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Abstract: The study of the development of the vertebrate retina can be addressed from several
perspectives: from a purely qualitative to a more quantitative approach that takes into account its
spatio-temporal features, its three-dimensional structure and also the regulation and properties at the
systems level. Here, we review the ongoing transition toward a full four-dimensional characterization
of the developing vertebrate retina, focusing on the challenges at the experimental, image acquisition,
image processing and quantification. Using the developing zebrafish retina, we illustrate how
quantitative data extracted from these type of highly dense, three-dimensional tissues depend
strongly on the image quality, image processing and algorithms used to segment and quantify.
Therefore, we propose that the scientific community that focuses on developmental systems could
strongly benefit from a more detailed disclosure of the tools and pipelines used to process and
analyze images from biological samples.

Keywords: retinogenesis; quantitative biology; imaging

1. Introduction

During embryo-genesis, the vast majority of the functional neurons that form the
central nervous system are generated from pools of undifferentiated neural progenitor
cells [1]. This process is tightly regulated at many levels by signaling pathways that are
highly conserved across vertebrates. One of the main focuses in the field of developmental
biology is understanding how these molecular features orchestrate neurogenesis toward
the correct final form, shape, organization, and function of the organs and tissue that form
the central nervous system.

Since this regulation is also highly conserved across different neurogenic tissues, the
neural retina has often been used as a model system to study vertebrate neurogenesis,
due mainly to its accessibility and simple structure [2,3]. The developing neural retina is
a pseudostratified neuroepithelium where several major types of neurons are generated:
retinal ganglion cells, cones and rods photoreceptors, amacrine, horizontal, bipolar, and
Müller glia [4,5]. Cells in the developing vertebrate retina are organized in three main
layers, and this structure is also highly conserved: photoreceptors localize at the outermost
layer, the innermost layer is formed mostly by retinal ganglion cells, and the remaining
four cell types form the inner nuclear layer (INL) [6,7].

From a structural and dynamic point of view, morphogenesis in the vertebrate retina
follows a well-established spatio-temporal organization along three major axes (Figure 1A):
dorsoventral, lateromedial and nasotemporal [8]. The sequence starts in a patch of progeni-
tor cells, often referred to as the ventronasal center [9]. This initial group of cells starts to
perform proliferative symmetric divisions, initiating a wave of proliferation that moves
from central-to-peripheral and from nasal-to-temporal areas [10]. In zebrafish, this prolifer-
ative wave covers the whole embryonic retina in around 16 h [11]. Later in development,
the differentiation of retinal progenitor cells (RPC) into terminally differentiated neurons
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also takes place as a wave, starting again at the ventronasal center and moving out toward
the ventrotemporal periphery [12,13].

At the cellular level, the structure of neural retina has a marked apicobasal polarity.
This asymmetrical organization of the cell membrane, the intracellular organelles and the
cytoskeleton results in very important properties as well as consequences on the biochem-
ical and even physical level. One of the most striking features is the movement of the
nuclei in correlation with the cell cycle of retinal progenitors, known as interkinetic nuclear
migration. During this process, cycling cells divide mostly when nuclei are localized at the
apical pole, then travel to the basal zone during the G1 phase, and come back to the apical
surface during G2 [14].

These multiple layers of organization, from the sub-cellular to systems levels, the
sequential generation of several neuronal subtypes, the wave-like proliferation and differ-
entiation, and the interplay between many signaling cascades, have attracted the attention
of scientists from a molecular [15], cell and evolutionary biology background [16], but also
researchers with a more theoretical, computational and image analysis approach [17].

Earlier studies approached the developing vertebrate retina with a focus on key
aspects at the genetic and/or molecular levels, providing a highly important but mostly
qualitative characterization of the processes, signals, and regulation involved in the retinal
specification [18]. This basic qualitative knowledge provided the foundation for more
recent contributions that studied retinogenesis from a quantitative spatial and dynamics
perspective, taking advantage of more powerful and specialized tools, both at the software
and hardware levels [19].

