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Abstract
Carcinomas are complex heterocellular systems containing epithelial cancer
cells, stromal fibroblasts, and multiple immune cell-types. Cell-cell communi-
cation between these tumor microenvironments (TME) and cells drives cancer
progression and influences response to existing therapies. In order to provide bet-
ter treatments for patients, we must understand how various cell-types collabo-
rate within the TME to drive cancer and consider the multiple signals present
between and within different cancer types. To investigate how tissues function,
we need a model to measure both how signals are transferred between cells and
how that information is processed within cells. The interplay of collaboration
between different cell-types requires cell-cell communication. This article aims
to review the current in vitro and in vivo mono-cellular and multi-cellular cul-
tures models of colorectal cancer (CRC), and to explore how they can be used for
single-cellmulti-omics approaches for isolatingmultiple types ofmolecules from
a single-cell required for cell-cell communication to distinguish cancer cells from
normal cells. Integrating the existing single-cell signaling measurements and
models, and through understanding the cell identity and how different cell types
communicate, will help predict drug sensitivities in tumor cells and between-
and within-patients responses.
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1 INTRODUCTION

Colorectal cancer (CRC) ranks as the third most com-
mon malignancy and the second leading cause of cancer-
related mortality worldwide.1 CRC is a heterogeneous
disease, like other malignancies, making it a challenge
for the optimization of treatment modalities in reduc-
ing morbidity and mortality.2 Typically, CRC initiation
and progression occur as a result of sequential aggres-
sive gene mutations and epigenetic alterations.3 The most
frequently mutated genes in CRC comprise APC, 70%;
TP53, 50%; K-RAS, 40%; SMAD4, 25%; TGFβR2, 20%;
FBXW7, 15–20%, and PIK3CA, 20%.4–7 Mutation(s) of these
genes and their respective signaling pathways result in
major cellular consequences involved in apoptosis, prolif-
eration, cell survival, and differentiation.8,9 However, in
recent years, multiple groups have generated large-scale
multi-omics data profiles that have enabled the classifi-
cations of different cancers followed by comprehensive
characterizations.10 This has gradually shifted the cate-
gorization of cancers from “mutation-centered” toward a
more “transcriptome-based” molecular subtyping.2 Com-
prehensive genomic analyses have demonstrated that indi-
vidual CRCs are unique, with a median of 76 non-silent
mutations each.11 To resolve the inconsistencies among
the reported gene expression-based classifications and to
correlate CRC phenotype with clinical behavior, the CRC

Subtyping Consortium unified six independent molecu-
lar classification systems and introduced a single consen-
sus system known as the Consensus Molecular Subtypes
(CMS).12 CMS has four distinct groups that enable the
categorization of most tumors into one of four subtypes
(Table 1).13–15 Even thoughCMS represents the current best
description of heterogeneity at the gene-expression level, it
also correlates the epigenomic, transcriptomic, microenvi-
ronmental, genetic, prognostic, and clinical characteristics
of CRC (Table 1).10,11,13

2 THE CELLULAR CROSSTALK IN
THE TUMORMICROENVIRONMENT

Within intestinal tissue, several different cell types collab-
orate through established interactions to form a functional
organ utilizing a heterocellular system (Figure 1).16,17
As CRC results from the deregulation and disruption
of several signaling pathways tightly maintaining tissue
homeostasis, understanding their dynamics is important
to study the factors underlying CRC. Homotypic and het-
erotypic interactions between cells are therefore crucial
for the maintenance of physiological functions changes in
cell-to-cell communication and can induce tumorigenesis
through different pathways.18,19 To date, there is a large
gap between our detailed knowledge of sub cellular

TABLE 1 Consensus Molecular Subtypes (CMS) of Colorectal Cancer. A single CRC classification system introduced by The CRC
Subtyping Consortium that unified multiple independent molecular classification systems. MSI; microsatellite instability, CIN; chromosomal
instability, DDR; DNA damage reaction

CMS1 (MSI
phenotype)

CMS2 (Canonical
phenotype)

CMS3 (Metabolic
phenotype)

CMS4
(Mesenchymal
phenotype) References

Location; incidence Proximal; 14% Distal; 37% Mixed; 13% Distal; 23% 10,11,13

Characteristics Hyper mutated,
microsatellite
unstable, strong
immune activation

Epithelial, marked
WNT and MYC
activation

Epithelial, evident
metabolic
dysregulation

Marked TGF–β
activation, stromal
invasion and
angiogenesis.

10,11,13

Associated
mutations

MSH6, RNF43, ATM,
TGFBR2, BRAF,
PTEN

APC, KRAS, TP53,
PIK3CA

APC, KRAS, TP53,
PIK3CA

APC, KRAS, TP53,
PIK3CA

10,11,13

Genomic
Associations

MSI, high mutation CIN, low-moderate
mutation

CIN, moderate
mutation

CIN, low mutation 10,11,13

Epigenomic
Associations

High methylation Low methylation Moderate
methylation

Low methylation 10,11,13

Transcriptomic
Pathways

Immune activation,
JAK-STAT
activation, Caspases

WNT targets, EGFR,
VEFG/VEGFR,
TGFB activation,
cyclin upregulation

DDR,
Glutaminolysis,
lipidogenesis

Mesenchymal
activation,
immunosuppres-
sion

10,11,13

Stroma-Immune
Micro-
environment

Highly immunogenic,
large immune
infiltrate

Poorly immunogenic,
innate immune
response

Highly
immunogenic

Innate immune
response, EMT
activation

10,11,13
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F IGURE 1 (A) Schematic representation of multiple cell-cell communication in the colonic epithelium and colon adenocarcinoma. The
arrows represent activated interactions between heterotypic cells. Left) “Normal” heterotypic cell-cell interactions that maintain homeostasis
and functionality of colonic epithelium. Right) The emergence of malignant phenotypes by oncogenic mutations, influenced by increased cell-
cell communication by different signaling pathways that were not activated before as well as the recruitment of more cell types. (B) Cellular
heterogeneity maintained in a patient-derived explant platform. In the patient-derived explant system, the tumor samples are directly obtained
from patients’ tissues following surgery as compared to other in vitro and in vivo approaches previously mentioned. Patient-derived explant sys-
tem provides an accessible model to studymultiple cell-cell communication interactions, and offer a promising platform for precisionmedicine
approaches.

processes and specific interactions that support tumor
progression through heterocellular signaling at the tissue
level. Instead, the dynamic analyses of cell-cell communi-
cations and organogenesis have relied on model systems
such as Caenorhabditis elegans, Drosophila melanogaster,
Xenopus laevis, and zebrafish providing genetic mutations
and reporter transgenic lines in cell competition manner
involved in various physiological and pathological disease
systems.20,21 Cell competition typically originates from
specific interactions between two cell types and is an
interactive process wherein cells compete for certain
fitness within a tissue environment. In zebrafish models,
both its envelope layer and mesenchymal tissues with
hyper-activated Wnt/β-catenin cells activate caspase-3
and induce apoptosis.20 Typically, morphogen signaling
forms an activity gradient in a signal-dependent manner,
whereas zebrafish model shows that unfit cells with
abnormal Wnt/β-catenin activity produce noise in the
gradient. Communication between unfit and neighboring
fit cells via cadherin proteins stimulates reactive oxygen
species (ROS)-mediated apoptosis of the unfit cells.22 In
this manner, embryonic tissues eliminate excess noise

and support proper formation and embryonic patterns.
This system, however, is also relevant in aspect of CRC, as
the function in the intestinal crypt undergoes active cell
turnover and forms active Wnt/β-catenin-gradient.20,23

