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1  |  INTRODUC TION

Genomic selection has been widely deployed to improve the rate of 
genetic gain across a number of species (Cleveland & Hickey, 2013; 
Crossa et al., 2017; Hayes et al., 2009; Lin et al., 2014). Genomic 

selection is a genetic improvement strategy that utilizes genome-
wide molecular markers to capture all sources of genetic variation 
allowing for selection of individuals based on their total genetic 
value. This approach relies on having a sufficient number of markers 
located across the genome that are in linkage disequilibrium with 

Received: 14 June 2021  | Revised: 9 September 2021  | Accepted: 10 September 2021

DOI: 10.1111/eva.13304  

S P E C I A L  I S S U E  O R I G I N A L  A R T I C L E

Commercial implementation of genomic selection in Tasmanian 
Atlantic salmon: Scheme evolution and validation

Klara L. Verbyla1  |   Peter D. Kube2 |   Bradley S. Evans3

This is an open access article under the terms of the Creat​ive Commo​ns Attri​bution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2021 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd.

1CSIRO, Black Mountain, Canberra, ACT, 
Australia
2CSIRO, Hobart, Tas., Australia
3Tassal Operations, Hobart, Tas., Australia

Correspondence
Klara L. Verbyla, Center for Aquaculture 
Technology, San Diego, CA, USA.
Email: kverbyla@aquatechcenter.com

Present address
Klara L. Verbyla, Center for Aquaculture 
Technology, San Diego, CA, USA

Funding information
CSIRO; SALTAS

Abstract
Genomic information was included for the first time in the prediction of breeding 
values for Atlantic salmon within the Australian Salmon Enterprises of Tasmania Pty 
Ltd selective breeding program in 2016. The process to realize genomic selection in 
the breeding program begun in 2014 with the scheme finalized and fully implemented 
for the first time in 2018. The high potential of within family selection to accelerate 
genetic gain, something not possible using the traditional pedigree-based approach, 
provided the impetus for implementation. Efficient and effective genotyping plat-
forms are essential for genomic selection. Genotype data from high density arrays re-
vealed extensive persistence of linkage disequilibrium in the Tasmania Atlantic salmon 
population, resulting in high accuracies of both imputation and genomic breeding 
values when using imputed data. Consequently, a low-density novel genotype-by-
sequence assay was designed and incorporated into the scheme. Through the use of 
a static high- and dynamic low-density genotyping platforms, an optimized genotyp-
ing scheme was devised and implemented such that all individuals in every year class 
are genotyped efficiently while maximizing the genetic gains and minimizing costs. 
The increase in the rates of genetic gain attributed to the implementation of genomic 
selection is significant across both the breeding programs primary and secondary 
traits. Substantial improvement in the ability to select parents prior to progeny test-
ing is observed across multiple years. The resultant economic impacts for the industry 
are considerable based on the increases in genetic gain for traits achieved within the 
breeding program and the use of genomic selection for commercial production.
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all quantitative trait loci or genes linked to the traits of interest. 
Genomic selection is especially useful for complex and quantitative 
traits controlled by many genes with small or moderate effects, hard 
to measure traits and complex breeding strategies where pheno-
types are only measured on subsets of the population.

Recently, there have been advances in the development and 
application of genomic selection for genetic improvement in aqua-
culture species (Boudry et al., 2021; Houston et al., 2020; Lhorente 
et al., 2019; Norris, 2017; Regan et al., 2021; Symonds et al., 2019; 
Zenger et al., 2019), including Atlantic salmon (Salmo salar) (Lhorente 
et al., 2019; Regan et al., 2021). The use of genomic selection in 
aquaculture breeding programs has the potential to drive high rates 
of genetic gain, while also controlling inbreeding and diversity, due 
to the high fecundity of species and potentially low effective popula-
tion sizes within breeding programs. Genomic selection's reliance on 
genome-wide markers has meant there has been focus on the devel-
opment of genomic resources across a range of aquaculture species 
(Abdelrahaman et al., 2017; Houston et al., 2014; Yanez et al., 2016).

The Australian salmon industry began in 1986 with a first har-
vest of 50 tonnes and has grown to an annual production of ap-
proximately 70,000 tonnes in 2020. All Australian Atlantic salmon 
farming occurs in Tasmania, where waters are among the warmest in 
the world for Atlantic salmon culture. The warm temperatures allow 
Tasmanian Atlantic salmon to grow to a harvestable size signifi-
cantly faster than in other farmed areas. However, faster growth can 
have problematic consequences. These include early sexual mat-
uration, which has adverse effects on carcass quality and product 
availability, and temperature-related susceptibility to disease, nota-
bly amoebic gill disease (AGD), that can result in significant stock 
losses. Consequently, harvest weight, AGD disease resistance, and 
maturation incidence are all recognized as important traits for the 
Tasmanian salmon industry.

Since inception, the industry has been quick to recognize that 
neither the environmental conditions nor the stock that is farmed are 
identical to those in other parts of the world. Consequently, systems 
and processes continue to be optimized for a Tasmanian context. 
Early research examined topics ranging from smoltification, lighting, 
maturation, ploidy levels, sex ratios, and smolt input. The develop-
ment of the Tasmanian breeding program mirrors this progression, 
with the development and incorporation of innovations in response 
to both global and uniquely Tasmanian issues. The implementation 
of the breeding program and the desire to push gains using genomic 
selection represent a progression of that innovation.