The main aim of this review is to provide a general overview of how the current
understanding of neural development has benefited from studies that share a strong
quantitative perspective. To do so, we organize the manuscript based of the complexity of
the different approaches, focusing initially on early and recent contributions with a clear
quantitative perspective, but no spatial and/or temporal information. As studies have
started to incorporate dynamics or spatial analysis, the amount of data and information
obtained has increased very fast, so statistical analysis, state-of-the-art imaging technology
and automated segmentation methods (Figure 1B) have become an integral part of these
contributions. Finally, in the last section, we propose a unified approach toward a full
four-dimensional characterization of vertebrate retinogenesis.
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Figure 1. (A). Three-dimensional reconstruction (using FIJI plug-in 3DViewer) from confocal sections
of a zebrafish retina at 44 h post fertilization. The tissue was mounted and stained with Topro3 (DNA
marker) (see methods section) in toto. Three-dimensional reconstruction is generated. The three axes
that define the developing retina are represented in three colors. (B). Illustration representing the
shift from qualitative to quantitative studies in retinal neurogenesis. As spatial and/or temporal
dimensions are taken into account, the amount of data generated and processed to obtain reliable
and robust quantification increases.

Figure 1. (A). Three-dimensional reconstruction (using FIJI plug-in 3DViewer) from confocal sections
of a zebrafish retina at 44 h post fertilization. The tissue was mounted and stained with Topro3 (DNA
marker) (see methods section) in toto. Three-dimensional reconstruction is generated. The three axes
that define the developing retina are represented in three colors. (B). Illustration representing the
shift from qualitative to quantitative studies in retinal neurogenesis. As spatial and/or temporal
dimensions are taken into account, the amount of data generated and processed to obtain reliable
and robust quantification increases.
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2. Methods

This section describes the methodology used to produce the experimental data pre-
sented in the contribution.

2.1. Animals

Experiments were conducted in wild-type zebrafish embryos, sustained according to
the standard procedures and protocols. All the images showing zebrafish retina images
were experimentally obtained by our group. All experimental protocols are in accordance
with the guidelines of the European Communities Directive (2012/63/EU) and the actual
Spanish legislation (Real Decreto 53/2013).

2.2. Sample Preparation

Embryos are incubated in E3 1× fish medium (5 mM NaCl, 0.17 mM KCl, 0.33 mM
CaCl2, 0.33 mM MgSO4) supplemented with methylene blue (Sigma, St. Louis, MO,
USA) at 28 ◦C. At 24 h post fertilization (HPF), the medium is supplemented with 0.003%
phenylthiourea (Sigma, 103-85-5) to block eye pigmentation. The embryonic stage is
determined by controlling the birth hour and by visual appreciation. The embryos are then
fixed with a 10% formalin solution (Sigma, HT501128) by incubation overnight at 4 ◦C or
2–3 h at room temperature. Finally, the embryos are washed with phosphate buffer saline
(PBS) 1× three times for 5 min each.

2.3. Immunostaining and Mounting

First, the embryos are exposed to proteinase K (10 µg/mL; Wagen-Biotech, Los An-
geles, CA, USA, 505-PKP). Different exposure times are selected according to embryonic
stage of the sample, ranging from 10 (24 HPF) to 45 min (48 HPF). Then, a short fixation
with 10% formalin is carried out, to prevent mechanical incidents during the experimental
procedure. After the formalin solution is washed, the embryos are incubated for 1 h at
room temperature or at 4 ◦C overnight, with a blocking solution of fetal bovine serum (FBS)
10% in PBS 1× and 0.6% triton (PBT 0.6%) to prevent subsequent non-specific interactions.
Once the blocking solution is removed, the embryos are incubated with primary antibodies
diluted in a solution of FBS 2% in PBT 0.6% at 4 ◦C overnight in an agitator. The following
primary antibodies were used in this study to detect by immunostaining the levels of the
GFP protein (1:1000; chicken, Abcam, Cambridge, UK, ab137827) and Sox2 protein (1:1000;
rabbit, GeneTex, GTX124477). Finally, the embryos are incubated with secondary antibodies
and other fluorescent dyes diluted in a solution of FBS 2% in PBT 0.6%. The secondary
antibodies used are A-11039 from ThermoFisher, Waltham, MA, USA (1:500; chicken) and
A-31573 from ThermoFisher (1:500; rabbit). The nuclei are stained with To-Pro3 (1:500;
ThermoFisher, T-3605). After immunostaining, the embryos’ heads are manually dissected
from their bodies, and the eyes are separated by sectioning the middle line. The embryos’
eyes are mounted in RapiClear 1.49 (SunJin Lab, Hsinchu, Taiwan) medium to minimize
refraction, scattering, and dispersion.

