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Abstract
Networks are among the most prevalent formal representations in scientific studies,

employed to depict interactions between objects such as molecules, neuronal clusters, or

social groups. Studies performed at meso-scale that involve grouping of objects based on

their distinctive interaction patterns form one of the main lines of investigation in network sci-

ence. In a social network, for instance, meso-scale structures can correspond to isolated

social groupings or groups of individuals that serve as a communication core. Currently, the

research on different meso-scale structures such as community and core-periphery struc-

tures has been conducted via independent approaches, which precludes the possibility of

an algorithmic design that can handle multiple meso-scale structures and deciding which

structure explains the observed data better. In this study, we propose a unified formulation

for the algorithmic detection and analysis of different meso-scale structures. This facilitates

the investigation of hybrid structures that capture the interplay between multiple meso-scale

structures and statistical comparison of competing structures, all of which have been hith-

erto unavailable. We demonstrate the applicability of the methodology in analyzing the

human brain network, by determining the dominant organizational structure (communities)

of the brain, as well as its auxiliary characteristics (core-periphery).

Introduction
At the core of any scientific pursuit stands a correspondence between objects of interest and an
appropriate representation, most commonly a mathematical one. The way we represent objects
in our models determines both the syntactical characteristics and semantic scope of the formal-
ization used in the scientific modeling. Most systems of interest in social, biological, and physi-
cal sciences today consist of structurally organized objects and their interactions. Thus, many
questions regarding the current and future states of such systems pertain to their architectural
properties. This fact naturally explains the increasing popularity of network representations as
favored in various domains of science. Networks are used to represent structured systems by
referring to each object as a node and an interaction between a pair of objects as an edge
between two nodes [1].
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A network representation facilitates inference of system properties at various levels such as
local, global (gestalt), and intermediate-scale (meso-scale) features [2]. While the overall atten-
tion directed to network analysis has increased at every level of study, studies performed at
meso-scale currently form the main line of investigation. Meso-scale structures refer to group-
ing of nodes based on their distinctive interaction patterns. In a social network, meso-scale
structures can correspond to isolated social groupings or groups of individuals that serve as a
communication core [1–3]. In brain networks, the identification of meso-scale structures can
reveal how the complex behavioral repertoire of the human mind emerges from the parallel
processes of segregated neuronal clusters and their integration during complicated cognitive
tasks [4,5].

Several meso-scale network structures that are common to many networks, such as the
community and core-periphery structures, have been identified and studied in the literature
[1,2,6,7]. The effort is mostly concentrated on algorithmic detection of such special arrange-
ments of nodes and deciding whether their presence is reliable in a statistical sense, by compar-
ing to some null models i.e. random networks sharing several characteristics with the original
network. However, the research on different meso-scale structures has been conducted by inde-
pendent approaches, each employing unique methodologies and techniques. This fact pre-
cludes the possibility of an algorithmic design that can handle multiple meso-scale structures
and deciding which structure explains the observed data better. For instance, although the pos-
sibility of simultaneous presence of different structures (e.g. communities of core-periphery
structures, see Fig 1c for an illustration) in a network has been acknowledged [2,8], no formula-
tion to derive such complex hierarchical structures has been proposed. Similarly, while com-
parison with null models has been already widely practiced [6], no work has been proposed to
compare two or more competing models, each including different meso-scale structures. This
is mainly due to the utilization of different formulations for different meso-scale structures.

In this study, we present a new approach that uses the Bayesian network inference frame-
work [9] to unify the detection and analysis of meso-scale structures, thereby addressing afore-
mentioned limitations of complex network analysis. This approach allows the identification of
hybrid structures that capture the interplay between multiple meso-scale structures and the sta-
tistical comparison of competing meso-scale structures.

Methods and Materials

Bayesian Network Inference
A system of objects and their interactions can be represented as a network, the mathematical
description of which is a graph G = (V,E). A graph consists of vertices (nodes) V = {V1,V2,. . .,VN}
corresponding to objects and edges E� VxV corresponding to interactions between objects.
Here, we do not assume any special type of graphs such as directed, undirected, weighted, or
unweighted, since the proposed approach can be utilized for any kind. An edge between two
nodes of a network indicates the existence of a relationship between corresponding objects and,
when weighted, quantifies that relationship. For instance, when representing a set of time series
as a network, edges can be weighted by correlations between pairs of time series. Similarly, for a
social network, edges can correspond to email traffic between individuals with weights quantify-
ing the number of email transactions.

