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ABSTRACT 

Background: Rich data in cardiovascular diagnostic testing are often sequestered in unstructured 

reports, with the necessity of manual abstraction limiting their use in real-time applications in 

patient care and research.  

Methods: We developed a two-step process that sequentially deploys generative and 

interpretative large language models (LLMs; Llama2 70b and Llama2 13b). Using a Llama2 70b 

model, we generated varying formats of transthoracic echocardiogram (TTE) reports from 3,000 

real-world echo reports with paired structured elements, leveraging temporal changes in 

reporting formats to define the variations. Subsequently, we fine-tuned Llama2 13b using 

sequentially larger batches of generated echo reports as inputs, to extract data from free-text 

narratives across 18 clinically relevant echocardiographic fields. This was set up as a prompt-

based supervised training task. We evaluated the fine-tuned Llama2 13b model, HeartDx-LM, on 

several distinct echocardiographic datasets: (i) reports across the different time periods and 

formats at Yale New Haven Health System (YNHHS), (ii) the Medical Information Mart for 

Intensive Care (MIMIC) III dataset, and (iii) the MIMIC IV dataset. We used the accuracy of 

extracted fields and Cohen’s Kappa as the metrics and have publicly released the HeartDX-LM 

model. 

Results: The HeartDX-LM model was trained on randomly selected 2,000 synthetic echo reports 

with varying formats and paired structured labels, with a wide range of clinical findings. We 

identified a lower threshold of 500 annotated reports required for fine-tuning Llama2 13b to 

achieve stable and consistent performance. At YNHHS, the HeartDx-LM model accurately 

extracted 69,144 out of 70,032 values (98.7%) across 18 clinical fields from unstructured reports 

in the test set from contemporary records where paired structured data were also available. In 
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older echo reports where only unstructured reports were available, the model achieved 87.1% 

accuracy against expert annotations for the same 18 fields for a random sample of 100 reports. 

Similarly, in expert-annotated external validation sets from MIMIC-IV and MIMIC-III, HeartDx-

LM correctly extracted 201 out of 220 available values (91.3%) and 615 out of 707 available 

values (87.9%), respectively, from 100 randomly chosen and expert annotated echo reports from 

each set. 

Conclusion: We developed a novel method using paired large and moderate-sized LLMs to 

automate the extraction of unstructured echocardiographic reports into tabular datasets. Our 

approach represents a scalable strategy that transforms unstructured reports into computable 

elements that can be leveraged to improve cardiovascular care quality and enable research. 
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INTRODUCTION 

Electronic health records (EHR) offer invaluable insights into optimizing cardiovascular care and 

driving healthcare research.1–3 In the EHR, data streams that are most amenable to scalable 

applications include those available as structured tabular data. Therefore, despite their critical 

role in defining disease conditions, diagnostic testing such as imaging is often available only as 

unstructured free-text narratives and remains underutilized in disease phenotyping.4 This gap 

underscores the pressing need for novel strategies to transform unstructured data into structured 

data elements, thus enhancing the impact and scalability of health applications that can leverage 

these rich data. 

Prior work to transform unstructured into structured data has primarily focused on 

extracting isolated data elements,5–9 with the need to develop pipelines to extract as more data 

streams are needed. The emergence of large language models (LLMs)  as foundation models for 

language processing has demonstrated impressive properties for parsing text with limited 

domain-specific development but are limited by the high computational requirements associated 

with their deployment.10 On the other hand, the scarcity of annotated unstructured-structured data 

limits the development of computationally efficient models. Consequently, there is a critical 

unmet need for novel approaches capable of efficiently transforming clinical notes into tabular 

data. 

To address this, we propose a domain-specific and computationally efficient approach 

leveraging sequentially deployed LLMs, where we use a larger open-source model to generate 

synthetic training examples for fine-tuning a smaller model, which enables the development of a 

generalizable tool for converting imaging reports to tabular data. We use reports of transthoracic 

echocardiograms (TTEs) as the use case for this application.  
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METHODS 

The study was reviewed by the Yale Institutional Review Board, which waived the need for 

informed consent, as it represents a secondary analysis of existing data. 

 

Study Overview  

We developed and fine-tuned a lightweight language model, HeartDx-LM, to extract clinically 

relevant diagnostic information from unstructured TTE reports. We trained the model using 

different text structures leveraging temporal variations in the free-text narratives of the reports to 

introduce this variation. The process involved generating synthetic reports using reports in a 

single format where all information was also available as tabular data. These reports were 

regenerated into different formats using examples from those formats as prompts to a Llama2 70-

billion-parameter model. These synthetically adapted echo reports were then used to fine-tune a 

moderate-sized Llama2 13-billion-parameter model to extract a comprehensive set of 

quantitative, semi-quantitative, and qualitative diagnostic information from unstructured clinical 

reports (Figure 1).  

 

Data Sources 

We used data from the Yale New Haven Health System (YNHHS) EHR, a large academic health 

system catering to a diverse population in New Haven County, one of the most representative 

counties in the US. Since 2016, the free-text imaging reports for TTEs have been linked with 

structured tabular values for the cardiologist-defined echocardiographic features. The linked 

structured dataset consisted of clinical and operational labels, of which we selected 18 based on 
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their broad coverage of key conditions. These included ejection fraction (EF), global longitudinal 

strain, interventricular septal thickness (IVSd), aortic valve (AV) and mitral valve (MV) 

structure, and qualitative or quantitative features associated with AV and MV 

stenosis/regurgitation, including left ventricular outflow tract (LVOT) peak velocity and peak 

gradient, AV peak velocity and mean gradient, AV area by continuity, and AV area index. A brief 

overview of the data fields is included in Table 1. This dataset of 10,000 reports paired with 

corresponding structured labels was used for model evaluation (test set).  