2.4. Image Acquisition

Images of confocal planes for the sample (1024 × 1024 pixel resolution) were taken
in a Leica SM800 confocal microscope, using a pinhole of 1 µm. An overlapping region
between confocal slices of 0.2 µm was established to ensure a correct reconstruction of the
tissue in the three dimensions.

Each channel was acquired separately and then, the channels were split (FIJI; Color-
Split Channels) to work only with the total nuclei channel, stained with To-Pro3.

2.5. Object Density Analysis

To assess the density of the different focal planes presented, a small code in the Julia
programming language was used. The object’s centroids were obtained from FIJI’s Analyze
Particles output. Each centroid in pixels was transformed to µm by multiplying the value
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in pixels by the known value in microns, according to the image acquisition settings. For
each object, 5 nearest neighboring objects were found based on distance from centroid to
centroid. An arithmetic mean was obtained from each object, and then, the represented
mean was calculated for all the objects in each image.

3. From Qualitative to Quantitative

As explained previously, many very important discoveries of how the early verte-
brate retina is formed were based simply on qualitative observations. For instance, the
determination of the main genetic and molecular signaling pathways that regulate retinal
development [20], and the important identification of potential therapeutic targets within
the molecules involved in these pathways [21], were based mainly on visual observation.
For instance, careful de visu inspection and analysis were sufficient to establish that, in
the zebrafish retina, the shift from progenitor to a terminally differentiated fate is mainly
determined by intrinsic factors, instead of input by neighbor cells [22]. In addition, a clever
qualitative approach was key to establish the role of the mouse atonal (ato) homolog math5
in the fate of RPCs [23].

These and other similarly important studies have contributed to uncover the regula-
tory networks of interactions that drive the organization of retinogenesis, also showing that
the molecules involved in this regulation is highly conserved in different animal model
systems and tissues [24–26]. These scientific contributions constitute clear examples that
experimental results are sometimes so evident that a careful and exhaustive quantification
or statistical analysis is not essential, and sometimes does not enhance substantially the
quality and integrity of the results reported.

Unfortunately, this is not always the case, and some early and recent studies that rely
on just qualitative observations would strongly benefit from a more quantitative approach.
For instance, studies based on visual exploration of histological sections show that the
proliferation of RPCs depends critically on cyclin D1 levels since retinas appear smaller
when cyclin D1 is downregulated. Based on these observations, the authors speculated
that the proliferation of RPCs in the neural retina is driven by unusually high levels of
cyclin D1.

In the same direction, the interaction between cyclin D1 and p27 during retinogenesis
was analyzed based on visual characterization of histological sections of the developing
mouse retina [27]. Another study [28] used a similar approach to conclude that the expres-
sion of cyclin D1 may alter photoreceptor cell differentiation and retina development by
potentially affecting the cell cycle. Focusing also on cyclin D1, Locker et al. [24] concluded
that Hh signaling decreases the expression of cyclin D1 in the Xenopus retina. Here, quan-
tification of the intensity levels on microscope images of histological sections of in situ
hybridization staining is presented, but the details of how these numbers are obtained are
not described.

These examples of the early characterization of the developing vertebrate retina
represented important contributions to the field, but they may have benefited from a more
extensive quantification and analysis. In addition, a more detailed explanation of how
values are obtained will arguably result in increased reliability of the data and more robust
conclusions. Moreover, careful statistical analysis of the data could reveal even more
relevant conclusions than simple eye inspection. For instance, in the same topic of the role
of cyclin D1, the potential of a more quantitative type of approach is very well illustrated
in the studies by Bienvenu et al. [29]. In this study, the authors combined microarrays,
ChiP and Rt-PCR to show that in the mouse retina, cyclin D1 acts at the level of the
promoters, serving as an activator and repressor of gene expression, and that reduction in
the proliferation of NPCs takes place via an interplay with the Notch signaling pathway.

These types of molecular biology tools and techniques represent a step forward in
terms of quantitative data, allowing us to perform statistical analysis and data processing
to extract relevant information. On the other hand, they do not provide spatial and/or
temporal information of how the neurogenesis in the vertebrate retina is orchestrated. As
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discussed in the introduction, the morphogenesis of the retina depends strongly on spatial
and temporal cues; therefore, a more complete and powerful approach should take into
account information about time and/or location.