2.1 Molecular mechanisms mediate
cell-cell communication

Recent studies indicated specialized cell surface protein
complexes form epithelial cell-cell junctions are essential
for epithelial cell polarity and tissue integrity.24,25 Upon the
initiation of epithelial-to-mesenchymal transition (EMT),
these junctions are deconstructed, disrupting tight cell-
cell contacts while the junction proteins are relocalized
and/or degraded.24 The adherens junctions perform a piv-
otal role in regulating the activity of the entire junctional
complex that comprises tight junctions, adherens junc-
tions, and desmosomes.26 Cadherins are the transmem-
brane component of the adherens junctions that mediate
cell-cell adhesion.27 E-cadherin is typically expressed by
normal epithelial while disruption of E-cadherin activity
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correlates with the formation of metastatic tumors.28 Inhi-
bition of E-cadherin activity was shown to change normal
epithelial cells into invasive cells.29 This is accompanied
by an increase of N-cadherin expression and is commonly
referred to as cadherin switching.27
It has been reported that epithelial-derived cancer cells

and cancer-associated fibroblasts (CAFs) communicate
throughmechanical interactions via heterophilic adherens
junction involving E-cadherin on the cancer cell mem-
brane and N-cadherin on the CAF membrane.30 Laber-
nadie et al concluded that CAFs favor invasion of cancer
cells by pulling them away from the tumor, while can-
cer cells enhance their spread by polarizing CAF migra-
tion away from the tumor.30 Numerous studies have shown
cadherin switching to be associated with tumor progres-
sion by mediating intercellular interactions that promote
survival and migration of cancer cells.31 By transfecting
with N-cadherin, a non-metastatic breast cancer cell line
was transformed to a metastatic cell line.32 It is also
likely that tumor cells have an increased ability to inter-
act with endothelial cells by sharing the expression of
N-cadherin and this interaction promotes metastasis by
allowing tumor cells access to the vasculature.27 Under-
standing howN-cadherin influences cell behaviorwill pro-
vide a method to specifically combat its role in tumor
growth, invasion, and metastasis.
Figure 1 illustrates cell–cell communication networks

in a healthy and cancerous colon. When comparing the
components of the tumor microenvironment, the colon
adenocarcinoma presents greater heterotypic complex-
ity which causes increased activation of signaling path-
ways that were not present in normal, healthy colon.
Substantial evidence indicates that tumor stroma sup-
ports mutated colonic epithelial cells impacting and/or
even hastening colorectal carcinogenesis.33 As such, the
tumor microenvironment represents a modified patholog-
ical entity that evolves throughout cancer progression by
setting up cell-cell communication networks.17,33–35 Multi-
omics data integration provides amore comprehensive dis-
section of tumor heterogeneity and cell-cell communica-
tion networks.36,37 By elucidating regulatory mechanisms
within each CRC subtype, novel targets can be identified
and tailored treatment strategies can then be produced in
a subtype-specific manner.38 In order to investigate this in
vitro, there is a critical need for experimental models to
recapitulate the intrinsic complexity and heterogeneity of
a tumor. The optimal model can then be exploited using
single-cell technologies to better interpret cellular hetero-
geneity on the genetic, epigenetic, transcriptomic, and pro-
teomic levels making it feasible to model cell-cell commu-
nication networks. The primary focus of this review is to
compare advanced in vitro mono-cellular and multicellu-
lar models, and the single-cell multi-omics approaches to

identify signaling pathways regulating cell-cell communi-
cation networks. We will introduce the ideal multicellu-
lar model and proposed single-cell technology, and discuss
their application in translational CRC research context.
For the purpose of this review, mono-cellular models will
typically represent one major cell class, e.g., epithelium
while multicellular models will present more than one cell
type in culture, e.g., immune cells or mesenchymal.

3 INVESTIGATING CELL–CELL
COMMUNICATION IN CANCERMODELS

Cell–cell communication is fundamental to various pro-
cesses, such as cell fate decisions, proliferation, migration,
and homeostasis. CRC is a complex disease that thrives in
a heterogeneous and adaptive tumor microenvironment.39
Despite the current understanding of organ microstruc-
ture and stromal composition, the need for complex mod-
els incorporating heterocellular interactions remains cru-
cial in cancer research, especially to delineate the key
molecular pathways and causative relationships involved
in the tumor microenvironment, tumor dissemination,
and overall carcinogenesis. A key challenge in understand-
ing cell communication is to delineate the signaling path-
ways involved in cancer regulation. A number of studies
suggest that signaling pathways can regulate each other by
triggering sequential signaling events in cells.40 For exam-
ple, Wnt protein mediates the balance between differenti-
ation and proliferation, particularly in the stem cell niche.
A recent study on Drosophila has elucidated a mecha-
nism where an acyl group is covalently attached to Wnt,
mediated by transmembrane protein Porcupine to attenu-
ate Wnt activity.41 However, in most cases, the integrative
signaling describing the spatial and temporal interactions
between pathways are yet to be determined.

3.1 Preclinical models and their
translational relevance

The high failure rate of preclinical compounds in clini-
cal trials demonstrates the limitations of existing preclin-
ical models. Approximately 10% of compounds progress
successfully through clinical development where anti-
cancer drugs have the highest percentage among all dis-
ease types.42,43 Many of these drugs fail during clinical tri-
als, especially during their phase III, which is the most
expensive phase in drug development. Such failure is prin-
cipally due to the lack of predictive patient outcome in
response to candidate drugs.
Currently, in drug discovery, the compound screening

starts with 2-dimensional (2D) cell culture-based assays.
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Established cell lines have been useful in understanding
cancer with the advantage of easy control and analysis
of expression however, a monolayer culture suffers from
several limitations.44 Predominantly the proliferating cells
adhere and grow on a flat surface, allowing unlimited
access to nutrients and growth factors unlike tumors in
vivo.45 Therefore, such cultures do not reflect cellular het-
erogeneity of the primary tumor, stromal-cell communica-
tion, and tissue-specific architecture.46
In recent years, several in vitro and in vivo preclinical

models have been developed, including, spheroids, colono-
spheres, organoids, patient-derived tumor organoids
(PDO), patient-derived tumor xenografts (PDX), and
patient-derived explants (PDEs). These models present
valuable tools, for not only understanding cell-cell
communication, drug response, and the underlying mech-
anisms of tumorigenesis but also in drug discovery and the
aspect of personalized medicine.42,43 In patient-derived
xenografts, a segment of tumor tissue is obtained follow-
ing surgery. This segment is implanted and subsequently
passaged into immunodeficient mice.47,48 CRC repre-
sents a unique illustration of patient-derived xenograft
studies, and may provide as an additional opportunity to
improve clinical decisions.42 Moreover, the humanized
patient-derived xenograft models are an excellent plat-
form to investigate the interactions between the immune
system and microbiome. Recent evidence suggests that
the human gut microbiome greatly contributes to CRC
progression through the procarcinogenic activities of
specific pathogens and their metabolites.49,50 Typically,
the success rates of CRC patient-derived xenograft model
development ranges between 64–89% 51,52. In CRC mod-
eling, patient-derived xenograft retains the authentic
characteristics of the patient’s tumor tissue, including
histopathologic architecture, genomic signature, intra-
tumoral clonal heterogeneity, chromosomal instability,
and drug responsiveness.51–53 The key driver mutations,
including KRAS and PIK3CA, remain consistent along
the passages.54 In a recent study, Isella et al reported that
the stromal transcripts derived from CRC patient-derived
xenografts successfully recapitulated the prognostic
mesenchymal gene signature of human CRC tumors,
indicating the reliability of CRC patient-derived xenograft
in modeling the reciprocal paracrine signaling between
cancer cell and murine stromal cells.55 An important
application of patient-derived xenograft is personalized
cancer treatment by utilizing heterogeneous patient tissue
and the ability to model cancer as a whole.18 It has been
reported that patient-derived xenograft models represent
the clinical response to therapy better than traditional
xenografts.48,56 As previously outlined in Table 1, CMS4
tumors are characterized by activation of pathways related
to Epithelial-Mesenchymal transition (EMT) and stem-