This paper details the transition of the Tasmanian Atlantic 
salmon selective breeding program from conventional family-based 
breeding to genomic selection. The aim is to provide a comprehen-
sive overview of the steps taken to achieve commercial implementa-
tion with sufficient detail to enable the information to be presented 
in a single reference. This is the first time all aspects of such a pro-
cess have been specifically outlined and addressed for an aquacul-
ture species in a commercial breeding program. First, the breeding 
program is overviewed, detailing the population structure, breed-
ing objectives, and the program logistics. Second, the process of 

developing genotyping tools and a breeding strategy is described, 
culminating in the full commercial implementation of genomic se-
lection. Third, the validation and rates of genetic gain are reported. 
Finally, the challenges, results, and learnings from the implementa-
tion and use of genomic selection in the Tasmanian salmon industry 
are discussed.

2  |  SELEC TIVE BREEDING PROGR AM 
OVERVIE W

The Tasmanian Atlantic salmon breeding program commenced in 
2004 and, since then, has been a family-based program producing a 
cohort of pedigreed families annually. It is now an advanced genera-
tion breeding program with up to 6 generations of known pedigree 
in some lineages. It is owned and operated by Salmon Enterprises 
of Tasmania Pty Ltd (SALTAS). Founders were deliberately sourced 
for diversity from the Tasmanian Atlantic salmon landrace, which 
originates from wild stocks imported from River Philip, Nova Scotia, 
Canada. Stock was imported as ova to Gaden, New South Wales, 
in 1963 to 1965 and then moved to Tasmania in 1984–1986 when 
salmon farming commenced (Ward et al., 1994).

The breeding objective has identified primary traits, secondary 
traits and monitoring traits (Table 1), and the breeding goal has been 
to maximize gains equally in each of the primary traits without caus-
ing adverse change in secondary traits. One primary trait is harvest 
weight, measured as a gutted weight at approximately 28 months 
from spawning (or after 14 to 15 months marine grow-out), and this 
is a typical trait for all salmon breeding programs. The other primary 
trait is resistance to amoebic gill disease (AGD), and the strong em-
phasis and selection for this trait are probably unique to this breeding 
program. Progress toward the breeding goal for AGD is expressed as 
an increase in the treatment interval (freshwater baths) during the 
marine grow-out. Earlier work on AGD resistance recognized two 
distinct traits: one, termed innate AGD resistance, is measured at 
first infection on naïve fish and has a low heritability; and the other, 
termed acquired AGD resistance, is measured at all subsequent in-
fections and has a moderate heritability (Kube et al., 2012). Acquired 
AGD resistance has much higher economic value than innate AGD 
resistance, and acquired AGD resistance is the primary trait in the 
breeding objective. Table 1 shows the accumulated and average an-
nual gains for each trait, from inception to the 2015 year class, which 
is the period of traditional family-based breeding prior to the com-
mencement of genomic selection.

The broodstock population is maintained in a biosecure fresh-
water hatchery at Wayatinah in central Tasmania and, annually, 
1.25-year-old smolt are transferred to two marine sites in south-
eastern Tasmania for grow-out and assessment. Marine tests occur 
in purpose-built pens that contain approximately 2500 individuals at 
stocking. Repeated measures of AGD resistance are taken (see Kube 
et al., 2012 for methods) together with marine maturation at age 
2 years and finally harvest weight and carcass quality at 2.5 years. 
A further 3000 individuals are kept in freshwater as broodstock 
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candidates, with total weight and maturation measurements being 
recorded for these animals. Marine animals do not return to the 
hatchery due to the biosecurity requirements and, therefore, 
broodstock have no marine phenotypes. Selections for harvest 
weight and marine maturation benefit through moderately high ge-
netic correlations between freshwater and marine measurements 
(rg = 0.63 ± 0.03 and 0.76 ± 0.04, respectively); however, there are 
no significant genetic correlations between AGD resistance and 
freshwater traits. Consequently, AGD selections have been made 
via pedigree relationships alone.

Approximately 200 families have been produced every year 
using a partial factorial mating design where each male and female 
were crossed twice. The generation interval is notionally three 
years but the age at which broodstock were used has been variable. 
Males are used between the ages of 2–6  years and females from 
3 to 6  years. The population is managed and analyzed as a single 
population by using genetic links between year classes. Genetic 
links occur using male and female individuals as repeat spawners 
in multiple year classes (about 15% of broodstock in any year class) 
together with the higher order genetic relationships (e.g., siblings 
or cousins used in subsequent years as broodstock) that naturally 
occur through using overlapping generations. Repeat spawners are 
used as both live animals and as cryopreserved sperm. All brood-
stock, whether they be designated genetic links or individuals from 
older year classes, are selected on genetic merit. Genetic evaluations 
are done using multivariate individual animal models (Section 3.5) in 
ASReml (Gilmour et al., 2015) to calculate estimated breeding values 
(EBV). These models use the BLUP methodology and, consequently, 
routinely calculate the variance components, which were used for 
the heritability estimates (Table 1), and they provide a straightfor-
ward means to calculate the genetic gains (Isik et al., 2017), which 
are used throughout this paper.