4. 2D Quantitative Data

In the context of the developing vertebrate retina, spatial quantitative data commonly
relies on features identified by in situ hybridization, immunostaining, thymidine analog
incorporation, fluorescent labeling and other common techniques. Almost all of them
require, at some point, the use of a microscope to visualize and register features at the
subcellular, cellular or tissue levels.

Extracting quantitative data from images from biological samples can be defined as
an issue that involves concepts of microscopy, computer vision and/or bioimaging. The
key step to distinguish individual entities (such as cells, nuclei, organelles, etc.) in an
image is segmentation, i.e., the process of separating background (noise) from foreground
(information) to identify the different objects in the image [30]. Image segmentation is
often regarded as the cornerstone of image analysis, and several reviews have focused
on this issue in the context of biological images [31,32]. Segmentation of the objects of an
image can be done manually, semi-automatically or automatically, and there are free and
commercially available tools that segment images, requiring different levels of interaction
and expertise by the user.

Unfortunately, images from biological tissue, such as the developing retina, are sub-
optimal in terms of the signal-to-background ratio, contrast and resolution, so obtaining
an accurate segmentation of the objects is not straightforward, specially when images are
taken in vivo. Free and commercial general purpose tools for image segmentation are not
normally designed to work in conditions of high cellular density and low contrast, and
therefore, can introduce numerous segmentation errors, compromising the quantification
process. To illustrate this, we show in Figure 2A a confocal section of a developing zebrafish
retina at 44 h post fertilization (HPF) stained with nuclei marker and imaged in toto, using
a confocal microscope. Figure 2B shows the output of a standard algorithm for automated
segmentation (watershed) applied to this image. To illustrate the errors in the segmentation
of the image, nuclei identified incorrectly are highlighted in color in both panels.

Due to the difficulty of accurately segmenting images from dense developing bio-
logical tissues, manual quantification is often the preferred method when working in the
vertebrate retina. For instance, manual quantification is part of the pipeline used to estab-
lish the link between the mammalian homolog of inscuteable (mInsc) and the orientation
of the mitotic spindle in rat retinal explants [33]. Quantitative data extraction from manual
or semi-automatic analysis is also the approach used to identify the role of Sonic hedgehog
(Shh) in promoting the cell–cycle exit [34] in the developing zebrafish retina, contrary to
its role in promoting proliferation in other organs. In addition, the link between Shh, Gli,
and Hes1 in the regulation of progenitor cell behavior [35] has been established based
on manual quantification of proliferation dynamics in sections of the mouse developing
retina. In addition, in the same topic of regulation of the balance between proliferation
and differentiation, the role of the tumor suppressor Zac1 in promoting cell cycle exit, cell
fate specification and differentiation in retinal progenitors of Xenophus [36], the spindle
orientation effect in the fate of cells after division in neonatal rat retinas [37], the fate
of Ath5- progenitors in zebrafish embryos using time-lapse movies [38], as well as the
generation of retinal ganglion cells and photoreceptors mediated by Notch signaling [39],
have been established using manual quantification.

The advantage of direct counting or quantification of a given output value is that it
can be performed by any trained scientist with no expertise in image analysis. The main
disadvantage is that it introduces a new variable in the data: the human factor. In other
words, the data are inherently biased because they depend on the perception of the person;
therefore, reproducibility is compromised. To illustrate this, we provided the same image
of a developing zebrafish retina to a number of scientists familiar with biological images,



Biomedicines 2021, 9, 1222 6 of 15

and asked them to manually count the number of nuclei of the same section (assisted by the
Cell Counter plugin from FIJI). The results (Figure 3A) show that the difference between
values extracted can be up to 35% of the mean value, evidencing that de visu quantification,
when applied to the developing retina, depends strongly on the person that performs the
analysis, reducing in this way the reliability of the data.

Figure 2. Automated segmentation of images from developing zebrafish retina. (A) Section of
a developing zebrafish retina at 44 h post fertilization stained with nuclear marker Topro3 (see
methods section). (B) Segmentation of the same section using Fiji base algorithms (auto-threshold +
watershed). Individual objects not correctly identified are highlighted with different colors. (C) Image
segmentation of a section of a developing zebrafish retina at 44 HPF (using FIJI base algorithms)
following the pipeline: (1) automatic thresholding; (2) binary morphological opening (open function);
(3) binary morphological closure (close function); (4) watershed algorithm (watershed function).
(D) Segmentation using the exact same filters, with the only difference being that the order between
closing and opening filters is reversed. Nuclei segmented differently by these two very similar
pipelines are highlighted in colors.