 Structurally distinct TTE reports from MIMIC-III and MIMIC-IV datasets were used for 

external validation of our digitization approach.11,12 MIMIC-III comprises deidentified EHR data 

from over forty thousand patients with a hospitalization that included an intensive care unit stay 

at the Beth Israel Deaconess Medical Center between 2001 and 2012. The data represents broad 

EHR fields spanning demographics, laboratory test results, procedures, medications, caregiver 

notes, imaging reports, and mortality. MIMIC-IV is an updated version of the MIMIC-III 

database, which incorporates data up to 2019 and includes hospitalizations with emergency 

department visits. The current study leveraged echocardiographic reports from both MIMIC-III 

and MIMIC-IV. Representative examples of various report types from the different sources are 

included in Supplemental Table S1.   

 

Model Development: Overall approach 

We designed a two-step approach to convert unstructured TTE reports to structured data 

(digitize) using LLMs. All TTE reports in the YNHHS dataset post-2016 had corresponding 

clinician-annotated tabular data, which provided us with a training set without the need for 

manual annotation. However, reports from before this time (pre-2016) were only available in a 
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free-text format without corresponding tabular data. Moreover, the data had several variations in 

free text reporting across echocardiographers. From a randomly selected 3,000 pre-2016 YNHHS 

reports, we observed 5 different reporting formats (Supplemental Table 2). We randomly chose 

one report from each unique reporting format to encode this variation in our training set.  

The utilization of Llama for finetuning, as opposed to alternative LLMs, was driven by 

considerations of its parameter efficiency, domain-specific architecture, and applicability to the 

medical text processing domain. By prioritizing factors such as model performance, accessibility, 

and computational power required to finetune the model, we aimed to optimize the efficiency 

and effectiveness of the finetuning process. This also included the ability to quantize Llama 

models into a 4-bit configuration for reduction in model size and memory usage.13–15 

 

First-stage development: Finetuning Llama2 70b 

In the initial phase, we fine-tuned the Llama2 70-billion-parameter LLM to generate TTE reports 

from the structured data in the post-2016 reports with syntactical characteristics - including the 

five formatting variations - of the pre-2016 reports. We trained the model on a dataset of 3,000 

paired examples from the post-2016 dataset to create unstructured data that faithfully represents 

the format of pre-2016 reports for subsequent fine-tuning and testing (Prompt template – 

Supplemental Table 2). 

The task of restructuring reports from post-2016 format to pre-2016 format involved fine-

tuning the pre-trained Llama2-70b model to recognize and replicate the syntactical and structural 

elements of various pre-2016 reporting formats. The model was trained on a curated dataset 

containing examples of both post-2016 and pre-2016 reports. The dataset was carefully prepared, 

ensuring the pre-2016 reports represented multiple versions and styles to comprehensively 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 8, 2024. ; https://doi.org/10.1101/2024.10.08.24315035doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.08.24315035
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 

 

expose the model to various data formats. The model was fine-tuned over two epochs with a 

batch size of 4, using the Adam optimizer with a learning rate of 10-5. The choice of 

hyperparameters, including the learning rate and epochs, was based on commonly adopted 

practices for fine-tuning large language models.16,17 The fine-tuning process was monitored in a 

validation set, with early stopping of fine-tuning when validation loss did not improve for 5 

consecutive evaluation steps to prevent overfitting. This approach was implemented to ensure 

that the model generalizes well to unseen data while maintaining high accuracy on the training 

set. 

 

Second-stage development: Finetuning Llama2 13b 

After the initial step, we used the restructured reports created with the Llama2 70-billion-

parameter LLM to train a Llama2 13-billion-parameter LLM. We trained the model on a subset 

of 2,000 regenerated TTE reports, each paired with clinician-annotated tabular data. This 

approach enabled the model to learn from TTE reports that vary in formats while still being able 

to use corresponding clinician-annotated tabular data as the gold standard. This led to our model, 

HeartDx-LM, which is tailored to extracting structured fields from free-text narratives of TTE 

reports across the selected 18 clinical variables without requiring the large computational 

infrastructure needed for the 70-billion-parameter model. HeartDx-LM was trained to discern 

and extract critical information (Prompt table – Supplemental Table 4). We have made the 

model publicly available on HuggingFace at https://huggingface.co/CarDSLab/HeartDX-LM.  

We also digitized the TTE reports using a non-finetuned Llama2-13b model (zero-shot 

Llama) to compare its performance with its finetuned counterparts. 
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Evaluation 

We conducted a comprehensive evaluation of the model's performance across four distinct 

datasets – post-2016 YHNNS TTE reports (internal held-out test set), pre-2016 YNHHS reports, 

MIMIC-III TTE reports, and MIMIC-IV TTE reports.  

Firstly, we employed a held-out set comprising 10,000 post-2016 YNHHS reports 

sourced from the YNHHS EHR. These reports were accompanied by their corresponding 

structured fields, allowing for direct comparison and assessment of the model's proficiency in 

extracting structured data from contemporary clinical narratives. 

In addition to the post-2016 YNHHS dataset, we also examined the model's performance 

on 100 pre-2016 YNHHS reports and 100 reports each from the MIMIC-III and MIMIC-IV 

datasets. The pre-2016 YNHHS dataset used for model evaluation were a distinct set from the 

one used to develop synthetic examples and had clinical labels manually extracted by three 

clinical experts. The TTE reports from MIMIC-III were obtained from the EchoNotes Structured 

Database, which also includes echocardiogram reports from the intensive care unit.18,19 In the 

MIMIC-IV dataset, reports were retrieved from discharge summaries that contained TTE report 

summaries. This structured echocardiogram database included key measures of cardiac structure 

and function, such as ejection fraction (EF), aortic valve (AV) and mitral valve (MV) structure, 

and qualitative or quantitative features associated with AV and MV stenosis/regurgitation. The 

other structured fields of interest like interventricular septal thickness (IVSd), left ventricular 

outflow tract (LVOT) peak velocity and peak gradient, AV peak velocity and mean gradient, AV 

area by continuity, and AV area index were derived through manual annotation by three clinical 

experts, who collaboratively established an annotation scheme delineating the criteria for 

extracting values for each of the 18 clinical variables. Each report was evaluated based on its 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 8, 2024. ; https://doi.org/10.1101/2024.10.08.24315035doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.08.24315035
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 

 

constituent sentences, and the clinicians’ annotations were aggregated to create a gold standard 

for evaluating the model's performance. This ensured the accuracy and reliability of the ground 

truth.  