ness, such as TGF-β and integrins, and are mostly derived
from stromal cell infiltration of adjacent cancer tissue.
It has been shown that the use of TGF-β inhibitors in
CRC patient-derived xenograft models had blocked the
crosstalk between cancer cells and the microenvironment
and therefore reduced metastases.57
However, the clinical applicability is limited due to

time requirements, lack of penetration of delivery systems,
high costs associated with patient-derived xenograft sys-
tems, the large sample size, and the influence of infiltrat-
ing murine stromal cells on the tumor.58,59 Consequently,
the more times a patient-derived xenograft tumor is pas-
saged through mice, the more transcriptionally “mouse-
like” it becomes and over time, the human stromal cells
are replaced by mouse stromal cells.51,60,61 The depletion
of human stromal and immune cells is a major limitation
of patient-derived xenograft models for studies of tumor
microenvironments and metastasis.51 Moreover, the loss
of human CAFs, endothelial cells, and immune cells over
time has been characterized as a pitfall of the patient-
derived xenograft model. Based on the limitations of using
2D culture systems and patient-derived xenograft, sig-
nificant effort has been put forward to develop three-
dimensional (3D) culture models that provide a more rel-
evant and practical alternative to investigate the patho-
physiology of human cancer. Tomodel cell-cell interaction
in vitro both mono-cellular and multicellular models each
provide their own set of strengths and limitations. The fol-
lowing section provides a comparative evaluation of differ-
ent models summarized in Table 2.

4 MONO-CELLULARMODELS

It is necessary to maintain or recreate the typical architec-
ture of a tumor, to investigate cell-cell interactions regu-
lating tumor signaling pathways successfully. 3D in vitro
models have been used as an intermediate model between
in vitro cancer cell line cultures and in vivo tumors.62,63
3D models can produce in vivo-like iterations and confer
complexity.21 Typically, 3D mono-cellular models include
organoids and spheroids.64

4.1 Spherical models

Spheroids form as cell aggregates or spheres cultured pri-
marily in suspension and are mostly enriched in stem-
like population.63,65 The stem cell medium is devoid of
fetal bovine serum (FBS) and is supplemented with fac-
tors that favor stem cell growth including basic fibrob-
last growth factor (FGF) and epidermal growth factor
(EGF).63 Spheroids from primary colorectal cancer were
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TABLE 2 Advantages and disadvantages of current experimental models. Comparative summary of mono-cellular and
multicellular culture models that have been highlighted. The advantages and disadvantages provide insight toward the relevance of each
method to model cell-cell interaction networks. The ex vivo patient-derived explant platform illustrates an optimal model to study cell-cell
interactions by maintaining the heterogeneity of the original tumor

Model Advantages Disadvantages References
Mono-
cellular

In vitro 2D
culture
system

∙ CRC cell lines are easily expandable
∙ Amenable to genetic modification
∙ Simple, reproducible, low-cost

∙ Loss of tissue-specific architecture
∙ Histological and genetic features are
different to native tumors

∙ Lack cell diversity and cell-cell and
cell-ECM interactions

44,92,184

In vitro spheroid ∙ Retain characteristics of physiological
structure and function of source tissue:
Preserved genomic and transcriptomic
characteristics

∙ Signaling established between cells
∙ Expanded long term in vitro

∙ Unable to form tissue-like structures
∙ Reproducibility is questionable due to
self-organization

∙ Separation of single-cells takes several
hours to a few days

64,102,185

In vitro
organoid

∙ Multiple differentiated cell types
∙ Signaling pathways governing
organoid formation are identical to
that during in vivo organ development
and homeostasis

∙ Intercellular communication and
organization networks are more
successful than 2D culture systems.

∙ Pure epithelium
∙ Scaffolds of natural origin are not
chemically well defined

∙ Exchange of material through slow
infiltration rather than blood vessels

186–188

Multi-
cellular

In vivo PDX
model

∙ Established human immune response
∙ Partly recapitulates tumor
microenvironment

∙ High predictive value

∙ Do not retain original cell properties
∙ Cannot reproduce heterogeneity of
human tissue

∙ Long time to establish and high cost
∙ Species-specific differences

47,56,189

PDO co-culture ∙ Models heterotypic interactions
∙ Retains the cellular composition of
patient tumors

∙ Provides a reliable model for drug
testing compared to mono-cellular
culture models

∙ Variability in terms of composition and
structure due to matrix

∙ Difficult to compare data generated from
different laboratories due to variability

∙ Challenge to keep proliferative state

18,99,190

Ex vivo PDE
platform

∙ Patient-relevant material
∙ Tumor retains proliferative
∙ Maintains cellular heterogeneity
∙ Allows correlation of drug responses
with pathology and patient
characteristics

∙ Rapid drug response data can be
collected

∙ Relatively inexpensive

∙ Only applicable to surgically resected
tumors

∙ Short time frame
∙ Single-cell multi omics approaches can
cause disruption to samples

∙ Experimental results affected by tumor
integrity

111,115,116

first established from CD133+ colon cancer cells and were
shown to reproduce the same histological features of the
original tumor in immunocompromised mice by main-
taining properties of self-renewal.66,67 Essentially, their
spherical morphology decreases cell viability and forms
hypoxic and necrotic cores that very closely recapitulate
the conditions found in solid tumors, including CRC.62,68

Various stages of cells comprise these 3D spheroids or
aggregates, including proliferating, quiescent, apoptotic,
hypoxic, and necrotic cells. This recapitulates the physi-
ological characteristics of tumors with regard to cell-cell
contacts.68 Hence, they aremore likely to provide the struc-
tural and functional tumor heterogeneity, cell-cell and cell-
environment interactions, and overall cell function.69,70
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“Colonospheres” have since been used to investigate
cancer stem cell (CSC)-related characteristics, cell-cell
adhesion, chemo-resistance, initiate xenograft tumors as
well as tumorigenicity by single-cell cloning.71–73 Addition-
ally, colonospheres present a valuable tool for investigat-
ing the cell fate decision and cell-cell interactions.65 More-
over, spheroids cultured from primary colorectal cancer
cells have been shown to retain cell-cell contact enabling
evaluation of chemo-sensitivity and signal pathway acti-
vation in individual patients.74 In addition to the tumor-
initiating capacity of this culture model, methods for gen-
erating spheroids are simple, cost-effective, and highly
reproducible. However, spheroids present a poor in vitro
model for healthy epithelial tissues due their inability to
form tissue-like structures.75,76