Bayesian network inference [9,10] starts with a probabilistic treatment of observations
related to the interactions between objects. The presence of edges between nodes is modelled
by probability distributions over weights. In the following subsections, we elucidate the proba-
bilistic generative model by which a network is assumed to be constructed. First, we introduce
the likelihood model of observed edges between nodes. Then, we show how prior assumptions
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on edge formation can be incorporated into the model, which in turn enables us to infer meso-
scale structures in a network.

Likelihood model for interactions between objects. When modeling interactions
between objects, different probability distributions can be adopted, based on properties of
objects and type of interactions under considerations. Following the general tendency [9,11],
we assume a multinomial distribution to model the presence of edges. For an object i, the prob-
ability of observing a set of interactions xi = (xi1,xi2,. . .,xiN) with N other objects (including
itself) is modeled by a multinomial distribution

pðxijaiÞ ¼
xi!QN
j¼1 xij!

YN
j¼1

aij
xij ; ð1Þ

where xi ¼ SN
j¼1xij is the total number of observed interactions, among which xij interactions

are observed between objects i and j. The parameters αij are probabilities for observing a single

interaction between objects i and j, with SN
j¼1aij ¼ 1. We then define a prior distribution over

these probabilities using a Dirichlet distribution

pðaijbiÞ ¼
GðbiÞQN
j¼1 GðbijÞ

YN
j¼1

aij
bij�1; ð2Þ

where bi ¼ SN
j¼1bij with βij>0. The parameter βij can be thought as a pseudo-count for interac-

tions i.e. how many interactions are postulated between object i and j, before making any obser-
vation. These parameters will be essential for defining meso-scale structures; therefore, we
want to derive the likelihood of interactions xi given βi, by integrating out the parameter set αi.

pðxijbiÞ ¼
ð
pðxijaiÞ pðaijbiÞ dai:

The result of this integration is the well known Dirichlet-Multinomial distribution (a.k.a
Pólya distribution) [11]. Finally, the likelihood for all objects and their interactions has the fol-
lowing form, assuming independence between observations related to individual objects.

pðXjGÞ ¼
YN
i¼1

xi!QN
j¼1 xij!

GðbiÞ
GðγiÞ

YN
j¼1

GðγijÞ
GðbijÞ

 !
; ð3Þ

Fig 1. Networks with different meso-scale structures and their generative models.Networks are illustrated by their connectivity matrices depicting
weights of edges between nodes. (a) A network with core-periphery structure. (b) A network with community structure. (c) A hybrid network model including
both.

doi:10.1371/journal.pone.0143133.g001
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where γij = βij + xij and γi ¼ SN
j¼1γij. The graph G represents our prior belief on the interactions

between objects based on parameters βij. In another words, G is constructed with edges having
weights βij.

Prior model for the underlying network. The total likelihood of observing a set of inter-
actions, X, between objects is given by the multivariate Pólya distribution in Eq 3. The postu-
lated structure of the underlying network is parameterized by βij that encodes our belief in
possible interactions between objects i and j. Any prior assumption on the structure of the net-
work can be incorporated by assigning appropriate values for parameters βij. For instance,
given a set of observations, X, we can estimate the underlying network structure by finding
parameters B = {β1, β2,. . .,βN} that maximize the likelihood in Eq 3. Alternatively, we can fur-
ther assume a prior distribution on G (equivalently on B) and then try to maximize the poste-
rior distribution of G, p(G|X)/ p(X|G)p(G), instead of the likelihood. For both approaches,
computational sampling methods such as MCMC can be used [12]. Details of such an infer-
ence scheme are available in ref. [9]. What we are interested in here is an approach to infer
meso-scale structures in a network by utilizing a similar scheme, and this is explained next.