Figure 3. (A) Bar plots comparing manual quantification of the same image from trained users, using
FIJI Cell Counter to assist with the quantification. Difference between users can be up to 35% of the
mean value. (B) Increase in the number of data points to be processed when taking into account
different dimensional levels of the developing vertebrate retina (vertical axis in log scale to help
visualize the changes in terms of orders of magnitude). (C) Automated quantification of the number
of nuclei of three different slices of a 3D stack of a given retina, showing differences up to 44% of
the mean value. (D) Quantification of the nuclei density in terms of the average distance to the
five closest nuclei show variations of 25% across the three different sections analyzed. Images are
processed in FIJI, using an auto-threshold followed by the watershed algorithm. The number of
objects is obtained from FIJI’s Analyze Particles.
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Another limitation of manual analysis is the sample size. It is well known that the
dynamics of developmental processes are very variable between individuals in the same
experiment. To account for this intrinsic variability, the number of independent repeats
required to obtain a reliable quantification should be substantially high (ideally, higher
than the three independent repeats of a typical experimental design). Performing manual
quantification becomes unattainable when using large datasets, or several independent
repeats for a single data point, specially when the number of objects to count is well above
three digits, as when working with mammalian retina sections.

In conclusion, manual counting might be a reasonable strategy when the images are
very clear and the number of features or entities to measure is reduced. On the other hand,
these are also the same conditions when direct automated segmentation performed by
conventional tools produces optimal results. Therefore, when working with sections with a
good signal-to-noise ratio that can be counted manually, automated image analysis should
still be the preferred option because, due to its accurate performance, it reduces human
bias, provides the possibility to quantify a large number of independent repeats and to
perform statistical analysis to reduce the effect of variability.

5. Automated Image Analysis

The field of automated image processing and analysis of biological and biomedical
data is very active, and many recent publications present updated tools and/or propose
new methods based on state-of-the-art algorithms [19,40,41] designed to overcome the
typical limitations of images from biological samples.

Careful automated image analysis was used to measure the total number of cells and
retinal ganglion cells in mice [42] and rat developing retinas [43]. Additionally, the contri-
bution of cell proliferation to the isotropic growth of the zebrafish developing retina [44],
the contribution of the retinal pigmented epithelium in the formation of the optic cup [45],
the role of retinoic acid [46] and the effect of ethanol exposure during retinogenenis [47,48],
used automated quantitative tools.

When working with automated segmentation tools, such as the commonly used
watershed or other model-based methods [49–53], one has to take into account that the
output will depend strongly on the quality and resolution of the image. Therefore, to
optimize the process of automated image segmentation and to facilitate the job of the
algorithm, images are often pre-processed with a sequence of filters and transformations
designed to enhance the contrast and to increase the signal-to-background ratio.

Unfortunately, this pre-processing impacts strongly the output of the segmentation,
and it has to be done carefully. To illustrate this, we show in Figure 2C,D two different
segmentation outputs from a section of a zebrafish retina (44 HPF, stained with nuclear
marker ToPro3), using the exact same algorithms and parameters. The only difference
between the left and right panels is a change in the order of application of opening and
closing filters (two of the most common filters used for image processing). The large
number of mismatches between the segmentation of the two almost identical pipelines
(colored cells in Figure 2C,D) illustrates the importance of the pre-processing design when
automatically segmenting dense images (of course, more important differences in the
processing would result in larger differences).

Despite this strong impact in the quantification, the processing pipeline and/or the
parameters applied are rarely described as part of the methods sections in scientific papers.
One of the main reasons for this is that the pre-processing and segmentation methods
in commercial tools are proprietary and, therefore, are not fully disclosed to protect the
intellectual property of manufacturers. Unfortunately, this lack of transparency impacts the
reproducibility (and therefore, the reliability) of the results. We strongly suggest that, simi-
lar to the detailed explanation of all experimental methodologies, reagents and protocols,
image processing pipelines should be also thoroughly explained in the methods section of
scientific manuscripts, including a detailed description of the filters and transformations
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applied, their sequence and the parameter values used. This information will ultimately
facilitate other researchers to carry on similar studies.