4.2 Organoid models

Organoids, on the other hand, originate from either
pluripotent or adult stem cells that give rise to organ-
specific cell types. Although 3D organoids could mimic
some of the in vivo epithelium features, they lack the niche
consisting of stromal cells, immune cells, and vasculature
and are unable to mimic the in vivo microenvironment.44
Organoids require amatrix to propagate and consequently,
acquire amore ordered assembly than spheroids that more
typically recapture complex tissue architecture.75 The first
adult stem cell-derived organoid cultures were established
from Lgr5-expressing mouse intestinal stem cells, where
the culture condition successfully mimicked the intesti-
nal stem cell niche.77,78 Since then, organoid cultures have
been established in a variety of tissues, including the
colon.47 Organoids serve as excellent in vitro model to
study tumormicroenvironment, specific cell-type response
to drugs and enable cells to grow in a more similar man-
ner to that of living organisms.79–82 In a CRC organ-
otypic model, extracellular vesicles from colon fibroblasts
grown in hypoxic conditions showed an increase in neo-
plastic organoids, suggesting a role of fibroblast-derived
extracellular vesicles in tumorigenesis 83. An intestinal
organoid consists of multiple epithelial cells.77,84,85 In 2011,
human tumor organoids were first generated from the
colon.86 It has also been reported that human colon tissue
obtained from colonoscopy biopsy samples, surgical resec-
tions, or single EphB2+ stem-like cells can be cultured as
organoids.86
Typically, tumors in vivo are composed of proliferat-

ing neoplastic parenchymal cells and supportive stroma
that constitutes half the mass of most malignant tumors.87
Importantly, the parenchymal cells determine the growth
and differentiation of the tumor, while stroma contributes

towards tumor progression. The spatial distribution of
cancer and stromal cells within the tumor microenviron-
ment can determine the cell-cell interaction and can influ-
ence the proliferation, differentiation, morphology and a
range of cellular functions.88,89 While organoid technol-
ogy presents the great advantage of studying epithelial tis-
sue, organoids still do not fully recapitulate all the char-
acteristics present in vivo. A major limitation is their 3D
closed geometrywhich complicates access of the organoid-
analogue lumen in intestinal organoids for the use of con-
ventional assay, high throughput screening, drug absorp-
tion, and delivery, and microbe-epithelium interactions.90
Moreover, the invasive procedures to obtain the intesti-
nal and colonic patient biopsy samples present a major
challenge for larger-scale culture of human intestinal
organoids.91 Although 3D colonospheres and organoids
both provide an in vitro multicellular model, heterotypic
cell-cell interactions are not present. Consequently, study-
ing the interactions between carcinoma and intratumoral
stromal cells is not possible within a mono-cellular cul-
turemodel. Therefore, to evaluate cell-cell communication
in CRC, model systems must recapitulate cellular hetero-
geneity in which the diverse microenvironment is present.
An ideal 3D culture model would stimulate tissue-specific
physiology where cells can proliferate, aggregate, and
differentiate, and include cell-cell and cell-extracellular
matrix (ECM) interactions.92 The current limitation of
organotypic cultures lacking the multicellular represen-
tation of the tumor microenvironment has been partly
overcome by the ability to retain immune cells with air-
liquid interface (ALI) patient-derived organoids, aswell as,
by co-culturing the patient-derived organoids with a vari-
ety of cell types, including patient-derived immune cells
or cancer-associated fibroblasts.18,93–96 These 3D patient-
derived organoids systems retain autologous immune
cells enabling immunotherapy studies and thereby offer
as promising tools to model heterotypic interactions
between cells that compose the tumor microenvironment.
Table 2 provides a comparative evaluation of different CRC
models.

5 MULTICELLULARMODELS

As yet, the ability to predict patient tumor response to
cancer therapy remains a major challenge. It has been
repeatedly reported that tumor microenvironment and
heterogeneity can limit the predictive response of exist-
ing biomarker-based therapeutic strategies.88,89 A major
challenge in the development of relevant CRC models
remains to be the lack of heterotypic cell interactions.
Recent advances in organoid and spheroid models allow
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co-culture with heterotypic cells enabling the formation
of a heterocellular system that can reproduce cell-type-
specific signaling networks.

5.1 3D co-culture systems: CRC
organoids and CRC spheroids

A recent study demonstrated that co-culture of CRC
organoids with high mutational burden and autologous
peripheral blood mononuclear cells (PBMCs) function
provided antigen-specific stimulation of T cells in the
PBMC fraction.95,97 Moreover, cytotoxic killing was higher
in CRC organoids co-cultured with tumor-infiltrating
lymphocytes generated from patients with a complete
response to therapy, than that of the ones derived from
therapy nonresponders.97,98 Therefore, such co-culture
assays may provide new insights in cancer immunother-
apy in future. A study by Qin et al focused on intestinal
organoids co-culturedwith fibroblasts andmacrophages.99
By analyzing single-cell posttranslationalmodification sig-
naling in co-cultured organoids, their method revealed
cell-type specific signaling networks that were hidden in
organoid monocultures. Regardless, previously reported
CRC 3D co-culture systems have enabled the study of
metastasis and interactions of immune cells and fibrob-
lasts. The tumor-stroma co-cultures consisting of ECM
fibers and micro-architecture, induced an epithelial phe-
notype in CRC cells.100 Recently, a 3D model based on
CRCmulticellular tumor spheroidswas developed by com-
bining epithelial colon cancer cells, intestinal fibroblasts,
and monocytes. This model successfully mimicked tumor
characteristics as cells underwent spatial organization and
produced extracellular matrix, thereby presenting a valu-
able model to investigate nano-therapeutic strategies in
CRC.101 Another study that focused on the co-culture of
tumor-derived spheroids with immune cells revealed the
ability to assess infiltration, activation, and function of
T and natural killer (NK) cells toward human colorec-
tal tumors.102 It was reported that resistance mechanisms
are used by tumor cells to evade immune recognition by
HLA-E upregulation. Although the NKG2A-HLA-E path-
ways has been described previously,103 their model, in
line with other co-culture 3D models, demonstrates a het-
erocellular cell culture system that has a viable tumor
microenvironment with functioning intercellular commu-
nication. Moreover, Hoffman et al. generated spheroids
from tumor cell lines solely, tumor cell lines co-cultured
with PBMCs and spheroids directly prepared from colon
cancer tissues.104 It was demonstrated that with the addi-
tion of PBMCs the co-cultured spheroid responded dif-
ferently to 5-FU/Oxaliplatin treatment compared to the
homotypic spheroid and had increased resistance. More

importantly, the colon cancer tissue spheroid was reported
to have three distinct response patterns that were not
detectable in the 3D cell line models. This highlights the
importance of retaining the cellular composition of patient
tumors for reliable modeling. The complexity, heterogene-
ity, plasticity, and diversity of the human tumormicroenvi-
ronment leavesmodels with inaccurate deductions regard-
ing clinical responses. Although several interesting obser-
vations suggest that 3D co-cultures are more relevant,
these models are expensive, highly variable, and are there-
fore not suitable for large-scale screening.101

5.2 3D co-culture systems:
patient-derived organoids

Although patient-derived organoids (PDO) developed
from primary or metastatic tumor tissue can be expanded
formolecular profiling, PDOmodels are inherently limited
in their ability to reflect the tumor microenvironment in
vitro as they comprise exclusively of epithelial cells.105 The
lack of stromal cells; such as CAFs, immune cells, vascu-
lature, etc. (Table 2), in patient-derived organoid models
poses a major problem as these tumor microenvironment
components play important roles in cancer development
and progression, from the regulation of cancer cell prolif-
eration and stem cell maintenance to drug resistance and
prognosis.55,57,106,107 However, the success rate of estab-
lishing organoids from untreated primary CRC patients
is about 90%, and 70% when using biopsy of metastasis
CRC. In addition, it takes about 30–80 days to establish a
frozen biobank of 1 × 106 CRC organoids.108 Therefore, the
timing and cost-effectiveness of organoid-based approach
is not often feasible. Having provided an important tool
in translational research, patient-derived organoids also
limit our understanding of the stroma/immune signal-
ing influence on tumor maintenance and drug response.
These deficiencies intensely underscore the need for
novel tools to precisely match patients with effective
therapies.