Inference of Meso-scale Structures
In the current literature, inference of different meso-scale structures such as communities and
core-periphery structures are performed by defining different maximization problems, each
specific to the problem under consideration. For instance, communities are identified by maxi-
mizing the difference between the observed and expected interactions for nodes of the same
communities. The modularity measure Q = ∑i,j(xij−pij)δ(gi, gj) is commonly used for this pur-
pose, where pij is the expected number of interactions between objects i and j that are assigned
to communities gi and gj, respectively [1]. δ is the Dirac delta function having a value of 1 when
gi, gj are same and 0 otherwise. One of possible definitions for a core-periphery structure is to
assume a densely connected core with objects having interactions with each other, and a
periphery with objects having interactions only with the core but not with each other. With
such a definition in mind, identification of the core and periphery nodes of a network is
achieved by maximizing a core quality function by assigning a coreness value, ci, to each node.
A common choice for the core quality function has the form R = ∑i,jxijcicj, where a transition
function for coreness values is stipulated to characterize the search space for ci [2]. Other type
of definitions such as k-core definition[13], the definition based on the flexibility of objects in
moving between communities[14], or based on the extent of integration between communities
[15] would require different identification methods.

The Bayesian network inference framework introduced in the previous section enables us to
unify these and similar structures. By simply answering the question, “Do we expect an interac-
tion between objects i and j if . . .?” we design a generative model for the network, which in
turn marks the possible values of parameter βij. The antecedent of the conditional in the ques-
tion can be substituted by “if they are in the same community”, “if i is a core node and j is a
periphery node”, and any other form to determine the expected interactions between nodes.
Three example generative models for communities, core-periphery structures, and a hybrid
model including both, are introduced in the following sections. These structures were studied
in this work since both the community and core-periphery structures are amongst the most
studied meso-scale network structures in the literature.

Communities. When we have communities in a network, the ideal case is described by the
condition that interactions should exist between objects of the same community, but not
between objects of different communities. This can easily be simulated by the parameter βij
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defined as

bij ¼ adðgi; gjÞ þ b; ð4Þ

where the scalars a and b incorporate our belief on the uncertainties of interactions (how far
away we are from the ideal case). As we increase b, we increase the chance of interactions
between objects of different communities. Increasing a, on the other hand, increases the domi-
nance of interactions between objects of the same communities. While both scalars are infor-
mative in general applications, for the purpose of comparing different meso-scale structures,
we set a = 1 and b� 0 (very small number larger than zero) in all of our experiments. In the
remainder of the paper, we will use the abbreviation “CS” to refer to a community structure
defined by Eq 4.

Core-periphery structure. Similar to communities, core-periphery structures can be sim-
ulated by an appropriate choice of βij. In an ideal case of core-periphery structure, we expect
interactions between two core nodes and between one core node and one periphery node,
whereas no interaction is expected between two periphery nodes. This expectation can be mod-
eled by the choice

bij ¼ aðci þ cj � cicjÞ þ b; ð5Þ

where parameters ci, and cj encode the coreness of nodes. Here, we assume the simplistic case
of binary assignment i.e. ci is either 0 (a periphery node) or 1 (a core node). Scalars a, b again
govern the uncertainty similar to the case of communities. Another alternative can be defined
as

bij ¼ aðci þ cjÞ þ b: ð6Þ

In this case, more interactions are expected between core nodes compared to the interac-
tions between core and periphery nodes, and again no interaction is expected between periph-
ery nodes.

Hybrid models. One of the most important features of our approach is the ease of defining
hybrid models. Without changing our thought process, we simply incorporate a different
expectation on the interactions between objects. For a network that includes both community
and core-periphery structures, our expectations can be modeled by either of the following
choices.

bij ¼ adðgi; gjÞðci þ cj � cicjÞ þ b; ð7Þ

bij ¼ adðgi; gjÞðci þ cjÞ þ b: ð8Þ

These choices impose that interactions occur only when two objects are in the same com-
munity, and for objects of the same community, all node pairs except the periphery nodes have
interactions. Such an explicit merger of the formulations of community and core-periphery
structures is an important improvement over current approaches, as we know exactly which
community each node belongs to, as well as its coreness value once the inference is done. Dif-
ferent model choices are illustrated in Fig 1. We used both hybrid structures that are defined
by Eqs 7 and 8 in our experiments, in order to validate that the proposed Bayesian inference
scheme could distinguish two core-periphery structures that have only a slight difference in
their definition. They will be referred as “HS1” and “HS2” in the following sections.