In addition to evaluating the performance of our fine-tuned models, we also employed the 

Llama2-13b model without fine-tuning as a comparator to assess its capability in extracting 

structured data from clinical narratives without prior training on our datasets. This allowed us to 

benchmark the performance of our approach against the out-of-box (or zero-shot) performance of 

the Llama2-13b model. 

 

Determining Optimal Training Data Volume for Model Fine-tuning 

We investigated the impact of training data volume on model performance by fine-tuning 

multiple iterations of the Llama2-13b model with progressively increasing numbers of training 

reports (100, 200, 500, 1,000, and 2,000). We evaluated the model's performance on the held-out 

post-2016 YNHHS dataset for each iteration. This comprehensive evaluation framework aimed 

to elucidate the model's capabilities and provide insights into the optimal training data volume 

required for achieving robust performance in extracting structured information from diverse 

clinical narratives. We used a statistical benchmark of 95% accuracy to define robust 

performance. 

 

Statistical Analysis 

We assessed HeartDx-LM's performance using the accuracy of extracted values for both 

continuous and categorical variables. We reported the overall extraction accuracies and 

accuracies for individual clinical variables compared against the ground truth annotations. 
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Extraction accuracy was defined as the percentage of values correctly extracted by the model, 

with incorrect and failed extractions rates also reported. Additionally, Cohen's kappa statistic was 

used to evaluate the agreement between the model's extractions and the ground truth for both 

categorical and continuous variables. Specifically, continuous variables were categorized into 

discrete classes for the Kappa analysis. Each continuous variable in the training dataset was 

labeled as either 1 for available values or 0 for missing values. For the digitized dataset, the 

continuous variables were labeled based on their comparison with the original dataset: a label of 

1 for values that were available in both the training and digitized datasets and correctly extracted, 

a label of 0 for values that were missing in both datasets (correctly identified as missing), a label 

of 2 for values available in the training dataset but extracted incorrectly in the digitized dataset, 

and a label of 3 for values available in the training dataset but missing in the digitized dataset. 

We calculated Cohen's Kappa for each continuous variable independently, measuring the 

agreement between the original and digitized labels across these four categories. The Kappa 

statistic was computed using the formula � � ��
�

�  �
�
�/�1 �  �

�
�, where �

�
is the observed 

agreement between the two datasets and �
�
 is the expected agreement by chance. For multiclass 

Kappa, the observed and expected agreements considered all four categories to provide a 

comprehensive measure of agreement. By categorizing the continuous variables and then 

applying Cohen's Kappa, we ensured that the agreement between the original and digitized 

datasets was evaluated robustly, accounting for both correct and incorrect extractions as well as 

missing data. 

The Cohen’s Kappa statistic metric accounts for the possibility of agreement occurring by 

chance, providing a more robust measure of the model's reliability.20 A kappa value closer to 1 
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indicates a high level of agreement, while a value closer to 0 suggests agreement is no better than 

chance.  

 

RESULTS 

Study Population 

There were 8,612 unique patients with 10,000 post-2016 YNHHS reports in the test set, with a 

median age of 73.0 (IQR, 62.0 – 85.0) years, including 5,013 (50.1%) women, 694 (6.9%) non-

Hispanic Blacks, 88 (0.9%) Hispanics, and 52 (0.5%) of Asian race. The range of distribution of 

clinical features (across both development and validation cohorts) are provided in Table 1. 

 

Zero-shot model performance 

The zero-shot Llama2-13b model generated fragmented, inconsistent, or irrelevant responses, 

resulting in incomplete and inaccurate extractions. This resulted in 0% extraction accuracy across 

all the 18 clinical variables. An example of zero-shot model prompt and response is shown in 

Supplemental Table 5. 

 

Model performance in the held-out test set (post-2016 YNHHS dataset) 

The HeartDx-LM model extracted 69,144 out of 70,032 values, yielding an accuracy rate of 

98.7% and Cohen’s Kappa value of 0.99. The accuracy rate was consistent across both 

continuous (45712/46387 - 98.5%) and categorical (23432/23645 - 99.1%) variables. The model 

incorrectly extracted 480 (0.7%) values and did not extract 408 (0.6%) values. The inaccurate 

values were most frequent for EF (97/9143), followed by AV peak velocity (96/8429), LVOT 

peak velocity (74/8065), and IVSd (48/8449). 
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Across continuous variables, the accuracy of the model for key clinical variables like EF, 

LVOT peak velocity, and AV peak velocity were 97.3% (8,902/9,143), 98.8% (7,969/8,065), and 

98.8% (8,331/8,429), respectively. For key categorical variables of AV structure, AV 

regurgitation, MV regurgitation, and LV wall thickness, the accuracies were 98.6% 

(1,727/1,752), 99.1% (2,813/2,833), 99.7% (6,440/6,460), and 97.7% (3,938/4,032), respectively 

(Table 2).  

 

Model performance in pre-2016 reports 

In the 100 randomly sampled and expert-annotated pre-2016 reports, HeartDx-LM achieved an 

overall accuracy rate of 87.1% (extracting 909 out of the 1044 values), and Cohen’s Kappa value 

of 0.86 across 18 clinical variables when compared against manually annotated labels. The 

model incorrectly extracted 11 (1.1%) values and failed to extract 124 (11.9%) values. The 

inaccurate values were most frequent for AV mean gradient (3/67), followed by MV structure 

(3/92), MV stenosis (2/25), MV regurgitation (1/93) and LV diastolic function (1/78). 