This breeding program has used genotyping to determine pedi-
gree relationships since inception. Families are fertilized separately 
and pooled at the eyed-egg stage when 250 eyed-eggs are removed 
from each family to form a pooled group of approximately 50,000 
individuals, which are then communally reared. At 12 months, ap-
proximately 8000 presmolt are randomly selected from this group 

for use as the freshwater broodstock and the marine test individuals. 
All 8000 individuals are, tagged using passive integrated transpon-
der (PIT) tags, biopsied by removing a piece of caudal fin, and then 
genotyped for pedigree determination. Broodstock are re-biopsied 
at spawning and the genotypes from these parents, plus the geno-
types from the progeny, are used for pedigree determination.

The typical cycle of operations is illustrated in Figure 1. The fig-
ure shows the cycle for a single year class but, in practice, three year 
classes are in operation at any point in time. Therefore, activities 
shown on Figure 1 form an annual work plan that involves family 
spawning, tagging, marine and freshwater measurements, genetic 
evaluation, and selection, and with some of those annual activi-
ties occurring on different year classes. All operations are time-
dependent, timelines are often short, and timing is inflexible since 
it is dictated by the biological cycle of the animal. These consider-
ations were always important with a conventional selection program 
and become even more critical when considering the incorporation 
of new innovations and technologies, such as genomic selection.

3  |  GENOMIC SELEC TION STR ATEGY 
E VOLUTION

Genomic selection was first proposed as an opportunity within the 
SALTAS selective breeding program in 2010 where the business case 
and value proposition for its use to improve the rate of gains for AGD 
resistance was examined. Acceleration of studies scoping the poten-
tial of genomic selection occurred in 2014 with the reception of the 
first set of high-dimensional genomics data. From that point on, the 
evolution of the genomic selection strategy and genotyping scheme 
involved multiple stages and these are shown in Figure 2. This in-
volved building a robust training population (marine test individuals) 
and undertaking a number of key activities, described in the follow-
ing sections, before full commercial implementation was achieved in 
2018. Key aspects of the evolution are briefly described in the follow-
ing sections with a focus on the development of the cost-effective 
and customized genotyping scheme. The validation results for the 
implementation of genomic selection are presented in Section 4.

TA B L E  1  Breeding objectives, heritabilities (h2), and genetic gains for the Tasmanian Atlantic salmon breeding program

Trait type Trait h2 (se)
Selection 
pressure

Cumulative gains 
to 2015 YC

Mean annual 
gains Model

Primary Acquired AGD resistance 0.36 (0.02) 38% 29% 3.7% AGD

Primary Harvest weight 0.44 (0.02) 25% 29% 3.6% Weight

Secondary Innate AGD resistance 0.16 (0.01) 13% 0% 0% AGD

Secondary Marine maturation 0.20 (0.02) 13% 2% 0.2% Maturation

Secondary Flesh color 0.65 (0.04) 13% 7% 0.9% Quality

Monitor Flesh fat content 0.28 (0.03) 0% −5% −0.6% Quality

Note: Genetic gains are expressed as improvement from founder stocks (Tasmanian landrace) and are calculated routinely via the EBV/GEBV mixed 
models. Gains are expressed such that a positive value represents a favorable change and a negative value an unfavorable change. Heritabilities (h2) 
were calculated as part of the routine EBV calculations and used the models described in Section 3.5.
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3.1  |  220K array analysis

In order to assess the feasibility of genomic selection for the 
Tasmanian breeding population and the genotyping tools require-
ments for the successful implementation, high-density genotype 
data were sourced using a custom 220K SNP Affymetrix array 

developed by AquaGen and CIGENE (Barson  et  al., 2015). A total 
of 782 individuals across eleven year classes (2001–2011) were 
genotyped on this array, which was accessed through formal col-
laborations with CIGENE and Aquagen. After quality control (minor 
allele frequency (MAF) >0.02, SNP call rate >90%, Mendelian error 
control), a total of 98,948 assembly-mapped polymorphic SNP 

F I G U R E  1  The traditional salmon breeding cycle

F I G U R E  2  Genomic selection scheme stages of development
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and 750 individuals remained. A reduced set of informative mark-
ers was expected due to difference in continent of origin between 
the European salmon that were used to generate the array and the 
Tasmanian salmon of North American origin. Of the informative 
markers, 27,272 SNPs were found to be in perfect LD with another 
SNP in the set. These markers, on average, were within 53,809 bp 
of each other. This cleaned marker data, thinned for LD, was used 
to demonstrate the potential of within family selection through the 
utilization of genomic information into the breeding program (results 
not shown).

The characteristics of the markers were analyzed to determine 
what number were potentially needed for genomics selection. 
Through the assessment of a range of metrics including MAF dis-
tribution, LD statistics, and location, it was determined that a 50K 
array would be sufficient to create a useful primary genotyping 
tool. Initial discussions centered around the use of an array de-
veloped by another group breeding salmon from a geographically 
close Canadian region to the origin of Tasmanian salmon population. 
However, inspection of the selected markers revealed a much lower 
than optimal number of informative markers due to high numbers of 
monomorphic markers or markers in high LD. This led to the decision 
to develop a custom array.

3.2  |  Preliminary GWAS

Concurrently to exploring options for 50K genotyping tools, genome-
wide association studies (GWAS) were run using the cleaned 220K 
data (99K) to check for the presence of large effect QTL that could 
be used via marker assisted selection (MAS). None were found, in-
dicating that MAS was not a viable approach for the selected traits 
within the breeding program. This complemented existing GWAS 
results completed previously using data from an Illumina iSelect SNP 
Chip (5568  markers) where a total of 1637 individuals from three 
year classes had been genotyped. After quality control filtering, a 
total of 2240 SNPs and 1574 individuals were used to undertake 
GWAS on the key traits with the breeding program (listed in Table 1). 
These traits were also analyzed using the 220K data, although there 
were limited phenotypes available for the set.