Inferring meso-scale structures. After we decide what kind of meso-scale structure we
want to detect, by assigning proper values to βij, either or both of the unknown parameters ci,
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gi, can be inferred by maximizing the likelihood in Eq 3. When using a technique such as simu-
lated annealing [16] for optimization, all we need is an update rule to assign new values to
unknown parameters. In the case of core-periphery structure with binary assignment (i.e. 1 for
core, 0 for periphery), we randomly select a node i and update its coreness to cnewi ¼ 1� coldi ,
and probabilistically decide whether to accept this choice or not. At each iteration, parameters
βij are updated based on values c = (c1,c2,. . .,cN) using either Eqs 5 or 6. A similar approach can
be used for community detection; this time the update rule assigns a randomly chosen node i
to a randomly decided community.

In the case of a hybrid model, the Expectation-Maximization (EM) [17] can be employed
for inference. We assume that the observed network is drawn from a mixture of distributions

pðX;ZÞ ¼
YN
i¼1

YK
k¼1

pzik
k pðxijGkÞzik ;

where the variable zik has value of 1 if object i is a member of community k, and 0 if not (for
each object i, only one zik is nonzero since we do not assume multiple memberships). The vari-
able πk is the ratio of nodes assigned to the community k. The parameters βij for a mixture
component Gk is defined by βij = aδ(zik, zjk)(ci+cj−cicj)+b. Parameters Z and c are determined
simultaneously, similar to the mixture of Gaussians model [18]. First, we estimate the expected
value of the variable Z and then calculate the parameters c based on this expectation. This is
repeated until a convergence is achieved. In the expectation step, we calculate the expected
value of zik by

E½zik� ¼
pk pðxijGkÞP
jpj pðxijGjÞ

:

Then in the maximization step, we maximize the expectation over the log-likelihood to cal-
culate c.

E½ln pðX;ZÞ� ¼
X

i

X
k

E½zik�ðln pk þ ln pðxijGkÞÞ:

Comparison of Competing Models
One significant asset of the proposed methodology is the fact that whole Bayesian model com-
parison techniques are readily applicable for comparing different network models, each assum-
ing the presence of different meso-scale structures. For instance, we can make a decision on
whether the interactions between the human brain regions are better explained by a pure com-
munity structure or by a pure core-periphery structure, as well as compare both to a hybrid
model. The comparison of different models is available because the value of the likelihood (Eq
3) quantifies exactly the same thing for all models i.e. the degree of compatibility between the
observed interactions in the actual network and the expected interactions imposed by the
assumed meso-scale structure. A null model can be designed as a random network by assigning
βij = 1 for all object pairs.

Experiments on the Human Brain Network
The attention directed to the human brain network and its graph theoretical characteristics has
increased in the last decade [19–21], leading to significant advances in computational neurosci-
ence. Specifically, identifying meso-scale structures and following their evolution in the course
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of development, learning, and decision-making, has been the focus of the network studies in
the neuroscience domain [22–24]. In order to demonstrate the applicability of the proposed
methodology in such complex systems, we investigated the underlying network model of the
human brain by comparing different candidate meso-scale structures.

Diffusion tensor imaging (DTI) [25] and probabilistic tractography [26] was used for con-
structing the structural network of the brain. Scans of 25 participants (males with mean age
15 plusmn;1) were acquired in two epochs, on the same scanner. In the first set, DTI was
acquired using a monopolar+ sequence, with repetition time (TR)/echo time (TE) = 11000/75
ms, resolution = 2x2x2 mm, collecting 30 directions with b-value = 1000 s/mm2 and 1 b = 0
image on a Siemens Verio 3T scanner. In the second epoch, DTI was acquired at TR/
TE = 11000/76 ms using a monopolar sequence. DTI measures of FA and MD were verified
not to vary between scans within the two epochs. T1-weighted (TR/TE = 1900/2.54) MRI
images with resolution 0.4x0.4x0.9 mm were also acquired. The T1 image of each participant
was segmented into 87 anatomical regions of interest (ROIs) of the Desikan atlas [27] using
Freesurfer [28]. FSL’s probtrackx was used to perform tractography seeded from each of the 87
ROIs and going to the others [26]. A 87x87 connectivity matrix A was created for each subject,
where Aij = (Sij/Si)�Ri. In this formula, Sij represents the number of fibers connecting seed
region i to target j, and Si represents the total number of fibers emanating from region i. The
normalization by Ri, the surface area of region i, accounts for the different sizes of the 87 ROIs.
The final brain network was generated by averaging the 25 individual connectivity matrices.