HeartDx-LM maintained a high accuracy across both continuous (407/454 - 89.6%) and 

categorical (502/590 - 85.1%) variables. Accuracy of the model across key continuous variables, 

of EF, LVOT peak velocity, and AV peak velocity were 90.5% (86/95), 86.2% (50/58), and 

92.2% (83/90), respectively. For key categorical variables of AV structure, AV regurgitation, MV 

regurgitation, and LV wall thickness, the accuracies were 83.2% (79/95), 95.2% (79/83), 93.5% 

(87/93), and 56.9% (33/58), respectively (Table 3).  

 

External Validation: Model performance in MIMIC-III and MIMIC-IV TTE Reports  
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In 100 TTE reports from the MIMIC-III dataset, HeartDx-LM also demonstrated high accuracy 

in extracting structured clinical data. The model successfully extracted 615 out of 707 available 

values correctly, achieving an overall accuracy rate of 86.9% and Cohen’s Kappa of 0.90. This 

included an accuracy of 72.4% for continuous variables (113/156) and 91.1% for categorical 

variables (502/551). 

There were 12 (1.7%) values inaccurately extracted and 80 (11.3%) failed extractions, 

mainly in the qualitative labels. The inaccurate values were most frequent for AV structure 

(4/95), followed by AV regurgitation (2/91), AV stenosis (2/61), and MV regurgitation (1/93). 

The model failed to extract 80 (11.3%) values in the reports across all 18 variables. External 

validation in the MIMIC III dataset also demonstrated high accuracy, with the model achieving 

over 90% accuracy for key continuous and categorical clinical variables (e.g. EF: 97.8% [90/92], 

AV structure: 94.7% [90/95], MV regurgitation: 97.8% [88/90], and LV wall thickness: 92.7% 

[76/82]; Table 4).  

 In the MIMIC-IV dataset, the model successfully extracted 201 out of 220 available 

values, achieving an overall accuracy rate of 91.3% and Cohen’s Kappa value of 0.95. This 

included an accuracy of 97.8% (44/45) for continuous variables and 89.7% (157/175) for 

categorical variables. The model extracted 2 (0.9%) incorrect values, 1 out of 45 values of EF 

and 1 out of 42 values MV regurgitation. Additionally, the model failed to extract 17 (7.7%) 

values present in the reports across the 18 variables. Values of accuracy for specific labels can be 

found in Table 5. The performance of HeartDX-LM across all 4 datasets is summarized in 

Figure 3. 

 

Data Volume for Model Fine-tuning  
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In our evaluation of the data threshold necessary for model development, we analyzed the 

accuracy of our models as a function of progressively larger number of reports used for fine-

tuning. The Llama2-13b models finetuned using 100 and 200 reports had accuracies of 13.5% 

and 85.7%, respectively. The accuracies increased to 97.8%, 98.2%, and 98.8 with the use of 

500, 1000, and 2000 TTE reports, respectively (Figure 2). A minimum of 500 reports were 

necessary to achieve our pre-specified accuracy benchmark of 95%, with accuracy plateauing 

beyond this point. 

 

DISCUSSION 

We developed and validated HeartDx-LM, an innovative strategy to extract structured clinical 

data from unstructured clinical reports. This novel strategy leverages the output of an LLM to 

train a smaller, lightweight model, eliminating the need for high computational capacity in the 

final deployment. HeartDx-LM demonstrated robust performance in digitizing TTE reports 

across varying reporting formats from geographically and temporally distinct data sources and 

was able to successfully extract qualitative and quantitative clinical labels with high accuracy. 

The model's adaptability and extensibility enable its potential deployment in diverse and low-

resource clinical settings and applicability to other diagnostic reports. Furthermore, our research 

determined the minimum threshold for the number of TTE reports required for fine-tuning 

models for optimally balanced accuracy and computational resources, providing valuable 

guidance for future model development. 

Prior models to digitize TTE reports predominantly relied on rule-based or keyword-

based NLP models.21–23 For example, early studies have used specific keywords and predefined 

rules to analyze echocardiography and radiology reports without considering variations in 
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reporting formats and dynamic changes in clinical parameters.24–26 Moreover, these methods 

predominantly focus on extracting a few specific clinical labels, such as low EF, and often fail to 

capture the full spectrum of clinically relevant labels needed for broader applications, healthcare 

decision-making, and planning.27  

In contrast,  HeartDx-LM, was engineered to extract multiple qualitative and quantitative 

clinical labels. This comprehensive extraction capability enhances the model's utility in clinical 

practice as it can be scaled to similar domains, where diagnostic information is captured in 

unstructured reports. This innovative two-step approach to digitizing entire reports is an 

alternative for generating training sets for smaller LLMs, reducing the need for extensive manual 

annotation and the reliance on high computational power. Since most TTE reports are stored as 

unstructured text, this approach can significantly expand our dataset for new model training, and 

enable access to diverse settings, including those with limited technological infrastructure, with 

potential use for cross-setting electronic clinical quality measures.2,28–31  

Our study has limitations that deserve consideration. Notably, the performance of our 

models showed variability across different clinical fields, especially when certain domain-

specific terms were reported differently across different datasets. Nonetheless, the overall and 

field-wise performance was acceptable across all external sites. Additionally, the computational 

resources required for finetuning LLMs may pose practical constraints in real-world healthcare 

settings. However, the deployment of the lightweight finetuned model, that we have also publicly 

released on HuggingFace, does not require intensive computational resources and can be used for 

transformation of unstructured reports into tabular datasets. Finally, while our study underscores 

the potential in using LLMs for the automated extraction of structured clinical information from 

unstructured narratives in EHR, future research should prioritize enhancing the interpretability of 
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LLM-based models. This can be achieved by delving into the contextual analysis of clinical 

notes and refining the model's ability to discern subtle nuances in medical language to further 

optimize the performance and generalizability of LLM-based approaches.  