5.3 Patient-derived explants

In recent years, ex vivo patient-derived tissue explant
cultures of human tumors have demonstrated that they
can reliably manifest the tumor growth in vivo main-
taining the original tissue organization and architecture
(Figure 2).109,110 This platform is applicable to multiple
solid tumor types, including prostate, ovary, endometrium,
renal, sarcoma.111 Others and we have recently developed
and validated a short-term patient-derived explant culture
of human colon cancers for the functional assessment of
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F IGURE 2 Histological examination of a colorectal cancer-patient-derived explant model. Hematoxylin and eosin (H&E) staining, scale
bar: 100 μm. Tissue structures have been identified and labeled. Maintenance of original tissue organization, architecture, and cellular hetero-
geneity is observed.110

primary colorectal carcinoma, drug discovery, and person-
alized drug screening.88,110,112
The patient-derived explant model involves the ex vivo

culture of freshly resected human tumor tissues using pro-
tocols ranging from total immersion of tissue sections in
medium, on the grid, or in gelatin sponge scaffolds.113,114
Though patient-derived explants have been reported to be
more viable in short-term culture, they can also grow at
high frequency for a long period and still present many of
their in vivo properties.88,109 Such properties include the
native 3D tissue architecture, preservation of the spatial
distribution of tumor and stromal cells, tumor microen-
vironment, cell viability, key oncogenic drivers, reten-
tion of differentiated function, and the three-dimensional
growth of different types of cells from a single tumor
(Figure 2).111,115,116 In cancer modeling, the conventional
model systems fail to recapitulate the tumor microen-
vironment, which often leads to poor correlation with
clinical outcomes (Table 2).117 Patient-derived explants
present a model that can preserve heterogeneity, capture
the microenvironment, and therefore have useful appli-
cations for translational cancer research, including CRC.
Previously, tumor explants obtained from CRC patients
have been used to investigate whether the microenviron-
ment of earlier staged tumors is as suppressive as that of
the later stages.118 Moreover, the monocyte-derived den-
dritic cell (MDDCs) of non-metastatic CRC patients were
reported to secrete low levels of IL-12p70 in response to
lipopolysaccharides. Additionally, it has been established
that the tumormicroenvironment can inhibit dendritic cell
maturation in CRC using the tissue explant model.118,119

Additionally, the patient-derived explant platform pro-
vides a unique patient-relevant model system for the pre-
clinical evaluation of novel anticancer agents. When com-
bined with tumor stratification approaches, this platform
provides a direct evaluation of drug responses on an indi-
vidual patient’s tumor, which can be further amended by
contemporary genomic analysis. Patient-derived explants
exhibit high potential in personalized drug treatment
by permitting drug efficacy evaluation from individual
patient material. Patient-derived explants may provide an
excellent model to improve our understanding of cell-
cell communication, tumor heterogeneity within individ-
ual patients and between different patients, and response
to treatment. A study on CRC tumor explants revealed
a pro-tumorigenic mechanism in which the components
of the immune system that are exploited in metastases
were found to ultimately promote tumor growth and
invasion.120 However, this mechanism can be targeted by
blocking CCR5, which then causes antitumoral repolar-
ization of macrophages and mitigation of the pro-tumor
inflammatory microenvironment.120
Recently it has been established that patient-derived

explants can be manipulated using hormones, siRNA, or
drugs and their responses can be assessed using an array
of robust quantitative evaluation of clinically relevant end-
points techniques, including immunohistochemistry, real-
time qRT-PCR, and genome-widemolecular analyses.111,121
However, endpoint evaluation of drug responses may
also include disintegration of the explants for subsequent
growth assays that use the enzymatic digestion of tumors
or RNA/DNA/protein/metabolite analysis. Alternatively,
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whole explants can be processed for formalin fixation and
paraffin embedding for spatial profiling of key biomark-
ers using immunostaining techniques.114,117 Although, the
ex vivo patient-derived explant platform has many advan-
tages over other 3D pre-clinical models,117 whether such
platform can be routinely employed as model systems in
the evaluation of new therapeutics is yet to be determined.
Moreover, it has also been demonstrated that the establish-
ment of a living biobank of tumor organoids may facilitate
the integration of genomic data with drug screening, but
this platform may not be feasible to utilize for all cancer
patients.122

6 BUILDING CELL–CELL
COMMUNICATION FROMOMIC
TECHNOLOGIES

Communication is mediated by specific ligand-receptor
interactions. Identifying the set of “sender-receiver cell
pairs” will enable the characterization of entire net-
works in malignant tissue that involve the participation of
both neoplastic and stromal cells. As mentioned, patient-
derived explants provide the optimal model to identify
cell–cell communication networks by providing an intact
heterocellular system (Figure 2). The ability to simulate
interactions between cells of the tumor microenvironment
in vitro assists current knowledge on cancer growth and
helps to identify novel drug targets. The recent develop-
ment of high-throughput single-cell omics technologies
brings exciting possibilities to study signaling pathways
that are regulated between ligand-receptor networks.123
Such findings can be used to understand the molecu-
lar cascades involved in tumor initiation and progression,
elucidate the functional relationships of biomolecules
within individual cells or cell types, and between popu-
lations. Additionally, combining research based on single-
cell sequencing and the established CMS categories would
offer the collective opportunity to elucidate a more refined
subtype-specific CRC cell origin and help characterize the
different paths of evolution.2
It is important to note that the majority of colorec-

tal cancer network methodologies and applications have
depended on omics data derived from bulk tissues, pri-
marily focusing on predicting gene regulatory networks
within and between tissues. However, bulk tissue net-
works mainly represent the cell population’s average activ-
ities and, thus, cannot capture cells’ individual behav-
ior but rather those involved in similar pathways or
functions.124,125 Ultimately, this bulk analysis provides a
superficial insight towards direct interaction networks.
Even so, this data can be supported with single-cell
multi-omics approaches to infer directionality and facili-

tate interpretability. Furthermore, the interpreted cell-cell
communication networks based on tissue samples can-
not confirm the specific molecules that participate in cell
communication. Yet, these findings provide a base to fur-
ther define these speculative interactions and confirm the
molecules involved in tumor-associated biological func-
tions.