Results

Simulation Studies
We validated the reliability of the proposed methodology in inferring meso-scale structures. To
do so, networks with ground-truth meso-scale structures were simulated, and then different
models were compared based on their model fit (i.e. the likelihood values). We compared three
meso-scale structures, namely the pure community structure (CS) (Eq 4), the hybrid structure
1 (HS1) (Eq 7), and the hybrid structure 2 (HS2) (Eq 8). Note that when assuming a single
community in a hybrid structure, we get a pure core-periphery structure (as in Eqs 5 or 6). For
all simulated experiments, we used a binary core-periphery assignment i.e. a node is either core
or periphery.

In the first set of experiments, we tested the capability of the method in inferring the true
number of communities in the network, both for CS and the HS2. We generated networks of
varying sizes and communities. For a network of m 2 [1,5] communities, with each community
including 12 nodes, the network had 12�m nodes in total. When using a hybrid structure, each
community included 5 core and 7 periphery nodes. For node pairs that are expected to have
interactions according to the definition of the underlying meso-scale structure, the number of
interactions between them was uniformly drawn from the range [13,24]. The number of inter-
actions between two nodes that are not expected to have any interactions was uniformly drawn
from the range [0,4]. Once the network is simulated using either CS or HS2, we tried to predict
the true number of communities (m), by running our proposed inference algorithm with the
generative model corresponding to the true meso-scale structure and the number of communi-
ties varying in the range [1,7]. The prediction was achieved by picking the number of commu-
nities that gave the maximum value of the likelihood (Eq 3). For each value of m, this was
repeated 100 times and the average was taken. Fig 2 illustrates results of these experiments,
with the true number of communities being predicted accurately each time.

With a second set of experiments, we tried to predict the true underlying meso-scale struc-
ture, i.e. CS, HS1, or HS2. Using the same test configuration of the first experiment, we first
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simulated random networks with selected ground-truth meso-scale structures and then tried to
fit the data using all three candidates. We expected that the highest value of the likelihood
would be achieved when the true number of communities and the true meso-scale structure
were used. Both HS1 and HS2 consist of communities of core-periphery structures with slight
differences in the core-periphery model (compare Eqs 7 and 8); therefore, distinguishing them
is a hard task even for simulated networks. Fig 3a shows results when the network is simulated
with the ground-truth meso-scale structure HS2 and 2 communities (similar results were pro-
duced for other number of communities in the range [1–5]). Comparisons between HS1 and
HS2 are given. Both models explained the data better than a random network, with the true
model (HS2) achieving higher likelihood values consistently.

Similar results are presented in Fig 3b and 3c for the cases when the ground-truth structure
is CS with 4 communities and HS2 with 4 communities, respectively. Again, the true underly-
ing model was predicted successfully each time. Note that, when the true underlying model is
CS, both HS1 and HS2 can also be fitted accurately by simply assigning all nodes as core nodes
(see Fig 3b). With CS, even when we try to fit the model with a number of communities that is
higher than the true number, optimization may end up with the extra communities being
empty, which results in the same likelihood value with the true model (see Fig 3b and 3c). This
is usually not true for HS1 and HS2 due to increased number of free parameters. Overall,
results in Fig 3 show that the proposed meso-scale inference methodology is sensitive to even
small changes in the underlying ground-truth network structure (e.g. HS1 vs HS2), which ren-
ders our approach very reliable in model comparisons.

The Human Brain Network
Two meso-scale structures, namely community structure (CS) and a hybrid structure fusing
community and core-periphery structures (HS1) were compared. Both candidates were fitted
with changing number of communities. When the number of communities is 1 for the hybrid
structure, this corresponds to a pure core-periphery structure. Similar to previous experiments,

Fig 2. Results of simulation studies on predicting the number of communities. The true number of communities is given in parenthesis next to each
curve. The proposed inference algorithm was run with different number of communities (x-axis) and the log-likelihood (y-axis) was calculated for each. The
maximum log-likelihood is marked with the gray circle indicating the predicted number of communities. (a) Networks were generated using the pure
community structure defined in Eq 4. (b) Networks were generated using the hybrid structure defined in Eq 7. Vertical bars show standard deviation for
repeated experiments; some lines are shifted slightly along the x-axis to prevent overlaps. The true number of communities was predicted successfully for all
experiments.

doi:10.1371/journal.pone.0143133.g002
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a binary version of the core-periphery structure (i.e. a node is either core or periphery) was
used, and the best model was selected based on the highest likelihood.