Markers from multiple significant regions were identified for each 
trait including a small number of regions that were found for multiple 
traits, which may indicate pleiotropic QTL (results not shown). These 
markers were consolidated to form a list of 270 potentially useful 
SNP for inclusion on any new array. This list included 25  markers 
from the Illumina platform that were not on the 220K array.

3.3  |  Custom 50K array design

The process to design and manufacture a custom 50K array was un-
dertaken in 2015 through a partnership with Center for Aquaculture 
Technologies (CAT). The design process commenced with the aim to 
tag each segregating chromosome segment with at least one SNP 

to ensure even genome coverage. Consequently, the design process 
began by selecting all markers from the complete set (98K) not in 
high LD (r2 < 0.2) with any other sets of markers to retain all possi-
ble distinct chromosome segments and the selected trait-associated 
markers. All remaining markers then were placed in 100 kbp bins, 
scaffolded using the previously selected markers. The location of 
these previously selected markers, MAF and LD, was all then used 
to optimize the final set of markers. Markers with higher MAF (mini-
mum MAF >0.02) and lower LD values were selected to optimize the 
final MAF distribution while ensuring that all chromosome segments 
were tagged with a marker.

The final set of markers contained 53,102 SNPs with a main set 
of 49,311 SNPs and supplementary set of 3791 SNPs. The markers 
in the main set had an average distance between markers of 45 kbp 
and a mean MAF of 0.19. The main list formed the preliminary frame-
work for the final design. This allowed high priority markers to be 
duplicated and left space on the array for the 25 de novo markers 
from the Illumina platform, four sex markers and 96 pedigree mark-
ers (sourced from CAT). A comparison of the final list with the alter-
native 50K array found only 28,302 markers in common, confirming 
that that array would have delivered suboptimal data and results. 
The final in silico design of the custom Affymetrix array was car-
ried out by CAT and resulted in 50,687 unique markers on a custom 
Affymetrix array.

3.4  |  Imputation analysis and low-density assay 
development

The first set of 50K data, from 2889 individuals, was received in 
2015. After quality control (MAF >0.02, SNP and individual call 
rates >90%), 45,840 SNPs were retained. Analysis of the LD in this 
dataset, supported by results from 220K data, revealed long ex-
tending linkage disequilibrium (LD). The trend showed moderate LD 
(r2 = 0.2) extending to 500 kbp, indicating there was high potential 
for using of a low-density assay as part of the genotype scheme. 
The use of low-density assays as part of genomic selection strate-
gies has been shown to contribute to a more cost-effective approach 
(Houston et al., 2020). To assess the viability of a low-density SNP 
panel, two sets of analyses were carried out. The first was an assess-
ment of imputation accuracy by masking (setting to missing) sets of 
markers and then imputing these missing data using the marker data 
that remained. The imputed data were then compared to the original 
data and the accuracy of imputation assessed based on the number 
of correctly imputed genotypes. The second analysis looked at the 
impact of using the imputed data to calculate genomic breeding val-
ues (GEBV). The results from these analyses compared, via correla-
tion, GEBV calculated using the original genotype data with GEBV 
calculated using imputed genotype data.

To complete both analyses, the 50K SNP dataset containing 
45,840 SNPs and 2889 individuals from the 2012 and 2013  year 
classes was used. These data were combined with the correspond-
ing set of markers in the 220K data (750 individuals). The imputation 
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and GEBV accuracies were then assessed when predicting the 
2013  year class (1703 individuals) using the remaining data (1936 
individuals) from the 2001–2012 year classes. Two different sizes of 
low-density assays were considered for implementation with SNP 
subsets of either 1000 (1K) or 3000 (3K) SNPs retained with all other 
markers masked. The choice of these densities reflected the geno-
typing options made available by CAT, using a targeted genotype-
by-sequence (GBS) platform. An optimal set of markers for each 
density were selected to optimize genomic coverage, trait associ-
ation, LD and MAF. Then, using the complete pedigree containing 
individuals from the 2001–2013 year classes and FImpute version 
2.2 (Sargolzaei et al., 2014), the masked markers were imputed using 
family and population imputation. The proportion of correctly im-
puted genotypes was used to assess the accuracy of the imputation. 
High imputation accuracies were found with 88.4% and 95.8% of 
masked markers imputed correctly for the 1K and 3K SNP sets, re-
spectively (Table 2).

The effect of imputation on GEBV accuracy was tested using two 
traits: harvest weight (no. of phenotypes = 13,157) and marine matu-
ration (n = 33,754). Two models were fitted using ASReml. In the first, 
GEBV for harvest weight were estimated using a univariate model 
with cohort fitted as a fixed effect and, family and animal as random 
effects. In the second, GEBV for marine maturation were estimated 
using a multivariate model including maturation and weight measured 
in the marine and freshwater environment at 23  months (4 traits). 
This model included a mean trait effect and trait by cohort effects as 
fixed effects. The genetic effects were modeled as random by fitting 
trait by family (representing common environment plus nonadditive 
genetic effects) and trait by animal effects (representing additive ge-
netic effects). Animal effects in both models were fitted using the H 
matrix, the relationship matrix based on both pedigree and genomic 
information (Aguilar et al., 2010), calculated in R (R Core Team, 2021) 
using standalone code. The resultant GEBV using imputed genotypes 
were correlated with GEBV calculated from the original called gen-
otype data using BLUPF90 (Misztal et al., 2002). The accuracies ob-
tained were extremely high and consistent for both traits (Table 2).