 

CONCLUSION 

We developed a novel method using paired large and moderate-sized LLMs to automate the 

extraction of unstructured echocardiographic reports into tabular datasets. Our approach 

represents a scalable strategy that transforms unstructured reports into computable elements that 

can be leveraged to improve cardiovascular care quality and enable research. 
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FIGURES 
 
Figure 1: Model Development Approach and Study Design.  

 
Abbreviations: YNHHS, Yale New Haven Health System; MIMIC, Medical Information Mart for 
Intensive Care 
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Figure 2. Performance of models fine-tuned with varying number of paired unstructured reports and structured tables for 
tabulation of clinical variables from unstructured reports.  

 

Abbreviations: AVA Cont VTI, Aortic Valve Area Calculated by Velocity Time Integral ; AVA Index, Aortic Valve Area Index; AV Mn Grad, 
Aortic Valve Mean Gradient; AIPHT, Aortic Insufficiency Pressure Half-Time; AV Pk Vel, Aortic Valve Peak Velocity; AV Regurgitation, Aortic 
Valve Regurgitation; AV Stenosis, Aortic Valve Stenosis; AV Structure, Aortic Valve Structure; GLS, Global Longitudinal Strain; IVSd, 
Interventricular Septum Thickness; ; LV Diastolic Function, Left Ventricular Diastolic Function; LVOT Pk Grad, Left Ventricular Outflow Tract 
Peak Gradient; LVOT Pk Vel, Left Ventricular Outflow Tract Peak Velocity; LV Wall Thickness, Left Ventricular Wall Thickness; MV 
Regurgitation, Mitral Valve Regurgitation; MV Stenosis, Mitral Valve Stenosis; MV Structure, Mitral Valve Structure. 
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Figure 3. Accuracy of HeartDX-LM for Label Extraction Across the Four Datasets.  

 

Abbreviations: AVA Cont VTI, Aortic Valve Area Calculated by Velocity Time Integral ; AVA Index, Aortic Valve Area Index; AV Mn Grad, 
Aortic Valve Mean Gradient; AIPHT, Aortic Insufficiency Pressure Half-Time; AV Pk Vel, Aortic Valve Peak Velocity; AV Regurgitation, Aortic 
Valve Regurgitation; AV Stenosis, Aortic Valve Stenosis; AV Structure, Aortic Valve Structure; GLS, Global Longitudinal Strain; IVSd, 
Interventricular Septum Thickness; ; LV Diastolic Function, Left Ventricular Diastolic Function; LVOT Pk Grad, Left Ventricular Outflow Tract 
Peak Gradient; LVOT Pk Vel, Left Ventricular Outflow Tract Peak Velocity; LV Wall Thickness, Left Ventricular Wall Thickness; MV 
Regurgitation, Mitral Valve Regurgitation; MV Stenosis, Mitral Valve Stenosis; MV Structure, Mitral Valve Structure. 
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TABLES 
 
Table 1: Data Summarization of the train, test, and validation datasets 
 

Clinical Domain Data Type YNHHS post-2016 
dataset  

YNHHS pre-2016 
dataset 

MIMIC-III 
dataset 

MIMIC-IV 
dataset 

Data 
Available 

Median 
[IQR] / % 

Data 
Availabl

e 

Media
n 

[IQR]/ 
% 

Data 
Availabl

e 

Media
n 

[IQR]/ 
% 

Data 
Availabl

e 

Media
n 

[IQR]/ 
% 

Aortic Insufficiency 
Pressure Half-Time 
(AIPHT) 

Continuous 1,200/10,000 508.00 
[417.00, 
611.00] 

0/100 - 0/100 - 0/100 - 

Aortic Valve Area 
Calculated by 
Velocity Time 
Integral 

Continuous 1,032/10,000 1.42 [0.95, 
1.83] 

13/100 2.50 
[1.45, 
3.1] 

7/100 2.10 
[1.73, 
2.55] 

0/100 - 

Aortic Valve Area 
Index 

Continuous 27/10,000 0.58 [0.44, 
0.86] 

14/100 0.8 
[0.42, 
1.6] 

0/100 - 0/100 - 

Aortic Valve Mean 
Gradient 

Continuous 1,278/10,000 12.00 
[8.00, 
22.00] 

67/100 14.00 
[10.00, 
27.00] 

3/100 17.00 
[14.50, 
19.50] 

0/100 - 

Aortic Valve Peak 
Velocity 

Continuous 8,429/10,000 1.44 [1.22, 
1.77] 

90/100 1.5 
[1.2, 
1.9] 

0/100 - 0/100 - 

Ejection Fraction Continuous 9,143/10,000 61.00 
[53.00, 
66.00] 

95/100 62.00 
[60.00, 
65.00] 

92/100 55.00 
[50.00, 
60.00] 

45/100 58.00 
[50.00, 
63.00] 

Global 
Longitudinal Strain 
(GLS%) 

Continuous 384/10,000 -17.0 [-
19.0, -
15.0] 

0/100 - 0/100 - 0/100 - 

Interventricular Continuous 8,449/10,000 0.98 [0.86, 97/100 1.0 1/100 1.0 [-] 0/100 - 
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Septum Thickness 
(IVSd)  

1.13] [0.80, 
1.20] 

Left Ventricular 
Outflow Tract Peak 
Gradient 

Continuous 
in YNHHS 
reports and 
Categorical 
in MIMIC-
III reports 

7,940/10,000 4.00 [3.00, 
6.00] 

20/100 3.69 
[2.67, 
6.38] 

53/100 53% 0/100 - 

Left Ventricular 
Outflow Tract Peak 
Velocity 

Continuous 8,065/10,000 1.02 [0.87, 
1.18] 