6. The Developing Vertebrate Retina in Three-Dimensions

The type of quantitative analysis highlighted in the previous section focuses on
comparison between still images of developing retinas at different time points or different
experimental conditions. The images used are often obtained from histological sections or
from single confocal planes of tissues imaged in toto. As explained in the introduction, the
formation, growth, and specification of the vertebrate retina do not occur homogeneously in
space. Several studies have reported sequential spatially asymmetric waves of proliferation
and differentiation [11–13]. Consequently, the spatial location of a cell at a given time
strongly determines its fate as a cycling progenitor or as any type of the seven differentiated
neuron subtypes that compose the vertebrate retina.

For the sake of simplicity, most studies do not take into account this heterogeneity; they
approach their studies focusing on representative histological sections of the developing
retina. The advantage is that quasi-2D sections are easier to image, process and quantify
than 3D images. The main disadvantage is that the information encoded spatially during
the formation of the retina is lost when focusing on one single representative section.
Moreover, the fact that differentiation and proliferation take place as a spatio-temporal
three-dimensional wave makes it impossible to define what can be really considered a
“representative” section of the developing retina.

On top of this, the size of the retina is also non-homogeneous, and therefore, the
number of cells in the image depends on where in the retina the image was taken. To
illustrate this, we show in Figure 3C three different values of the number of cells performed
in three different sections of same zebrafish retina at 44 HPF (nuclei stained with ToPro3).
Automated quantification of the number of nuclei shows variations of 44% of the mean
value between different sections of the same 3D image. Therefore, an increase or decrease in
the cell numbers associated to two different experimental conditions can be easily confused
with variations in the sections being processed and quantified. Quantification of the cell
density also shows variations between the planes (Figure 3D); this is important because
it directly affects the performance of the segmentation algorithms, resulting in important
changes in the accuracy of the data depending on the section selected. Based on this, we
suggest that the optimal way to correctly quantify a heterogeneous tissue, such as the
developing retina, is a three-dimensional approach.

The shift from 2D to 3D in many areas of biosciences and biomedical research is
already in progress, taking advantage of improved hardware and software tools [54]. At
the experimental level, one of the main problems when imaging thick whole-mount three-
dimensional tissues is the absorption and scattering of photons when traveling through the
sample. This results in blurred, noisier images as we focus on regions deep into the organ.
Fortunately, this can be minimized in vitro by using mounting solutions that improve
the transparency of biological tissues [55]. These mounting solutions or treatments can
reduce the differences in the refractive index (RI) between the tissue and the surrounding
medium. Additionally, they can modify the size and structure of biological molecules
responsible for light scattering, such as collagen [56,57]. Finally, tissue dehydration may be
also contributing to the clearing process, affecting the density and molecular organization,
and therefore, decreasing light scattering [58].

To minimize loss of resolution due to light absorption, chemical treatment is often
applied to decolorize the tissue. In the context of the developing retina, melanin is one of
the main molecules that absorb light. In zebrafish and other organisms, phenylthiourea
(PTU) is often added to the media where animals are developing to inhibit myelinization
and reduce the opacity of the tissue, although it may have side effects in other aspects of
the developmental processes [59].

From the hardware perspective, several recent tools have been developed and im-
proved that facilitate the acquisition of data and image from large dense samples with
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quantitative quality. Conventional or two-photon confocal microscopy can be used to per-
form 3D optical sectioning on whole mount tissues. One of their main limitations is speed
because images are registered based on point-scanning (i.e., voxel-by-voxel). This increases
the exposure of the sample to a highly energetic laser to cover all confocal sections of a
thick sample, resulting in increased photobleaching and photo-toxicity that can damage
the tissue and affect the quality of the image [60].

Due to these limitations, light-sheet fluorescence microscopy (LSFM) arises as the
optimal approach when working with thick 3D samples. In these systems, excitation light
and emission light are emitted and captured, respectively, by two different lenses, while
the sample or the light source rotates to image the whole tissue.

This way, instead of the point-scanning method of confocal microscopy, a whole
section can be imaged and registered at once, resulting in a much higher acquisition speed.
Additionally, by using two objectives instead of one, photons only have to travel through
the sample once, minimizing photobleaching, phototoxicity, light absorption and light
dispersion [61].