The accuracies obtained for both imputation and GEBV analy-
ses confirmed that the use of a low-density panel would be highly 

effective. As expected, using more markers on the lower density 
assay produced higher accuracies due to the improved genome-wide 
coverage and increased tagging of the segregating chromosome seg-
ments. Given the known potential of GBS assays to produce higher 
amounts of missing data than SNP arrays and the lower cost associ-
ated with such assays, a custom 3K GBS assay was assessed as viable 
and the best approach.

The design of the initial GBS assay included 3073 markers se-
lected to maximize imputation accuracy, ensure genome coverage 
and an appropriate MAF distribution. An additional 100  markers 
including sex and pedigree markers were added to this marker set. 
This marker list then went through in silico design. Any markers that 
failed were then iteratively replaced until sufficient genome cover-
age and successful imputation were achieved. At that point, the de-
sign was finalized with 3151 markers.

3.5  |  GEBV and EBV production

Standard breeding value production for the breeding program has 
always included four multitrait linear mixed models. These models 
remain the basis for the program and are now run using the Wombat 
software package (Meyer, 2007). All have the general form:

where y is the vector of responses comprising multiple traits. The 
fixed X� and random Znun effects reflect the nongenetic effects (such 
as cohort or maturation status), while e is a vector of residuals. It is 
assumed that un ∼ N(0, Gn) and e ∼ N(0,R) and that they are uncor-
related where Gn and R are the matrices of nongenetic and residual 
covariances across traits.

For the production of EBV utilizing only pedigree information, the 
genetic effects Zgug, are assumed to be ug ∼ N(0, Gp ⊗ A), where Gp 
is the matrix of genetic covariances across traits and A is the numera-
tor relationship matrix. GEBV are produced when ug ∼ N(0, Gp ⊗ H) , 
where H is the augmented genomic relationship matrix containing 
information from both the genomic relationship matrix (G) and the 
numerator relationship matrix (A) (Legarra et al., 2014). The H matrix 
was formed using the available genomic information for all individu-
als with quality checked genotypes available. For all GEBV runs after 
2018, this was 45,997 markers both imputed and real. The genomic 
relationship matrix was scaled to ensure it could be inverted and a 
factor used to weight the proportion of polygenic (A) and genomic 
(G) information coming from the respective matrices (Christensen, 
2012).

Acquired AGD resistance EBV or GEBV are calculated using the 
method from Schneeberger et al. (1992) using the breeding values 
for the AGD scores (EBV or GEBV) from the AGD model. All breed-
ing values are scaled to be in units of genetic standard deviation. 
The index is then calculated using the selection pressures defined 
in Table 1.

y = X� + Znun + Zgug + e

TA B L E  2  Imputation and “imputed” GEBV accuracies for 
genotyped individuals from the 2013 YC

No. of SNPs
Imputation 
accuracy

“Imputed” GEBV accuracya

Harvest 
weight

Marine 
maturation

1000 0.8841 0.9778 0.9701

3000 0.9579 0.9960 0.9951

Note: Imputation accuracy is calculated as the proportion of correctly 
imputed genotypes.
aSpearman's rank correlation coefficient was used to calculate the 
accuracy between GEBV from imputed genotypes (“imputed” GEBV) 
and GEBV using the original data.



    |  637VERBYLA et al.

3.6  |  Final scheme

With the finalization of the cost-effective genotyping scheme, full 
commercial implementation of genomic selection was achieved 
in 2018. The final genomic selection breeding cycle is shown in 
Figure 3. The key aspect of the implementation, evident when com-
paring Figures 1 and 3, is that very few operational aspects changed. 
The individuals previously biopsied for pedigree assignment are now 
genotyped on a low-density array from which pedigree is estab-
lished and genotype imputation occurs. The new component to the 
cycle is the inclusion of the genomics data. Underpinning this new 
aspect is the genomics and analytics platform that incorporates all 
the steps from processing of the genomic data (quality control, pedi-
gree assignment, imputation and data integration) through to GEBV 
production through multivariate single-step GBLUP. The data work-
flow is displayed in Figure 4.

Also supporting the efficient use of genomic data was the cus-
tomized genotyping scheme. Designed specifically to be both cost-
effective and deliver optimal gains, the final scheme specified that 
all individuals in each new year class, totaling more than 8000 in 
the final scheme, are genotyped on the 3K GBS assay, while all par-
ents, approximately 200 individuals, are genotyped on the 50K SNP 
array. A feature of the final scheme is that every marine tested and 
measured animal in every year class forms part of the training set, 
thereby providing strong links between genotypes and phenotypes 
and avoiding the need to define a training set as a subset of mea-
sured animals.

A key benefit of GBS technology is the ability to update the 
assay. The first version of the assay delivered useable data on 

2372 markers. As a result, in consultation with CAT, a second ver-
sion of the assay was developed with 820 new markers added to the 
informative markers from the first version. This is now delivering on 
average approximately 2500 consistently useable markers based on 
seven runs of the assay. The GBS data are imputed up to the stan-
dard set of 45,997 markers for consolidation with all other available 
SNP data for the purpose of GEBV production.