58/100 1.00 
[0.50, 
1.30] 

0/100 - 0/100 - 

Aortic Valve 
Structure 

Categorical         

    Normal  1,607/10,000 16.07% 39/100 39% 39/100 39% 20 20% 
    Bicuspid  64/10,000 0.64% 12/100 12% - - - - 
    Tricuspid   81/10,000 0.81% 28/100 28% - - - - 
    Mildly 
Thickened 

 - - - - 45/100 45% 3 3% 

    Moderately 
Thickened 

 - - - - 7/100 7% 1 1% 

    Severely 
Thickened 

 - - - - 4/100 4% 1 1% 

Aortic Valve 
Stenosis  

Categorical         

    No  - - 31/100 31% 40/100 40% 19 19% 
    Mild  238/10,000 2.38% 15/100 15% 8/100 8% 5 5% 
    Mild-Mod  18/10,000 0.18% 1/100 1% 4/100 4% - - 
    Moderate  67/10,000 0.67% 5/100 5% 3/100 3% - - 
    Mod-Sev  42/10,000 0.42% 3/100 3% 1/100 1% - - 
    Severe  187/10,000 1.87% 11/100 11% 5/100 5% - - 
Aortic Valve 
Regurgitation  

Categorical         

    No  - - - - 57/100 57% 19 19% 
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    Mild  1,630/10,000 16.30% 37/100 37% 14/100 14% 9 9% 
    Trace  786/10,000 7.86% 12/100 12% 13/100 13% 5 5% 
    Mild-Mod  209/10,000 2.09% 8/100 8% 3/100 3% - - 
    Moderate  177/10,000 1.77% 14/100 14% 1/100 1% 1 1% 
    Mod-Sev  17/10,000 0.17% 12/100 12% 2/100 2% - - 
    Severe  14/10,000 0.14% - - 1/100 1% - - 
Mitral Valve 
Structure  

Categorical         

    Normal  1,180/10,000 11.80% 59/100 59% 19/100 19% 19 19% 
    Thickened  355/10,000 3.55% 33/100 33% 62/100 62% 10 10% 
   Myxomatous  83/10,000 0.83% - - - - - - 
    Tethered  27/10,000 0.27% - - - - - - 
    Rheumatic  11/10,000 0.11% - - - - - - 
    Not Well Seen  - - - - 6/100 6% 3 3% 
Mitral Valve 
Stenosis  

Categorical         

    No  - - - - 13/100 13% - - 
    Mild  169/10,000 1.69% 19/100 19% 4/100 4% 2 2% 
    Moderate  31/10,000 0.31% 3/100 3% 1/100 1% 1 1% 
    Trace  18/10,000 0.18% 1/100 1% 1/100 1% - - 
    Severe  13/10,000 0.13% 2/100 2% - - - - 
    Mild- Mod  5/10,000 0.05% - - 2/100 2% - - 
    Mod- Sev  4/10,000 0.04% - - - - - - 
Mitral Valve 
Regurgitation  

Categorical         

    No  - - - - 19/100 19% 14 14% 
    Mild  3,079/10,000 30.79% 55/100 55% 20/100 20% 13 13% 
    Trace (Trivial)  2,110/10,000 21.10% 16/100 16% 32/100 32% 8 8% 
    Moderate  551/10,000 5.51% 5/100 5% 9/100 9% 5 5% 
    Mild-Mod  380/10,000 3.80% 2/100 2% 7/100 7% 1 1% 
    Mod-Sev  173/10,000 1.73% 1/100 1% - - - - 
    Severe  157/10,000 1.57% 3/100 3% 2/100 2% 2 2% 
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    Trace  10/10,000 0.10% 11/100 11% 1/100 1% - - 
Left Ventricular 
Diastolic Function  

Categorical         

    Mild  3,147/10,000 31.47% 11/100 11% 4/100 4% 3 3% 
    Normal  2,032/10,000 20.32% 57/100 57% 17/100 17% 1 1% 
    Moderate  821/10,000 8.21% 9/100 9% 2/100 2% - - 
    Severe  121/10,000 1.21% 1/100 1% 1/100 1% - - 
Left Ventricular 
Wall Thickness  

Categorical         

    Mildly Increased  2,349/10,000 23.49% 33/100 33% 37/100 37% 9 9% 
    Normal  1,314/10,000 13.14% 18/100 18% 44/100 44% 1 1% 
    Moderately 
Increased 

 303/10,000 3.03% 6/100 6% 1/100 1% - - 

    Severely 
Increased 

 58/10,000 0.58% 1/100 1% - - - - 

    Decreased  8/10,000 0.08% - - - - - - 
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Table 2: Model Performance Evaluation of HeartDX-LM on the held-out test set. 

Metrics 
 
 

Available 
Values 

Correct:  
N (%) 

(Extracted 
value matches 
original value) 

Incorrect:  
N (%) 

(Extracted 
value differs 
from original 

value) 

Failed:  
N (%) 

(Value not 
extracted) 