Our methodology enables us to make very detailed interpretations on the meso-scale struc-
ture of the network. For instance, we see in Fig 4b that both models explained the observed
data (the brain network) better than a random network did. The best fit corresponding to the
highest likelihood was achieved by a community structure with 5 communities. The hybrid
structure with a single community (i.e. a pure core-periphery structure, see the black arrow in
the figure) achieved only slightly better likelihood than a random network, whereas introduc-
ing even two communities (corresponding to the left and right hemispheres of the brain),
improved the model fit noticeably. The overall difference between the likelihoods of the pure
community structure and the hybrid structure was minimal, suggesting that the connections

Fig 3. Model comparisons with different ground-truth meso-scale network structures. The proposed inference algorithm was run with different number
of communities (x-axis) and the log-likelihood (y-axis) was calculated for each. The maximum log-likelihood is marked with the gray circle indicating the
predicted number of communities. Dashed gray line shows the log-likelihood for a random network. The ground-truth meso-scale structure was (a) the hybrid
structure 2 (Eq 8), (b) the community structure (Eq 4), (c) the hybrid structure 2 (Eq 8). Vertical bars show standard deviation for repeated experiments; some
lines are shifted slightly along the x-axis to prevent overlaps. The true models achieved higher likelihood in all pairwise comparisons, with the true number of
communities achieving the maximum value in each case.

doi:10.1371/journal.pone.0143133.g003
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between anatomical regions were mainly characterized by a community structure, but not by a
core-periphery structure.

The inferred community and core-periphery structures of the human brain network are
depicted in Fig 5. In order to see the distribution of coreness among nodes, we ran the proposed
algorithm with a continuous coreness value, instead of a binary one. Even though the hybrid
model did not contribute much in terms of explaining the data (see Fig 4b); when we compare
Fig 5b with Fig 5c, we see that the assignment of nodes to communities became more intuitive
(e.g. communities do not span both hemispheres) when coreness of nodes was incorporated
into the hybrid model (observe the change in community #2 in Fig 5b and 5c). Such an exten-
sive interpretation has not been hitherto available, since it is not possible to compare multiple
models with the current methods of meso-scale detection, as they are identified by independent
methodologies.

Discussion
We have proposed a unified approach for identification of meso-scale network structures, such
as community structures and core-periphery structures. In the current literature, such tasks are
performed by utilizing methods and algorithms that are highly specific to a single structure,
hindering comparison of findings. Defining a common methodology for multiple meso-scale
structures is an important contribution for several reasons.

First, a common formulation of different structures naturally provides a way to define
hybrid network models that combine multiple meso-scale structures with complex hierarchies.
In the literature, it is a well-appreciated fact that networks corresponding to real life objects
and interactions do not include a single meso-scale structure, but instead are characterized by
architectures that demonstrate interplay of multiple structures. Especially for the biological
networks with a high level of complexity in their functional outputs, such hybrid models are

Fig 4. Meso-scale structures of the human brain network. (a) The connectivity matrix of the brain that defined the network. Edges between nodes were
weighted by the number of streamlines (normalized so as to have values between 0 and 100). (b) Model fits with different candidate meso-scale structures;
three structures were compared. The proposed inference algorithm was run with different number of communities (x-axis) and the log-likelihood (y-axis) was
calculated for each. The upper panel gives the modularity measure (Q) for different number of communities. Comparison with Q shows that the change in the
likelihood value as we increase the number of communities, is similar to the change in the traditionally used modularity measure.

doi:10.1371/journal.pone.0143133.g004
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expected to be prevalent. The proposed unification facilitates an easy way to infer hybrid mod-
els, as well as very complex meso-scale structures.