4  |  VALIDATION

To assess the success of the commercial implementation of genomic 
selection, the improvement in prediction/selection accuracy and 
the rate of improvement in genetic gain were assessed. The poten-
tial improvement in the rate of genetic gain was evaluated using 
the data available in 2019 by comparing the rates of gain using the 
GEBV to what would have been obtained using EBV. The increase 
in selection/prediction accuracy was examined by comparing the 
breeding values for broodstock at the time of spawning and after 
progeny information was available using the same models. These 
comparisons across multiple spawnings allows for a direct robust 
assessment of whether the use of genomic information improved 
the breeding program's ability to more accurately rank broodstock 
individuals as parents. This method provided a means to utilize the 
data from higher order relationships in the validation (such as aunt/
uncle to niece nephew), and such relationships are numerous in this 
population due to the large family sizes. It differs from the classic 
approach of parent–progeny relationships, which uses first order 
relationships only.

F I G U R E  3  The genomic selection salmon breeding cycle. Blue text indicates the new components of the original breeding cycle and 
the cyan boxes contain the essential components developed to enable the commercial implementation of genomic selection. SNP, single 
nucleotide polymorphism; GBS, genotype-by-sequence
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4.1  |  Validation method and data

The length of the salmon breeding cycle means that validation 
information (e.g., progeny records) are not available until 2 years 
after spawning. The EBV and GEBV for the parents of three year 
classes were compared to the updated breeding values once 
progeny information was available two years later (e.g., breeding 
values for the 2016  year class parents after the 2016 and 2018 
production runs). Three comparisons were made, one retrospec-
tively using the parents of the 2015 year class individuals, and two 
more using parents of the 2016 and 2017 year class individuals. 
The updated breeding values (EBV or GEBV) from the run two 
years after spawning with the lowest standard errors were used as 
the closest estimate of the true breeding value. In most instances, 
this was the GEBV, but in all instances, the GEBV and EBV were 
more than 98% correlated. The ability of the index to accurately 
rank individuals was assessed in a similar manner to the individual 
breeding values. The index was calculated using the EBV or GEBV 
at the time of parent selection and then again using the updated 
breeding values. These were then compared to assess the accu-
racy of the index (GEBV or EBV based) to correctly rank the indi-
viduals for selection.

The phenotypic data used in the validation analyses are summa-
rized in Table 3. More genotypic and phenotypic data were added 
each year. The 2019 GEBV run, which had the most data, included 
at least one phenotype from 96,171 individuals with 22,469 of these 
individuals genotyped. This included 31,573 (8574  genotyped) 
broodstock individuals and 60,661 (12,864  genotyped) marine-
environment tested individuals. Phenotypes from individuals (gen-
otyped and nongenotyped) from all 554 families were included in 
the phenotypic dataset. The GEBV and EBV were calculated during 
the standard GEBV run process (Section 3.5) except for the 2015 re-
sults where the GEBV were calculated after the 2015 spawning was 
concluded. This occurred when the genotypic data became available 
postspawning with GEBV produced using only the phenotypic data 
that would have been available at prespawning to ensure equiva-
lency to the processes that produced all the other GEBV data.

5  |  VALIDATION RESULTS

The results for the analyses examining the increase in selection/pre-
diction accuracy are found in Figure 5 and Table 4. Increases in pre-
diction accuracy were found for all traits, as well as the index, across 

F I G U R E  4  Genomic Selection Data Workflow. Basic Quality Control is the removal of any markers that failed quality control (MAF < 0.02 
and typically less than 10% missing) but no individuals are removed to enable the maximum number of individuals to have parents assigned. 
Full Quality Control is the removal of both markers and individuals that failed quality control (MAF < 0.02 and typically less than 10% 
missing for both individuals and markers)
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the three sets of data compared. The highest increases in accuracy 
were for the index where the increase in accuracy was more than 
30% when using GEBV. This included the retrospective 2015 year 
class analyses where EBV were used to select parents, indicating the 
result was not linked to the individuals selected or method used for 
selection. As both the phenotypic and genomic data increased, there 

has been an increase in prediction accuracy for the primary traits 
of harvest weight and acquired AGD resistance. The results for the 
secondary traits are more variable although still significant.

The rate of genetic gain improvement, based on the performance 
up to and including 2019, is shown in Table 4. Substantial improve-
ments in the rate of genetic gain are observed for both primary 

F I G U R E  5  The percentage improvement in prediction accuracy for ranking broodstock individuals when using GEBV over EBV for the 
parents of three year classes

TA B L E  4  Comparison of the prediction accuracies for the three years of spawning