In the context of vertebrate retinogenesis, LSFM has been already used to reconstruct
the early development of zebrafish embryos at a speed of 1.5 billion voxels per minute
to study global cell division patterns [62]. Additionally, elective plane illumination mi-
croscopy (SPIM) has been used to study characteristic migration patterns and global tissue
remodeling in the early endoderm [63] of zebrafish embryos.

After image acquisition, the next challenge is the quantification of these 3D images.
Three-dimensional reconstructions, either from confocal or LSFM, can illustrate very beau-
tifully the shape and organization of the tissue, but translating all this information into
numbers is virtually impossible without the help of specialized software. Several commer-
cial and open-source computational tools have been developed and are widely used in this
context. Again, similar to what occurs in two-dimensions, the output of the quantification
depends strongly on the quality of the image, the processing pipeline, the parameters, and
the type of algorithm for segmentation as well as, ultimately, the software used.

Different computational tools produce different output because they rely on different
approaches, from conventional mathematical operations designed to filter and segment
objects, to state-of-the-art deep learning neural networks [64] that identify objects based on
hundreds of features or rules. Some deep-learning implementations are focused on tasks
such as object detection [65,66], image segmentation [67,68], object tracking [69,70], object
classification [71] or a combination of these [72–76].

Due to this core differences, a given algorithm or tool may work better in one type
of three-dimensional image than others. Additionally, these tools were mainly designed
to quantify images with large empty spaces between objects, or a very good signal-to-
background ratio. Unfortunately, images from three-dimensional dense biological tissues,
such as the developing vertebrate retina, often have a resolution and contrast that is far
from optimal, specially when imaged in vivo. In these conditions, conventional tools do
not produce accurate results, so the full potential of a three-dimensional approach can be
compromised by the lack of reliable quantification tools.

In this direction, we have recently developed OSCAR: an object segmentation counter
and analysis resource that is designed to work with three-dimensional images where the
resolution is low and/or the object density is high [19]. Our tool combines nonlinear fitting
algorithms with statistical analysis to bypass segmentation errors that frequently take
place when segmenting automatically low-resolution images. In brief, OSCAR reconstructs
three-dimensional objects by taking advantage of the three-dimensional information in the
image and correct the mistakes that may occur in the segmentation process. An illustration
of the process performed by OSCAR is shown in Figure 4. The three-dimensional image
is processed, filtered, enhanced and segmented in a plane-by-plane basis. Next, objects
identified in neighboring planes are connected based on statistical analysis and nonlinear
fitting algorithms. Finally, a digital representation is generated based on the geometry of
the objects detected. Our results show that OSCAR is able to outperform other tools used
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commonly for image analysis in conditions of low resolution and low signal-to-background,
typical of biological 3D images registered in toto or in vivo [19].
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tratified layer of neuroepithelial cells [45,77]. After the formation of the primordium of
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7. The Developing Vertebrate Retina in Four-Dimensions

Neurogenesis is a highly dynamic process with many signals and events that depend
on time. Before neurogenesis starts, neural stem cells are organized in a single pseudos-
tratified layer of neuroepithelial cells [45,77]. After the formation of the primordium of
the central nervous system as a neural tube, two protuberances appear at the sides of the
future brain, called optic vesicles (lobes in zebrafish). Later on, these regions differentiate
into the neural retina, the retinal pigmented epithelium (RPE) and the optic cup. Finally,
the interplay between the formation of the RPE and the invagination of the optic lobe
ultimately shapes the whole optic cup [78,79].

Another very direct indication that illustrates how the core features of retinogenesis
depend on time is the changes in the differentiation probability of the retinal progenitor
cells into the different subtypes of terminally differentiated neurons. These type of decisions
have been shown to follow a stochastic pattern in the vertebrate developing retina, with
the probabilities of differentiation occurring in a well conserved sequential order [80,81]:
the initial wave of differentiation into retinal ganglion cells is followed by a second wave
in which the horizontal cells and cones are originated, which then partially overlap in
time with the following wave of retinogenesis, giving rise to amacrine cells, while also
overlapping with the differentiation stage into rods and, during a shorter period, bipolar
cells. Finally, a last wave of differentiation originates Müller glia [80–82].

Interkinetic nuclear migration (INM) is another very important process with a strong
dynamic component. This coupling between nuclei displacement and cell cycle progression
is driven mainly by forces acting at the cytoskeleton level; the causes and consequences of
INM are still being elucidated [83].

