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A Commentary on

Rapalink-1 Increased Infarct Size in Early Cerebral Ischemia–Reperfusion With Increased

Blood–Brain Barrier Disruption

by Chi, O. Z., Liu, X., Cofano, S., Patel, N., Jacinto, E., and Weiss, H. R. (2021). Front. Physiol.
12:706528. doi: 10.3389/fphys.2021.706528

INTRODUCTION

We read with great interest the article by Chi et al. investigating the effect of inhibiting
mammalian target of rapamycin (mTOR) with a third generation mTOR inhibitor, Rapalink-1, in
an experimental model of stroke (Chi et al., 2021). Rapalink-1 increased stroke size which was
associated with reduced activity of both mTORC1 and mTORC2. In this commentary we wish
to use insights provided by Chi et al. to clarify the emerging inconsistencies in the literature
surrounding the brain cytoprotective potential of mTOR inhibition in stroke, and the different roles
of mTORC1 and mTORC2. We will highlight lessons learned about optimal dosing of rapamycin
in experimental stroke in an attempt to inform dosing of newer generation mTOR inhibitors such
as Rapalink-1, to achieve brain cytoprotection.

mTOR, A DOUBLE EDGE SWORD IN BRAIN CYTOPROTECTION

FOLLOWING ISCHEMIA

mTOR exists in twomultiprotein complexes: mTORC1 andmTORC2.mTORC1 is an energy sensor
within cells. If cellular energy is abundant mTOR is activated leading to protein synthesis and
cell proliferation through activation of ribosomal protein S6 kinase (p70S6K), eukaryotic initiation
factor 4E-binding protein 1 (4E-BP1), and autophagy inhibition (Wang et al., 2014). Stresses such
as depleted energy supply induce both TSC1 (hamartin) and TSC2 (tuberin) complex activity to
inhibit mTORC1 (Deyoung et al., 2008). The role of mTORC2 is not as well-established. Studies
have shown it plays a role in maintaining cytoskeletal integrity and cell survival (Shin et al., 2015).

mTOR plays a central role in cell death following cerebral ischemia (Chong et al., 2013). We
have shown during global ischemia, resistant cells within the hippocampus (CA3) can up-regulate
hamartin leading to mTORC1 inhibition, increasing productive autophagy to promote cell survival
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(Papadakis et al., 2013). mTORC1 can be inhibited
pharmacologically using the mTORC1 inhibitor, rapamycin,
which has been proposed as a potential therapy for stroke.
Studies of rapamycin in experimental stroke produced mixed
results (Hadley et al., 2019b), with some studies showing
rapamycin reduced infarct volume (Buckley et al., 2014) and
others showing increased infarct volume (Chi et al., 2016a). Our
subsequent systematic review and meta-analysis demonstrated
that rapamycin has an overall protective effect in animal models
of stroke with no evidence of publication bias (Beard et al., 2019).
We found a large proportion of the variability in outcome with
rapamycin treatment is due to the dose of rapamycin, with the
lower dose (<2 mg/kg) being most protective and higher doses
(20 mg/kg) increasing infarct volume. This provides evidence
that dosing is paramount when considering rapamycin in stroke.

Chi et al. used the highest doses of rapamycin (2 × 20
mg/kg pre-treatment), providing the first clues for the role
of mTORC2 in cerebral ischemia. Increased infarct volumes
in these studies were associated with inhibition of mTORC2
(Chi et al., 2016a,b). This is a known off-target effect of
prolonged or high dose rapamycin treatment, as it prevents
association of mTOR with mTORC2 components rictor and
SIN1 (Sarbassov et al., 2006). We have also shown that the
dual mTORC1/2 inhibitor AZD2014 increases cell death in
cortical neurons during oxygen glucose deprivation (Hadley
et al., 2019a). This effect is likely due to the inability of mTORC2
to phosphorylate and activate the AKT pro-survival pathway
(Shin et al., 2015). Further studies by Chi et al. support this
hypothesis, showing that selective inhibition of the mTORC1
pathway via inhibiting p70S6K with PF-4708671, reduces infarct
volume in an experimental stroke model (Chi et al., 2019) and
activating AKT with SC79 also reduces infarct volume (Liu
et al., 2018). The conflation of these recent findings suggests that
during ischemia, acutely inhibiting mTORC1 while maintaining
or enhancing mTORC2 activity is the optimal strategy for
brain cryoprotection.

mTOR INHIBITORS IN ISCHEMIC STROKE,

LESS MAY BE MORE

Rapamycin/rapalogues are already clinically approved to prevent
organ transplant rejection (Knight and Kahan, 2006), cancers
(Fagone et al., 2013), and cardiovascular disease (Sousa et al.,
2001). They are an attractive therapy to be repurposed for
stroke, as they have already passed early phases of development
and clinical testing. Approval for this new indication could
therefore take less time at a substantially reduced cost (Ashburn
and Thor, 2004). Chi et al. provide the first experimental
stroke study of the mTOR inhibitor, Rapalink-1 (Chi et al.,

2021). Rapalink-1 combines rapamycin with the mTOR kinase
inhibitor, MLN0128 (molecular weight of Rapalink-1= 1,784
g/mol vs. rapamycin = 914 g/mol), with the goal of leveraging
the high affinity of rapamycin for mTORC1 (via FK506 Binding
Protein 12) to selectively deliver MLN0128 to the ATP-site
of the mTORC1 complex (Rodrik-Outmezguine et al., 2016).
Early studies indicated Rapalink-1 was a more potent mTORC1
inhibitor than rapamycin, inhibiting growth and suppressing
S6 and 4EBP1 phosphorylation in a glioblastoma cell line and
in the brain, at doses as low as 1.56 nM and 0.4 mg/kg,
respectively (Fan et al., 2017). This is compared to rapamycin
which only suppressed S6 phosphorylation at ≥6.25 nM and 4
mg/kg, respectively. Only higher concentrations of Rapalink-
1 (≥6.25 nM) were found to suppress mTORC2/AKT in vitro,
compared to rapamycin (>200 nM) (Fan et al., 2017). Given the
increased potency of Rapalink-1, it would be expected that doses
of Rapalink-1 needed for brain cytoprotection in stroke would
be much lower than rapamycin (optimal dose for rapamycin
<2 mg/kg). Chi et al. used 2 mg/kg of Rapalink-1, which was
associated with mTORC1 and mTORC2 inhibition and increased
infarct volume (Chi et al., 2021). These findings further highlight
the importance of mTORC2 signaling for cell survival during
ischemia and suggest that although the dose of Rapalink-1 used
is not too dissimilar to cytoprotective doses of rapamycin, the
increased potency of Rapalink-1 may have resulted in mTORC2
inhibition at a lower dose.

DISCUSSION

If we are to use rapamycin and Rapalink-1 to treat stroke,
dosing is key. Although our meta-analysis suggests that lower
doses of rapamycin are brain cytoprotective, the mechanism
is unclear. This could be mediated by lower dose rapamycin
producing mTORC1 inhibition while sparing mTORC2 activity.
A murine study found that 2 mg/kg of rapamycin can inhibit
S6 phosphorylation (mTORC1) without reducing AKT activity
(mTORC2) in skeletal muscle (Arriola Apelo et al., 2016). Except
for Chi et al. no previous stroke study investigating rapamycin
or Rapalink-1 have measured mTORC1/2 activity in the brain.
Future studies of rapamycin and Rapalink-1 in stroke must
conduct dose-response studies to identify the optimal dose that
inhibits mTORC1 while maintaining mTORC2 activity.
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