Second, the proposed unification enables the comparison of competing models (see Figs 3
and 4), a subject that for the most part remains largely unexplored in the current literature. Use
of null models has been very popular to quantify the reliability of the inference of the meso-

Fig 5. Community and core-periphery structures of the human brain network. (a) Distribution of coreness among nodes when a pure core-periphery
structure is assumed. (b) Communities of the network with 5 communities. (c) A hybrid structure. The hybrid model integrates the decisions from two distinct
models.

doi:10.1371/journal.pone.0143133.g005
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scale structures in networks. Identified meso-scale structures are compared to random net-
works, and this requires a specific null model for each separate meso-scale structure. In the
proposed methodology, null models are parameterized in the same way that meso-scale struc-
tures are parameterized. Moreover, not only the comparison to random networks, but also the
comparison between different meso-scale structures is now enabled. This introduces a unique
advantage in interpreting the architecture of the networks. Through our experiments on the
human brain network (Figs 4 and 5), we demonstrated how this unique feature could facilitate
the inference of the dominant organizational structure (communities) of the brain, as well as
its auxiliary characteristics (core-periphery). It is already known that both the community
structure and the core-periphery structure may exist in the human brain network [29,30]. To
the best of our knowledge, for the first time, we have shown that the main governing structure
is the community structure while the core-periphery structure contributes only minimally
towards explaining the observed interactions among cortical regions (Fig 4b). Such a compari-
son was due to the common quality measure (i.e. likelihood of the model) that quantifies
exactly the same thing for different models.

Third, the identification of meso-scale structures is unified using a common generative
model for any kind of meso-scale structure. This was achieved by introducing a link between
the formation of a network and the expectations introduced by the meso-scale structure being
studied. Each meso-scale structure introduces a different set of expectations on the interactions
between objects. For instance, for a community structure, we expect that the interactions occur
only between the objects of the same communities. Similarly, a core periphery structure is
defined by the set of expectations that decide the interactions between core nodes, between
core and periphery nodes, and between periphery nodes. Since we define each meso-scale
structure using the same language i.e. language of expectations, both interpretations of the for-
mation of such structures and that of our statistical findings are now commensurable. Using
this language, we can easily study more meso-scale structures such as onions [31], bow-ties
[32], or other block models [33]. We can do that simply by assigning appropriate values to the
parameter βij (Eq 3), which reflects the expected amount of interaction between objects when
the meso-scale structure is present in the network.

It should be noted that using the raw likelihood values for model comparison is not the best
approach in general. In real-world large networks, differentiating candidate models or number
of communities may be difficult and unstable due to very small differences between likelihood
values (see Fig 4b). This is expected when comparing two community structures with similar
number of communities since difference between two candidate models can be the addition of
an extra community, with only a few or sometimes no assignment (empty community) of
nodes to the new community. This results in very close or equal likelihood values. Similarly,
when we blend a core-periphery structure into the model to have a hybrid model, difference
between the hybrid model and a pure community structure can be minimal when most of the
nodes (or even all of them) are assigned as core nodes in the hybrid model, which renders it as
a pure community structure. We observed such limitations in our experiments with other real-
world networks, as well. It is always the best practice to inspect resulting meso-scale structure
qualitatively (e.g. investigations on the assignment of nodes to communities) in addition to the
quantitative analysis performed using likelihood comparison. This limitation is also evident
with the traditionally used quality measures like modularity (Q). However, the proposed meth-
odology can be used in combination with any Bayesian model selection procedure. We recom-
mend using more sophisticated measures such as BIC [34] or AIC [35] that incorporates the
model complexity into the decision process in order to reach more robust decisions. In this
work, we have used the simplest measure to better demonstrate the capacity and the limitations
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of the proposed methodology, without embarking on a comparison of the decision measures
that would detract from the focus of this work.

Much work remains to be done in future studies, pertaining both to the theoretical and
practical aspects of the proposed methodology. From a theoretical perspective, advanced opti-
mization schemes should be explored to identify optimal solutions especially for the complex
hybrid models. As we introduce intricate hierarchies to capture the interplay between multiple
meso-scale structures, the generative model becomes more and more underdetermined by the
observations, due to an excessive number of unknown parameters. Informed prior assumptions
on the network topology and geometry can be incorporated to address such concerns. Result-
ing complicated models can be studied by more sophisticated inference schemes such as proba-
bilistic graphical models that break complex models into conditionally independent simpler
sub-models [36]. In theory, the proposed methodology is applicable to the inference of meso-
scale structures other than the community and core-periphery structures. This fact should also
be validated with practical applications, to establish the effective representational capacity of
our methodology. The current generative model that is mainly parameterized by βij (see Eq 3),
can possibly be augmented to represent more complex meso-scale structures. We believe that
the possibilities that are brought forward by the proposed unification of the inference of meso-
scale network structures are critical to advances in several domains including biological, physi-
cal, and social sciences. And, these possibilities are expected to multiply with the abovemen-
tioned future improvements.
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