Trait

2017–2019 2016–2018 2015–2017

r(T̂,G17) r(T̂,E17) Δ17 r(T̂,G16) r(T̂,E16) Δ16 Cor(T̂,G15) Cor(T̂,E15) Δ15

INDEX 0.6051 0.2891 0.3161 0.6249 0.3173 0.3075 0.6337 0.3242 0.3094

Acquired AGD res. 0.8198 0.5257 0.2941 0.8648 0.6635 0.2013 0.8337 0.7426 0.0911

Innate AGD res. 0.8769 0.7174 0.1485 0.7286 0.6231 0.1055 0.7355 0.5448 0.1907

Harvest weight 0.7905 0.6577 0.1328 0.8346 0.7386 0.0960 0.7564 0.6913 0.0651

Maturation 0.8351 0.6693 0.1657 0.8299 0.5803 0.2496 0.8591 0.7045 0.1546

Fat 0.9033 0.7362 0.1671 0.8074 0.6690 0.1384 0.7214 0.5678 0.1536

Color (Ax) 0.9156 0.6924 0.2235 0.8654 0.6401 0.2253 0.8656 0.7894 0.0762

Note: r(T̂,Mx) is Spearman's correlation coefficient between M (G: GEBV or E:EBV) in year x with T̂, the best estimate of the true breeding value 
represented by the GEBV/EBV with the highest accuracy in the comparison year (x+2) GEBV production run, for example, r(T̂  ,E17) is the correlation 
coefficient between the best estimate of the breeding values in 2019 compared to the EBV produced in 2017. The GEBV and EBV of progeny 
checked individuals are highly correlated (greater than 98%).
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traits, harvest weight and acquired AGD resistance, and the index, 
with increases of 19%, 54% and 109%, respectively. As expected, 
the magnitude of the gain improvement for secondary traits is low 
because low selection pressure is applied to these traits. However, 
there is still a 50% increase in genetic gain for Maturation and Flesh 
color through the use of GEBV compared to the EBV.

6  |  DISCUSSION

6.1  |  Genetic gains and value of genomic selection

The impetus for exploring the potential of genomic selection for 
the Tasmanian Salmon selective breeding program was a desire 
to increase the rates of genetic gain through enabling within fam-
ily selection. Initially, a business case was built around increasing 
the rate of genetic gain for AGD resistance and economic analyses 
were done for that trait alone. That was assumed to be the main and 
perhaps only driver of value because other traits already benefited 
from moderate genetic correlations between marine and freshwa-
ter populations (Section 2). The increase in the rate of genetic gain 
has been highest for AGD resistance, as expected, with an increase 
in the annual rate of gain from 3.7% to 5.7%. This 54% increase is 
driven by the ability to make within family selections, resulting in 
an improved selection accuracy of up to 29% for this trait. This is 
a higher increase in prediction accuracy than previously reported 
for any AGD-related trait (Aslam et al., 2020; Robledo et al., 2018). 
In commercial practice, the value of this gain is realized via fewer 
AGD treatments (freshwater bathes) during grow-out and therefore 
a reduction in the growing cost. Conservatively, the value of that is 
estimated to be $AU1 million per year currently and is projected to 
accumulate to $AU5 million per year after 10 years.

The magnitude of the improvement in other traits and the extra 
value they provided was an unexpected benefit. Most notable is the 
improvement in total weight, where the annual rate of genetic gain 
increased from 3.6% to 4.3% per year (Table 5). This 19% increase in 
genetic gain reflects the 14% improvement in prediction accuracy 
when using GEBV compared to EBV for growth, a result consistent 
with the study results of Tsai et al. (2015). For the Tasmanian indus-
try, the increase in genetic gain for growth is worth approximately 
AU$5 million per year at farm gate and exceeds the value of gains in 
AGD resistance.

The largest benefit from genomic selection is seen in the in-
crease in the rate of gain in the index, which is the measure that 
combines all traits weighted by their assumed economic value (se-
lection pressure for each trait shown in Table 1). There has been a 
twofold increase, which is a result that vastly exceed initial expecta-
tions. In practice, this is seen as a much higher level of discrimination 
between individuals of the same family when individual candidates 
are selected. It provides a means to better identify individuals with 
the desired mix of traits and, therefore, provides the breeder with 
far better options when multitrait selection is required.

6.2  |  Genotyping platforms

Decisions made about genotyping platforms, and the emphasis 
placed on obtaining optimal genotyping tools, have been instrumen-
tal to the successful implementation of genomic selection and are 
well recognized as essential to genomic selection (Abdelrahaman 
et al., 2017; Bangera et al., 2018; Houston et al., 2014; Yanez et al., 
2016). The first of these was the decision to develop a Tasmanian 
population specific 50K genotyping array rather than use an exist-
ing product. There were expectations that an existing array should 
be used given the relatively small size of the Tasmanian breeding 
program when compared on a global scale. While the alternative 
product did have informative markers for the Tasmanian popula-
tion, it was not ideal, with only 56% of markers uniquely informa-
tive, and the coverage of markers was sparse in places (Section 3.3). 
The design of the customized 50K array allowed optimal coverage, 
without large gaps, and it ensured all markers were informative that 
maximized the data available. This enabled more accurate breeding 
values and better gains by ensuring all chromosomal segments were 
captured.

The second important juncture was the decision to develop a 
low-density array, to use that across all individuals in every year 
class, and to impute the 50K markers. Exploration of the use low-
density panels and imputation have been explored in multiple stud-
ies and shown to be useful across multiple aquaculture species (Tsai 
et al., 2017; Zenger et al., 2019). The adoption of such an approach 
allowed GEBV to be calculated for every measured individual and for 
all broodstock candidates. It avoided the need to subset a training 
population based on particular phenotypes and that has resulted in 
strong links between all phenotypes in all traits and genotypes. The 

Trait
EBV genetic gain (% 
per year)

GEBV genetic gain 
(% per year)

