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ABSTRACT Micromonospora sp. strain WMMB235 was isolated in 2011 off the coast
of the Florida Keys, USA, from a marine ascidian as part of an ongoing drug discov-
ery project. Analysis of the ~7.1-Mb genome provides insight into this strain’s bio-
synthetic potential, means of regulation, and response to coculturing conditions.

Micromonospora spp. have long been recognized as crucial sources of antibiotics
(1). The aminoglycoside antibiotics gentamicin (2) and netilmicin (3), antitumor

antibiotics lomaiviticins A and B (4), tetrocarcins (5–8), LL-E33288 (9), anthracycline
antibiotics (10), the anthraquinone lupinacidins A to C (11, 12) and diazepinomicin, an
antimicrobial marine alkaloid (13), are but a few of the medicinally significant secondary
metabolites produced by Micromonospora spp.; members of the genus have been
credited with providing over 700 compounds of medicinal value (1). Despite this,
relative to other actinomycetes, there is a scarcity of genome information on Mi-
cromonospora.

Micromonospora spp. are Gram-positive, generally aerobic, and tend to exhibit
complex life cycles, differentiating into both substrate mycelia and spores, although
aerial mycelia are not a common feature (14). The life cycle characteristics, habitats, and
both past and putative future applications of these bacteria have been excellently
reviewed; notable emphasis now focuses on their use in biofuel production (15).

To identify new and otherwise cryptic biosynthetic gene clusters and their correspond-
ing bioactive natural products through coculturing methodologies, we recently carried out
metabolomics studies involving Micromonospora sp. strain WMMB235 in the presence of
Rhodococcus sp. WMMA-185. Micromonospora sp. WMMB235 was isolated in 2011 from a
marine-associated ascidian collected off the coast of the Florida Keys.

The complete genome of Micromonospora sp. WMMB235 was sequenced at the
Duke Center for Genomic and Computational Biology (GCB) using PacBio RSII (Pacific
Biosciences) technology. Reads were constructed using the HGAP assembler (16) into
two different contigs that were 7.02 Mb and 14.7 kb in size, respectively. We hypothesize
that the smaller of the two contigs is a plasmid, whereas the larger contig represents the
full circular chromosome of WMMB235. This logic is supported by a �10-kb overlap of the
ends of the contig. Within this overlap are five single-base gaps that we have not been able
thus far to resolve. The smaller 14-kb contig aligns well with the 3= end of the larger contig,
with the notable exception that it contains a 1,402-bp insert from elsewhere in the genome.
Consequently, we do not yet know if this smaller contig represents a real variant sequence
of the chromosome or is merely an assembly error.

Open reading frames were predicted by Prodigal (17) and annotated using HMMer
models for the TIGRfam (18), KEGG (19, 20), and Pfam (21, 22) databases. The genome is
72.83% GC and has 90.27% coding density. The organism’s secondary metabolic content/
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potential was assessed on the basis of antiSMASH (23, 24), PRISM (25), and custom
pipelines. Housed within the Micromonospora sp. WMMB235 genome were found a single
type I polyketide (PKS), a single type III PKS, one lanthipeptide system (26), and seven hybrid
biosynthetic gene clusters. Thus, genome analysis of WMMB235 has revealed this Mi-
cromonospora to have a wealth of biosynthetic machineries at its disposal.

Accession number(s). This whole-genome shotgun project has been deposited at
DDBJ/ENA/GenBank under the accession no. MDRX00000000. The version described in
this paper is version MDRX01000000.
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