These three illustrations of highly important dynamic processes that shape the growth,
formation, and specification of the vertebrate retina suggest that a full quantitative charac-
terization also has to take into account the temporal variable.

To date, this type of full four-dimensional characterization is not available for the
vertebrate developing retina. On the other hand, it has been successfully implemented
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for segmenting 4D images of cardiac magnetic resonances [84] for assessing the whole
embryonic development of the zebrafish in the first 24 h [85], for establishing the trichome
patterning of Arabidopsis thaliana through 4D confocal images [86] or for quantitatively
analyzing 4D confocal images of anchor-cell invasion in Caenorhabditis elegans [87].

Due to the already-mentioned accessibility of the retina, we believe that a full four-
dimensional characterization of its development at single cell resolution is not beyond
reach. An even more powerful approach will be to perform these type of time-lapse movies
in animals where the fate of the cells can be identified in vivo, using fluorescent reporters of
differentiation, such as the widely used zebrafish ath5:GFP transgenic line (engineered to
express the green fluorescent protein (GFP) under regulation of the promoter of the Atonal-
homolog 5 protein (ath5) [38], the Fucci system to monitor cell cycle progression [88,89] or
fluorescent reporters of the mode of division [90]. A combination of a four-dimensional
approach with these type of molecular biology tools would provide us with the ultimate
weapon to fully characterize the developing vertebrate retina.

8. Discussion

The vertebrate developing retina is an optimal model system to study the dynamics
and the balance between proliferation and differentiation during neurogenesis, both at
single cell resolution and at the system level. Its size and accessibility allows us to obtain
in toto images and time-lapse movies with quantitative detail. Combined with antibody
staining or fluorescent reporters to discriminate between the different cell fates that coexist
in its pseudostratified organization, it is an ideal candidate system for multi-level spatial
and temporal approaches.

After the recent advances in microscopy techniques, such as the already-mentioned
LSFM technology, the bottleneck toward this full characterization of vertebrate retinal
development is the availability of fast, automatic and reliable methods of 3D image seg-
mentation and cell tracking. Automated cell tracking of the position and fate of all the
cells in a three-dimensional tissue as dense as the developing vertebrate retina is a very
challenging and demanding task.

In addition, this approach involves the additional challenge of processing of a large
amount of information. For instance, in the context of the developing zebrafish retina,
a minimum of a 24 h period is needed to account for the complete developmental process
of the first wave of differentiation of neurons that form the retina. Assuming a rather
conservative 10 min spacing between frames, a single time-lapse movie should contain a
minimum of 144 frames. From each time frame, a minimum of 100 slices are needed for a
proper 3D reconstruction of a single retina. As a result, a minimum of 14,400 slices have to
be segmented and processed. The typical three independent repeats for a given experiment
will result in more than 40,000 2D images for a single experimental condition.

At the cellular level, the position of each cell in the 3D space has to be processed
to connect objects in consecutive frames. Assuming that a zebrafish retina, if formed
by around 5000 at the time that the first wave of differentiation finishes (at around 44
HPF), tracking all the cells over 24 h will require the processing of above 2e6 data points
(three spatial coordinates per cell). Figure 3B shows an estimation of how the number of
the data increases as we take into account more dimensions, with an increase of one order
of magnitude from 2D sections to the 3D full tissue. The data processed increase by two
extra orders of magnitude when the temporal dimension is added.

Once this type of tool is available and optimized, the next step is the comparison of
homeostatic conditions with situations where some signaling pathways are disrupted by
small molecule inhibition. Quantification of the differences in the mode and/or rate of
division will allow us to unveil the true role of each signaling network, and how some of
them interplay during the orchestration of the multiple spatial and temporal processes that
result in a fully functional retina.
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9. Conclusions

The field of developmental biology, and, in particular, retinal neurogenesis, has
become an example of good practices when studying heterogeneous tree-dimensional
tissues from a quantitative perspective with accurate spatial and temporal resolutions. To
move further into this direction, an increased effort should be focused into describing with
sufficient detail the pipelines and tools used in the acquisition, processing, quantification,
and data analysis. We hope that the present analysis of the state of the art in the field
illustrates that a full multi-dimensional quantitative characterization of the developing
vertebrate retina can only be achieved as a collective effort.
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