Cohen’s 
Kappa 

Column 

All variables 70,032 69,144 (98.7) 480 (0.7) 408 (0.6) 0.99 
AIPHT  1,200 1,173 (98) 0 (0) 27 (2) 0.98 
AVA Cont VTI  1,032 981 (95.3) 0 (0) 51 (4.7) 0.97 
AVA Index 27 27 (100) 0 (0) 0 (0) 1.0 
AV Mn Grad  1,728 1,680 (97.2) 25 (1.4) 23 (1.4) 0.98 
AV Pk Vel  8,429 8,331 (98.8) 96 (1.1) 2 (0.1) 0.96 
Ejection Fraction  9,143 8,902 (97.3) 97 (1.1) 144 (1.6) 0.87 
GLS% 384 383 (99.7) 0 (0) 1 (0.3) 0.99 
IVSd  8,449 8,401 (99.4) 48 (0.6) 0 (0) 0.98 
LVOT Pk Grad  7,940 7,868 (99.1) 43 (0.6) 29 (0.3) 0.98 
LVOT Pk Vel  8,065 7,969 (98.8) 74 (0.9) 22 (0.3) 0.97 
AV Structure  1,752 1,727 (98.6) 25 (1.7) 0 (0) 0.99 
AV Stenosis  552 552 (100) 0 (0) 0 (0) 1.0 
AV Regurgitation  2,833 2,813 (99.1) 0 (0) 20 (0.9) 0.99 
MV Structure  1,656 1,656 (100) 0 (0) 0 (0) 1.0 
MV Stenosis  240 240 (100) 0 (0) 0 (0) 1.0 
MV Regurgitation  6,460 6,440 (99.7) 0 (0) 20 (0.3) 0.99 
LV Diastolic Function  6,121 6,074 (99.2) 47 (0.8) 0 (0) 0.99 
LV Wall Thickness  4,032 3,938 (97.7) 25 (0.6) 69 (1.7) 0.98 
Abbreviations: AVA Cont VTI, Aortic Valve Area Calculated by Velocity Time Integral ; AVA Index, 
Aortic Valve Area Index; AV Mn Grad, Aortic Valve Mean Gradient; AIPHT, Aortic Insufficiency 
Pressure Half-Time; AV Pk Vel, Aortic Valve Peak Velocity; AV Regurgitation, Aortic Valve 
Regurgitation; AV Stenosis, Aortic Valve Stenosis; AV Structure, Aortic Valve Structure; GLS, Global 
Longitudinal Strain; IVSd, Interventricular Septum Thickness; ; LV Diastolic Function, Left Ventricular 
Diastolic Function; LVOT Pk Grad, Left Ventricular Outflow Tract Peak Gradient; LVOT Pk Vel, Left 
Ventricular Outflow Tract Peak Velocity; LV Wall Thickness, Left Ventricular Wall Thickness; MV 
Regurgitation, Mitral Valve Regurgitation; MV Stenosis, Mitral Valve Stenosis; MV Structure, Mitral 
Valve Structure. 
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Table 3: Model Performance Evaluation of HeartDX-LM on Pre-2016 Reports. 

Metrics 
 
 

Available 
Values 

Correct:  
N (%) 

(Extracted 
value matches 
original value) 

Incorrect:  
N (%) 

(Extracted 
value differs 
from original 

value) 

Failed:  
N (%) 

(Value not 
extracted) 

Cohen’s 
Kappa 

Column 

All variables 1044 909 (87.1) 11 (1.1) 124 (11.9) 0.86 
AIPHT  0 - - - - 
AVA Cont VTI  13 10 (76.9) 0 (0) 3 (23.1) 0.87 
AVA Index 14 12 (85.7) 0 (0) 2 (14.3) 0.92 
AV Mn Grad  67 59 (88) 3 (4.4) 5 (74.6) 0.84 
AV Pk Vel  90 83 (92.2) 1 (1.1) 6 (6.6) 0.71 
Ejection Fraction  95 86 (90.5) 0 (0) 9 (9.5) 0.50 
GLS% 0 - - - - 
IVSd  97 90 (92.8) 0 (0) 7 (7.2) 0.44 
LVOT Pk Grad  20 17 (85) 0 (0) 3 (15) 0.91 
LVOT Pk Vel  58 50 (86.2) 0 (0) 8 (13.8) 0.85 

AV Structure  95 79 (83.2) 0 (0) 16 (16.8) 0.35 
AV Stenosis  66 56 (84.8) 0 (0) 10 (15.2) 0.81 
AV Regurgitation  83 79 (95.2) 0 (0) 4 (4.8) 0.87 
MV Structure  92 80 (86.9) 3 (3.2) 9 (9.8) 0.53 
MV Stenosis  25 22 (88) 2 (8) 1 (4) 0.92 
MV Regurgitation  93 87 (93.5) 1 (1.1) 5 (5.4) 0.67 
LV Diastolic Function  78 66 (84.6) 1 (1.3) 11 (14.1) 0.72 
LV Wall Thickness  58 33 (56.9) 0 (0) 25 (43.1) 0.60 
Abbreviations: AVA Cont VTI, Aortic Valve Area Calculated by Velocity Time Integral ; AVA Index, 
Aortic Valve Area Index; AV Mn Grad, Aortic Valve Mean Gradient; AIPHT, Aortic Insufficiency 
Pressure Half-Time; AV Pk Vel, Aortic Valve Peak Velocity; AV Regurgitation, Aortic Valve 
Regurgitation; AV Stenosis, Aortic Valve Stenosis; AV Structure, Aortic Valve Structure; GLS, Global 
Longitudinal Strain; IVSd, Interventricular Septum Thickness; ; LV Diastolic Function, Left Ventricular 
Diastolic Function; LVOT Pk Grad, Left Ventricular Outflow Tract Peak Gradient; LVOT Pk Vel, Left 
Ventricular Outflow Tract Peak Velocity; LV Wall Thickness, Left Ventricular Wall Thickness; MV 
Regurgitation, Mitral Valve Regurgitation; MV Stenosis, Mitral Valve Stenosis; MV Structure, Mitral 
Valve Structure. 
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Table 4: Model Performance Evaluation of HeartDX-LM on MIMIC-III TTE Reports. 
 