7 MULTI-OMICS APPROACHES IN
COLORECTAL CANCER

Omics approaches can help to identify driving factors and
causal relationships within colorectal cancer. Recently,
Ayiomamitis et al evaluated the differences in COX-2
expression between epithelial and stromal cells of the
tumor and adjacent normal tissues using biopsied tissue
from CRC patients.126 In line with previous studies, their
research demonstrated that COX-2 expression is mainly
stromal in the adjacent normal tissue and is directly impli-
cated in angiogenesis, by favoring the survival of abnormal
cells. This allows local growth of the malignant tumor and
progression within the normal tissue.127 Activated fibrob-
lasts surrounding tumors also participate by constructing
a scaffold for the tumor to metastasize.128 At diagnosis,
more than 50% of CRC will develop metastatic disease.129
A proteomic study based on 10 patients compared non-
metastatic and metastatic primary CRC tissues against
their normal tissues.130 Their research presented upregu-
lated and downregulated differentially expressed proteins
(DEP) unique to non-metastatic or metastatic CRC, or
shared by both. The greatest number of unique DEPs were
associated with metastatic tumors. Furthermore, enrich-
ment analysis was used to identify 962 specific pathways
associated with metastasis. However, as mentioned by the
authors, further research on signaling pathways and sig-
nalingmolecules is required.Hence, the following sections
provide an extensive explanation of the different single-
cell omic technologies applicable in deciphering cell-cell
communication within the CRC tumormicroenvironment
which have yet to be carried out.
It is accepted that CRC cells activate fibroblasts into

cancer-associated fibroblasts and in return, the cancer-
associated fibroblasts’ secretome promotes cell prolifera-
tion and metastasis of the tumor. Although the root cause
of cancer is usually genetic or epigenetic alterations, the
progression of cancer is associated with intricate crosstalk
between tumor cells, surrounding stromal cells and the
ECM.131 Table 3 provides examples of released factors by
different cell types of the colorectal-cancer tumormicroen-
vironment as well as their stimuli. Several systematic
approaches have been proposed for selecting important
biomarker candidates. However, single-gene expression
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TABLE 3 Cellular components of the colorectal cancer microenvironment. The following table lists several cell components of CRC
TME along with a description of their role in tumor suppression or tumor progression. The main stimuli the cells respond to and the factors
the cells release are also noted

Cell type Role in CRCStimuliReleased factors References
Cancer-associated
fibroblasts

1. Promote tumorigenesis, migration and supports survival of malignancy
2. PDGF𝛼∕𝛽, TGF𝛽, IL-4/6, IGF-II, FGF2, ROS, PGE, VEGF, EMMPrin
3. MMPs, VEGF, PDGF, IL-1/6/8, OPN, HGF, IGF1, IGF2, EGF, MIF, FGF7,

PGE-2, FGF2, CXCL-12, VTN-N, miR-200b, miR-155, OPN, TGF𝛽

19,191,192

Myeloid cells
Mast cells 1. High mast cell density has been related to tumor aggressiveness and

reduced survival
2. SCF, NGF, C3a, IgE, C5a, IgG, IL4/5, TLR ligands, IFN-𝛾
3. VEGF, FGF2, CCL-2, Heparin, Histamine, TNF𝛼, GM-CSF, ANG-1,

tryptase, IL-3/5/6/8/10/13

193,194

Neutrophils 1. Neutrophils induce tumor angiogenesis and correlated with poorer
clinical outcomes in patients diagnosed with advanced CRC. TME is able
to polarize neutrophils into cells with an N1 or N2 phenotype. N1
phenotype has anti-tumor effects and N2 has pro tumor effects.

N1:
1. IFN𝛽, C5a, CCL3, IL-2/5/6/8/12/16
2. TNF𝛼, ROS, CTS-G, ELA1, CCL3, GM-CSF, IL-1 𝛽/9/10/12

N2:
1. IL-1/2/5/6/8/12/16, C5a, PGE2, CCL3
2. ARG, MMP8, ROS, OSM, TGF𝛽, HGF, IL-6/8/10/17, VEGF, PDGF, TNF𝛼

195,196

Lymphoid cells
CD8+ T cells 1. Part of the adaptive immune response. The density and location of these

cells within CRC samples is a positive indicator of patient survival
2. APC antigens, IL-1/2/6/12, IFN- 𝛼∕𝛽, histamine
3. IFN-𝛾, TNF𝛼, GRZ-B, PRF1

197

Natural Killer cells 1. NK cells have a limited capacity to infiltrate the CRC microenvironment.
NK and CD8+ T cells infiltration of the CRC microenvironment is
reported to correlate with favorable prognosis.

2. PRF1, TGF𝛽, kynurenines, NO, IL-2/10/12/15/18
3. Pro-inflammatory cytokines, CRZ-B, PRF1, IFN-𝛾

198,199

Other cells
Endothelial cells 1. Key role in the development and function of blood and lymph vessels.

High vascular density at the CRC invasion front is reported to be directly
associated with tumor recurrence, metastasis and patient mortality.

2. PIGF, VEGF, PDGF, HIF-1/2𝛼, IL-8, FGF, ANG1/2, TGF𝛽
3. VEGF, PDGF𝛽, HB-EGF

200

Pericytes 1. Support blood vessel formation and function. Established reciprocal
communications with endothelial cells.

2. PIGF, VEGF, PDGF, ANG1/2, HIF-1/2A, MMPs
3. VEGF, ANG1/2

201,202

analysis may not provide an informative conclusion, while
a combination of omics datasets would provide a broader
perspective. For example, increasing evidence has sug-
gested that left-sided colon cancer and right-sided colon
cancer have distinct clinical characteristics and can poten-

tially be treated as two different diseases.132 A multi-omics
study characterizing the somatic mutations, genome-wide
transcriptional (mRNA and miRNA) and epigenetic pro-
files of left-sided and right-sided CRC was carried out by
Hu and co-workers.133 By the integrated comparison of
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mutations and mRNA expression alteration it was found
that the PI3K signaling pathways were more prevalent in
the right side and frequently exhibited cross-talk with the
RAS and p53 pathways compared to the left side. These
findings provide insight into the molecular mechanisms
involved in cell-cell communication that can be targeted
when treating the two different sides of the same disease.

8 APPLICATION OF SINGLE-CELL
MULTI-OMICS FOR CRC CELL
COMMUNICATION

More recently, Yi et al utilized colon cancer cell line
(SW480) to investigate whether intratumoral Wnt het-
erogeneity could directly drive EMT heterogeneity using
scRNA-seq. Assay for Transposase-Accessible Chromatin
with high-throughput sequencing (ATAC-seq) was used
and identified a new EMT-promoting transcription fac-
tor (TF) RUNX2. Knockdown of RUNX2 inhibited migra-
tion and metastasis of cells which exhibited high Wnt
activity. Whereas, when overexpressed with RUNX2, cells
with low Wnt activity were promoted to migrate. Clini-
cal evidence shows that RUNX2 expression is positively
associated with metastasis progression and lower sur-
vival for CRC patients. It has been previously reported to
induce bone-mimetic gene expression pattern promoting
metastasis of breast and prostate cancer, and to enhance
expression of EMT-associated genes in prostate, thyroid,
and breast cancers. However, this study did not iden-
tify common metastasis-related targets, suggesting that
crosstalk between EMT-TFs in this study is distinct to
prostate, thyroid and breast cancers. Thus, it is important
to identify the TFs regulatory partners especially through a
model that presents heterogeneity such as patient-derived
explants.
It is important to note that only three studies have

