al., 2003).
To identify suitable enzymes for the application in one-pot
cascade reactions automated high-throughput assays might
be a suitable tool. As shown for nucleoside kinases high-
throughput assays allow for the fast and accurate activity
screening using a large number of enzymes (Hellendahl/Fehlau
et al., in preparation) and we expect future improvements in
this area that enable efficient phosphorylation of previously
challenging substrates.

Another approach to overcome limitations in the
phosphorylation of base-modified nucleosides is to start
syntheses from natural sugars. Nucleotide 8c was produced in
near quantitative yield applying ribokinase and phosphoribosyl
pyrophosphate (PRPP) synthetase for sugar activation followed
by adenine phosphoribosyl transferase, adenylate kinase and
creatine kinase (Scott et al., 2004). Others have followed a
similar approach to produce 8-azaguanosine triphosphate
and 5-fluorouridine triphosphate with high yields (Da Costa
et al., 2007; Hennig et al., 2007). Although these enzymes
show good activity toward base-modified substrates, they,
however, are not applicable for cytosine derivatives (Scheit
and Linke, 1982; Hennig et al., 2007) and show limited
usefulness for the preparation of sugar modified NTPs
(Esipov et al., 2016).

Cofactor recycling systems are commonly used in industrial
biotransformation processes where costly cofactors like NAD/H
would lead to uneconomic production routes (Weckbecker
et al., 2010). As an additional benefit reaction equilibria
are shifted to favor product formation through cofactor
(re)generation and the reduction of product inhibition (Abu
and Woodley, 2015). Although (d)ATP recycling systems
have been applied for the synthesis of natural and modified
nucleotides a comparison to reactions without these has
never been shown (Hennig et al., 2007; Zou et al., 2013)
and the benefit of these strategies has remained elusive.
In this study, a strong beneficial effect was demonstrated
for all tested compounds. NTP product yields increased
by a factor of 4 (for 3c) to 9 (for 6c) using a PEP-
based phosphate donor regeneration system. This observation
provides clear evidence for the usefulness of employing
ATP recycling systems for NTP synthesis since half of the
nucleosides in our study were quantitatively converted to the
respective triphosphate.

It remains to be investigated to which extent the applied
regeneration enzyme takes part in the last cascade step
converting NDPs and NTPs. Pyruvate kinase, acetate kinase
and polyphosphate kinase possess wide substrate spectra (Ishige
et al., 2001; Gao et al., 2008; Zou et al., 2013) and may
be envisioned to serve a twofold purpose. In addition to
regenerating the phosphate donor, PK might replace the
NDPK in some reactions. For example, the parallel use of
a pyruvate kinase for NTP formation and phosphate donor
regeneration was demonstrated by Hennig and coworkers
in the cascade synthesis of 5F-UTP and -CTP (Hennig
et al., 2007). Furthermore, in order to achieve economic
(d)ATP recycling in the established cascade system future
studies could focus on optimizing the ratio of phosphate
donor to substrate by applying substoichiometric (d)ATP
concentrations as has been successfully shown before for
selected single and multi-enzyme syntheses (Hennig et al., 2007;
Zou et al., 2013).

CONCLUSION

We established a modular enzymatic cascade for the synthesis
of NTPs from nucleosides in one pot. With (d)ATP as
the phosphate donor all desired NTPs were accessed
in low yield. The application of a (d)ATP regeneration
system resulted in a shift of the reaction equilibrium
toward the desired product NTP. Our approach, for the
first time, allows for the efficient production of both
natural and modified NTPs in high conversion with a
standardized protocol after identifying a suitable enzyme
combination. Thus, the present study lays the foundation
for future high-yielding biocatalytic syntheses of NTPs
from nucleosides.
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