Metrics 
 
 

Available 
Values 

Correct:  
N (%) 

(Extracted 
value matches 
original value) 

Incorrect:  
N (%) 

(Extracted 
value differs 
from original 

value) 

Failed:  
N (%) 

(Value not 
extracted) 

Cohen’s 
Kappa 

Column 

All variables 707 615 (86.9) 12 (1.7) 80 (11.3) 0.90 
AIPHT  0 - - - - 
AVA Cont VTI  7 0 (0) 0 (0) 7 (100) 0.48 
AVA Index 0 - - - - 
AV Mn Grad  3 3 (100) 0 (0) 0 (0) 1.0 
AV Pk Vel  0 - - - - 
Ejection Fraction  92 90 (97.8) 0 (0) 2 (2.2) 0.88 
GLS% 0 - - -  
IVSd  1 1 (100) 0 (0) 0 (0) 1.0 
LVOT Pk Grad  53 19 (35.8) 0 (0) 34 (64.2) 0.50 
LVOT Pk Vel  0 - - - - 

AV Structure  95 90 (94.7) 4 (4.2) 1 (1.1) 0.65 
AV Stenosis  61 51 (83.6) 2 (3.3) 8 (13.1) 0.81 
AV Regurgitation  91 81 (89) 2 (2.2) 8 (8.8) 0.61 
MV Structure  87 85 (97.7) 2 (2.3) 0 (0) 0.92 
MV Stenosis  21 13 (61.9) 0 (0) 8 (38.1) 0.77 
MV Regurgitation  90 88 (97.8) 0 (0) 2 (2.2) 0.90 
LV Diastolic Function  24 18 (75) 2 (8.3)  4 (16.7) 0.84 
LV Wall Thickness  82 76 (92.7) 0 (0) 6 (7.3) 0.83 
Abbreviations: AVA Cont VTI, Aortic Valve Area Calculated by Velocity Time Integral ; AVA Index, 
Aortic Valve Area Index; AV Mn Grad, Aortic Valve Mean Gradient; AIPHT, Aortic Insufficiency 
Pressure Half-Time; AV Pk Vel, Aortic Valve Peak Velocity; AV Regurgitation, Aortic Valve 
Regurgitation; AV Stenosis, Aortic Valve Stenosis; AV Structure, Aortic Valve Structure; GLS, Global 
Longitudinal Strain; IVSd, Interventricular Septum Thickness; ; LV Diastolic Function, Left Ventricular 
Diastolic Function; LVOT Pk Grad, Left Ventricular Outflow Tract Peak Gradient; LVOT Pk Vel, Left 
Ventricular Outflow Tract Peak Velocity; LV Wall Thickness, Left Ventricular Wall Thickness; MV 
Regurgitation, Mitral Valve Regurgitation; MV Stenosis, Mitral Valve Stenosis; MV Structure, Mitral 
Valve Structure. 
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Table 5: Model Performance Evaluation of HeartDX-LM on MIMIC-IV Reports. 
 

Metrics 
 
 

Available 
Values 

Correct:  
N (%) 

(Extracted 
value matches 
original value) 

Incorrect:  
N (%) 

(Extracted 
value differs 
from original 

value) 

Failed:  
N (%) 

(Value not 
extracted) 

Cohen’s 
Kappa 

Column 

All variables 220 201 (91.3) 2 (0.9) 17 (7.7) 0.95 
AIPHT  0 - - - - 
AVA Cont VTI  0 - - - - 
AVA Index 0 - - - - 
AV Mn Grad  0 - - - - 
AV Pk Vel  0 - - - - 
Ejection Fraction  45 44 (97.8) 1 (2.2) 0 (0) 0.98 
GLS% 0 - - - - 
IVSd  0 - - - - 
LVOT Pk Grad  0 - - - - 
LVOT Pk Vel  0 - - - - 

AV Structure  25 22 (88) 0 (0) 3 (12) 0.92 
AV Stenosis  24 23 (95.8) 0 (0) 1 (4.2) 0.97 
AV Regurgitation  34 33 (97) 0 (0) 1 (3) 0.98 
MV Structure  32 27 (84.4) 0 (0) 5 (15.6) 0.89 
MV Stenosis  3 2 (66.7) 0 (0) 1 (33.3) 0.83 
MV Regurgitation  43 38 (88.4) 1 (1.1) 4 (9.3) 0.90 
LV Diastolic Function  4 4 (100) 0 (0)  0 (0) 1.0 
LV Wall Thickness  10 8 (80) 0 (0) 2 (20) 0.89 
Abbreviations: AVA Cont VTI, Aortic Valve Area Calculated by Velocity Time Integral ; AVA Index, 
Aortic Valve Area Index; AV Mn Grad, Aortic Valve Mean Gradient; AIPHT, Aortic Insufficiency 
Pressure Half-Time; AV Pk Vel, Aortic Valve Peak Velocity; AV Regurgitation, Aortic Valve 
Regurgitation; AV Stenosis, Aortic Valve Stenosis; AV Structure, Aortic Valve Structure; GLS, Global 
Longitudinal Strain; IVSd, Interventricular Septum Thickness; ; LV Diastolic Function, Left Ventricular 
Diastolic Function; LVOT Pk Grad, Left Ventricular Outflow Tract Peak Gradient; LVOT Pk Vel, Left 
Ventricular Outflow Tract Peak Velocity; LV Wall Thickness, Left Ventricular Wall Thickness; MV 
Regurgitation, Mitral Valve Regurgitation; MV Stenosis, Mitral Valve Stenosis; MV Structure, Mitral 
Valve Structure. 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 8, 2024. ; https://doi.org/10.1101/2024.10.08.24315035doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.08.24315035
http://creativecommons.org/licenses/by-nc-nd/4.0/


 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 8, 2024. ; https://doi.org/10.1101/2024.10.08.24315035doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.08.24315035
http://creativecommons.org/licenses/by-nc-nd/4.0/


 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 8, 2024. ; https://doi.org/10.1101/2024.10.08.24315035doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.08.24315035
http://creativecommons.org/licenses/by-nc-nd/4.0/


 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 8, 2024. ; https://doi.org/10.1101/2024.10.08.24315035doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.08.24315035
http://creativecommons.org/licenses/by-nc-nd/4.0/