compared the tumor microenvironment of endoscopic
biopsies and surgical specimens in CRC.134–136 All three
reports demonstrated a weak correlation between the
biopsy tumor microenvironment with the tumor microen-
vironment present in the total resection specimen. As fur-
ther studies are needed to focus on the clinical relevance
of singular patient-derived explants (biopsies), it would
help to map the tumor microenvironment by using multi-
ple samples throughout the tumor, in addition to sampling
before and after treatment to evaluate definitive effects of
the therapy. The previous sections in this review which
describe single-cell multi-omics approaches can poten-
tially be employed to compare multiple sections of the
tumor microenvironment and provide a comprehensive
background on the clinical relevance of patient-derived
explants. Additionally, bioinformatics tools and computa-

tional resources can be used for measuring cell-cell com-
munication (Table 4). By utilizing the state-of-the-art omic
technologies, the data gathered would provide insight
towards the prospective of using patient-derived explants
as a preclinicalmodel to recapture the endogenous cell-cell
communication networks. Importantly, this would elu-
cidate the cellular functions within the tumor microen-
vironment while considering the community context of
each cell. Unlike other preclinical models, heterogeneity is
maintained in patient-derived explant models. Therefore,
studies based on the proteinmessages passed between cells
as well as, the expressed messenger molecules and their
associated pathways, will be relevant to the specific patient
from which the biopsy was obtained. This provides insight
towards an already sustained and coordinated multicellu-
lar tissue as opposed to other models that favor simula-
tions.

9 CHALLENGES AND PERSPECTIVES

Unfortunately, the current gold standard in vitro and in
vivo preclinical approaches are all limited by their inability
to capture the full biological approximation of the native
tumor, resulting in poor mapping to clinical outcomes.
Even so, colorectal cancer-patient-derived explant models
critical physiologic parameters, present complex multicel-
lular architecture, barriers to mass transport, and extra-
cellular matrix deposition. However, before we can rou-
tinely employ colorectal cancer patient-derived explants
to model therapy response, further characterization of cel-
lular and molecular properties and methodologic frame-
work that maximizes their clinical and translational appli-
cations are required. Technological challenges also arise
as the composition of cellular models remains variable
even when they contain the same cell types, cell number,
and transcriptional states of individual cell types. There-
fore, we provided an overview of how the new single-
cell omics technologies can allow the study of cell-to-cell
communication within a colorectal cancer patient-derived
explant.

9.1 A single-cell multi-omics approach

Numerous methods have been developed to measure
different “omes” at a single-cell level, including DNA
methylation, chromatin sequencing, and proteome analy-
sis. Consequently, this enabled the growth of protocol by
integrating existing cell sequencing methods (Figure 3).
The standard workflow of single-cell investigations begins
with the isolation of single-cells from a bulk sample.
In this case the patient-derived explant, followed by the



ALMUSAWI et al 13 of 22

TABLE 4 Existing bioinformatics tools for modeling cell-cell communication

Tool Method overview Advantages Disadvantages References
SCENIC Transcription factor (TF) target-based

regulation. Combines TF regulatory
relations (GENIE3) with TF-binding
motif analysis.

Robust against dropouts, get
a TF score for individual
cells

Limited to TF-based
relations

176

SCODE TF expression dynamics (pseudo-time)
and TF regulatory relations
(GENEI3)

Relational expression using
linear regression, fast
algorithm

Dimension reduction
necessary for computing
speed, assumes all cells
on the same trajectory

177

PIDC Uses partial information
decomposition to find dependencies
in the expression patterns of genes

Compared to correlation,
more gene dependencies
are identified

Influences by data
discretization, method
developed for sc-qPCR

179,203

SoptSC Estimate interaction between two cells
based on expression of ligand,
receptor and downstream pathway
target genes. Output gives up- and
down-regulated interactions

Incorporates target genes of
pathways and
directionality

Requires curation of
ligand-receptor
interactions and
downstream pathways

174,176

scTensor Tucker decomposition with
ligand-receptor interactions as
hypergraphs. Many options for
interaction, expression and pattern
visualization.

Ligand-rector pairs across
multiple cell types – more
reflective of biology

Requires curation of
ligand-receptor
interactions and creates
average of the single-cells
to cell type level.

204

iTALK Enumerates differentially expressed
ligand and receptor values. Produces
up-and down-regulated interactions

Directionality of interaction
can be inferred

Requires curation of
ligand-receptor
interactions. Can not
reveal novel interactions.

204

F IGURE 3 Multi-omics of single-cells: methods and applications. Based on themeasurements that are of interest, a combination of single-
cell technologies are available. Left). The major types of molecules related to central biological dogma. Centre) Single-cell measurements based
on profiling the genome, epigenome, transcriptome, and proteome shown in different colors. Right) Single-cell multi-omics approaches based
on the combination of different single-cell sequencing methods to profile multiple molecule types of a single-cell simultaneously.
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isolation of multiple types of molecules from the same
cell.137,138. Next-generation sequencing has allowed for
genome-wide analysis of DNA and RNA in single-cells.139
Single-cell RNA sequencing (scRNA-seq) has emerged
as a central tool for identifying and characterizing cell
types and states, based on transcriptome profiling.140 The
first single-cell transcriptome analysis was reported in
2009, and many additional single-cell RNA sequencing
methods have been developed since, such as Quartz-
seq,141 smart-seq (switching mechanism at 5′ end of the
RNA transcript),142,143 CEL-seq (cell expression by linear
amplification and sequencing)144 andmore. However, suc-
cessful scRNA-seq of patient-derived explants poses sev-
eral challenges. First, obtaining fresh and viable tissue
is extremely time-sensitive and quick dissociation using
enzymatic digestion can cause changes in gene expres-
sion or lead to loss of cells.145 Conversely, single-nucleus
RNA-seq (snRNA-seq) profiles single nuclei rather than
single-cells, enabling immediate sample processing for
tissues that cannot be readily dissociated into a single-
cell suspension such as the brain, skeletal muscle, or
adipose and frozen samples.146 This method also mini-
mizes perturbations in gene expression associated with
dissociation.147
Communication interactions are often too complex to

predict reliably from the transcriptome alone as these
networks are also directed by the proteins they code.
Therefore, proteomic methods that measure protein abun-
dance and state can provide quantification of ligands,
receptors, downstream signaling molecules, and lineage-
specific transcription factors.148 This can be used to under-
stand the origins of cellular heterogeneity.149,150 Although
quantifying proteins at single-cell resolution is compli-
cated by the transient function of proteins, single-cell
time-of-flight mass cytometry (CyTOF) is one method
that can potentially address this.151 As posttranslational
modifications (PTM) occur, CyTOF can be used to mea-
sure multiple signaling nodes via PTM-specific antibody
staining in a similar way to flow cytometry (FC) except
metal isotopes are employed instead of fluorophores.152–154
Potentially this can be used to help identify crosstalk
signaling between different cells by capturing ‘secrete-
able’ proteins. Additionally, strategies such as Disaggrega-
tion for Intracellular Signaling in Single Epithelial Cells
from Tissue (DISSECT) have been developed to preserve
native signaling for CyTOF applications.155 Experiments
that include these approaches have revealed novel signal-
ing relationships involved in cancer progression and drug
resistance.156
Recent developments such as histoCAT, an open-source

computational toolbox, combines single-cell mass cytom-
etry, image analysis and novel algorithms for cell-cell