Acquired AGD res. (AGD treatment interval) 3.7 5.7

Harvest weight 3.6 4.3

Maturation 0.2 0.3

Color (Ax) 0.2 0.3

Fat 0.6 0.8

INDEX (in units of index) 1.31 2.75

TA B L E  5  Rates of genetic gain for EBV 
and GEBV
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breeding program has always used genotypes to determine pedigree 
(Section 2), and the cost of that has always been part of breeding 
program budgets. The opportunity was recognized to extend the 
scope of that genotyping to allow some level of genomic selection as 
part of the pedigree determination, and this direction was given to 
the genotyping provider to determine what was possible at an equiv-
alent price to the pedigree assay. The genotyping platform decision 
was made in consultation with CAT, based on available technology 
at a specified price point. Ultimately, there was an ideal convergence 
of the characteristics of genotype platform needed for imputation 
(Section 3.4) and what was possible at the nominated price, using 
a GBS platform. This facilitated the consolidation of the final ge-
notyping scheme (Section 3.5). The result was the ability to obtain 
genotypes at 40% of the cost of the 50K array. Collaborations with 
CAT, as the genotype provider, were essential to be able to utilize the 
current technology developments and to enable the logistical needs 
of the breeding program to be met.

6.3  |  Breeding program logistics

The implementation of genomic selection has been an incremental 
change to the breeding program operations rather than a complete 
re-design. This is demonstrated by noting the similarity between 
the breeding cycle prior to genomic selection (Figure 1) and after 
genomic selection (Figure 3). There has been little change to the 
animal related activities. Candidate selection, family production, 
tagging, biopsies, and measurements all proceed exactly as they did 
before genomic selection. This is mostly due to the processes that 
were necessary for a DNA pedigree-based breeding program being 
very similar to the processes needed for genomic selection.

The models used for genetic evaluation also had very little 
change. This was due to the use of the single-step GBLUP methodol-
ogy, which combines pedigree and genomic information. GEBV were 
calculated on the same scale as the former EBV, and therefore, index 
values and estimates of genetic progress were completely compara-
ble both pre- and postgenomic selection. Consequently, the opera-
tional side of the breeding program saw little change to logistics and 
no change to the metrics used for selection decisions, only seeing 
the outcome which was far greater discrimination among selection 
candidates.

The significant changes to the breeding operations were related 
to the genotyping and the analyses of that data. This was one of 
the greater challenges to the implementation on the operational/in-
dustrial scale. New processes were added which were data-intense 
and which required different skill sets, described in Section 3. These 
new activities needed to fit within the already tight timelines of 
breeding operations, necessitated by the seasonal aspects of the 
data flow and breeding cycle. That required careful planning to co-
ordinate operations and efficient data pipelines. While the models 
and presentation of the breeding values did not have obvious differ-
ences, the computing requirements did. New software was needed, 
moving from ASReml to Wombat, and access to a high-performance 

computer was necessary. The need for oversight on computing re-
quirements is an ongoing issue given the continual increase in the 
numbers of genotypes and the need for increases in computing 
power that causes.

6.4  |  Commercial multipliers

There are clear opportunities to use genomic selection in commer-
cial multipliers (Zenger et al., 2019). This opportunity was immedi-
ately apparent within the SALTAS program once genomic selection 
was implemented in the breeding population and commenced with 
the commercial production in 2019. Separate male and female mul-
tiplier lines are produced annually as terminal lines and the parents 
of these lines are individuals sourced from the breeding population. 
Therefore, sibling relationships exist between the multipliers and 
breeding population, which allows GEBV for multipliers to be calcu-
lated accurately and as part of the standard workflow of the breed-
ing population GEBV calculations.

The focus, so far, has been on the male multipliers and the goal 
has been to maximize gains in harvest weight. All male multipliers 
are now tagged, biopsied, and genotyped on the 3K array, and GEBV 
are calculated for those individuals. There have been high additional 
gains due to the high intensity of selection possible due to the high 
fecundity of the males, with the top 1% of males being selected for 
commercial production. This provided an additional 11.4% gain for 
harvest weight in the male multipliers, which resulted in a 5.7% in-
crease in the commercial population for the commercial production 
in 2019 (value is halved due to no further selection on the females). 
The increase in the commercial production could potentially have 
been 8.2% had all male candidates being sexually mature, a con-
sequence of husbandry of broodstock. The value of the gain pro-
vided by applying genomic selection in the male multipliers has 
been very high. While not cumulative as it is in the breeding pop-
ulation, the value for the 2019 commercial production is estimated 
at 8 times more than the annual gain in the breeding population 
(AU$40 million).

7  |  CONCLUSION

Genomic selection has been implemented at a commercial scale in 
the Saltas selective breeding program. Operational implementation 
was first achieved in the breeding population with the production 
of the 2016 year class, and in 2018, the application was extended 
to the male multiplier population. Implementation was achieved 
through the development and use of a 50K population specific SNP 
array, together with a low-density 3K array. Examination of impu-
tation accuracies revealed the viability of a low-density panel, and 
this has provided a cost-effective genotyping scheme allowing all 
individuals in both the freshwater broodstock population and the 
marine sib-test populations to be genotyped with the low-density 
assay, with parents genotyped on the 50K SNP array.
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Validation results show improvement in prediction accuracies for 
all traits at the point of broodstock selection, which results in clear 
and substantial increases in the rate of genetic gain for all traits. 
Increases are highest for AGD resistance. The increase in gains for 
harvest weight was half that for AGD resistance; however, the value 
of these gains is also substantial. Overall, the rate of gain for the 
index, combining all traits, was doubled through genomic selection.
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