interaction network analysis. This can be used to define
complex cell types and help elucidate patterns of cellu-
lar interactions within heterogeneous tissues.157 To inter-
rogate solid tumor biology, it is necessary to scale andmea-
sure the expression of proteins. Recently, multiplexed pro-
teome dynamics profiling (mPDP) was developed.158 This
strategy combines quantitative liquid chromatography–
tandem mass spectrometry (LC-MS/MS) with dynamic
stable isotope labelling by amino acids in cell culture
(SILAC)159,160 and enable the simultaneous analysis of
changes in protein degradation and synthesis in a sin-
gle experiment. LC-MS/MS and SILAC can be used for
secretome analysis and is of increasing interest as a
potential source for biomarker discoveries and therapeutic
targets.161 mPDP was previously employed to investigate
interactions in vitro between epithelia and tumor and track
secreted protein changes between the different cell types in
the tumor microenvironment with their associated biolog-
ical function.162
As the patient-derived explant model provides the most

patient-relevant system to study cell–cell communica-
tion, secretome analysis gives insight on the interactions
responsible for tumor growth and progression by defin-
ing the secreted proteins which were produced by the cells
within the tumor microenvironment. However, the secre-
tome is challenging to analyze due to the difficulties with
sample collection and preparation. Various studies have
tried to optimize their approaches to recover secreted pro-
teins by using serum-freemedia or attempted to determine
the best protein precipitation and conjugation methods.163
Additionally, antibody arrays are often used as a com-
plementary method to further validate secretory protein
analysis.164

9.2 Combining the transcriptome and
proteome

An ideal primary approach to construct cell-cell com-
munication networks is to focus on integrating the
transcriptome and proteome. From an analytical perspec-
tive, the addition of multiple layers can reconstruct the
entire outlook and provide insight to the intrinsic hetero-
geneity of single-cells. Essentially, the central outlook is
that cellular biology is highly heterogonous at all molecu-
lar levels. Most recently, two methods named CITE-seq165
and REAP-seq166 have been reported. Both methods fol-
low a similar approach in which oligonucleotide-labelled
antibodies are used to integrate protein and transcriptome
measurements producing a single-cell readout. How-
ever, because the measurements of these two different
molecules produced from the same gene may not directly
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correlate with one another, there is a need for multi-modal
analysis.167 This has led to the development of integrative
computational frameworks such as CiteFuse.168 CiteFuse
represents the first method to integrate both modalities
of single-cells in CITE-seq data systematically. Using both
simulations and an experimental CITE-seq dataset gener-
ated from PBMCs.169 CiteFuse facilitated a more accurate
identification of ligand-receptor interactions compared to
the expression of RNA alone (conventional approach). It
was suggested that ligand-receptor interactions identified
through the conventional approach include false interac-
tions due to highRNAexpression thatwas not reciprocated
in cell-surface protein expression. Importantly, CiteFuse
identified a fraction of interactions in each cluster that
was not identified in the conventional approach. With
the accumulating volume of multi-omics data generated
from CITE-seq, CiteFuse is now currently freely available
and implements a range of other tools for modality
integration.168 It is important to note that CITE-seq and
REAP-seq are currently limited to tagging cell-surface
markers and can only measure extracellular proteins and
protein modifications, unlike CyTOF, which can addition-
ally quantify intracellular targets.170 However, these two
single-cell sequencing techniques have provided a tech-
nique that increases measurable parameters compared to
CyTOF as up to 50 metal isotopes are routinely used.171,170
This provides deeper profiling to phosphoprotein net-
works which would be limited by employing CyTOF
alone. Although sequencing-based approaches suffer from
technical variance, we emphasize that the combination of
different single-cell biotechnologies will optimize current
understanding of cell-cell communication.

9.3 Integrative methods for single-cell
multi-omics technologies

9.3.1 Computational resources: databases of
interacting proteins

Recently developed CellPhoneDB, a public repository of
ligands, receptors and their interactions enables a com-
prehensive, systematic analysis of cell-cell communica-
tion molecules.172 This framework uses single-cell tran-
scriptomic data to consider the expression levels of lig-
ands and receptors within each cell type and uses empir-
ical shuffling to calculate which ligand-receptor pairs dis-
play cell-type specificity. Unlike most other databases,
CellPhoneDB considers the subunit architecture of both
ligands and receptors, reflecting heteromeric complexes
accurately. An updated version of this resource recently
incorporates additional functionalities to enable users
to introduce new interacting molecules while reduc-

ing the time and resources needed to interrogate large
data set.173 This provides a great advantage to annotate
complex ligand-receptor relationships using scRNA-seq
data. Future studies on CRC that incorporate scRNA-
seq with CyTOF and CellPhoneDB can potentially reveal
novel relationships. Other optimization methods to deter-
mine cell-cell relationships from single-cell data analysis
include SoptSC and online tools part of the FANTOM5
project.174,175

9.3.2 Modeling and assessing predicted
interaction networks

Although single-cell multi-omics approaches would allow
a holistic understanding of cellular functions by expres-
sion, function and identity, current research has not yet
achieved this level of knowledge. Notably, most studies
have focused on scRNA-seq to characterize communica-
tion networks by ligand-receptor interactions across all
cell types in the tumor microenvironment. Recently, Chen
and Mar applied single-cell network modeling methods
to single-cell datasets in order to evaluate their capacity
to identify known interaction networks these included,
single-cell regulatory network inference and clustering
(SCENIC),176 SCODE,177 and partial information decom-
position and context (PIDC).178,179 Based on their compar-
isons, they reported that these network methods are not
able to predict network structures from single-cell expres-
sion data accurately. Effectively SCENIC is based on co-
expression network combined with bioinformatics knowl-
edge, SCODE uses ordinary differential equations (ODEs),
and PIDC is a mutual information-based method. Essen-
tially they found that single-cell network inference meth-
ods did not have a high prediction accuracy and not sur-
prisingly, the networks constructed by thesemethods were
distinct from each other. This presents a challenge when
predicting cell-cell communication networks, based on the
different models available, and results will vary. Although
it is not the purpose of the review to go into details of these
modellingmethods, further investigation toward their pre-
dictability is necessary.Other bioinformatics tools are sum-
marized in Table 4.

9.3.3 Validating causal relationships

Finally, combining single-cell multi-omics data with
perturbation experiments such as RNA interference
(RNAi) 180, or CRISPR-Cas9 148, provides an efficient
approach in verifying causal regulatory programs.81 Posi-
tive developments in high-throughput gene technologies
such as Perturb-seq combine CRISPR/Cas9-mediated
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gene perturbation with single-cell sequencing 181 and
have been reported to provide the same amount of causal
information as RNAi or CRISPR/Cas9 mediated gene acti-
vation/deletions while also being less invasive. As single-
cell technologies continue to develop, the parameters
that can be measured per cell will inevitably increase.182
Simultaneous measurements of multiple modalities from
the same cell can help predict drug sensitivities in tumor
cells, before any in vivo and/or in vitro drug testing.183

10 CONCLUSIONS

In summary, our view is that patient-derived explant mod-
els will be much less variable compared to other in vitro
and in vivo models when combined with CITE-seq or
scRNA-seq, CyTOF, and CellPhoneDB towards study cell-
cell communication networks and compare differential
responses to therapies in colorectal patients. These tech-
niques can be used to compare different regions of the
same patient-derived explant as well as compare healthy to
malignant tissue in identifying targeted receptors and their
activated signaling pathway in response to specific ligands.
This, together, can also significantly advance the clinical
management of cancer as a powerful alternative for ani-
mal experiments to replacing and/or reducing animal use.
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