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Abstract: Periodically driven non-Hermitian systems could possess exotic nonequilibrium phases with
unique topological, dynamical, and transport properties. In this work, we introduce an experimentally
realizable two-leg ladder model subjecting to both time-periodic quenches and non-Hermitian effects,
which belongs to an extended CII symmetry class. Due to the interplay between drivings and
nonreciprocity, rich non-Hermitian Floquet topological phases emerge in the system, with each of
them characterized by a pair of even-integer topological invariants (w0, wπ) ∈ 2Z× 2Z. Under the
open boundary condition, these invariants further predict the number of zero- and π-quasienergy
modes localized around the edges of the system. We finally construct a generalized version of the mean
chiral displacement, which could be employed as a dynamical probe to the topological invariants of
non-Hermitian Floquet phases in the CII symmetry class. Our work thus introduces a new type of
non-Hermitian Floquet topological matter, and further reveals the richness of topology and dynamics in
driven open systems.
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1. Introduction

Non-Hermitian states of matter have attracted great attention in recent years due to their
intriguing dynamical and topological properties (see [1–8] for reviews). Theoretically, a wide range
of non-Hermitian topological phases and phenomena have been classified and characterized according to
their symmetries [9–17] and dynamical signatures [18–23]. Experimentally, non-Hermitian topological
matter have also been realized in cold atom [24,25], photonic [26–29], acoustic [30–32], electrical
circuit [33–35] systems, and nitrogen-vacancy-center in diamond [36], leading to potential applications
such as topological lasers [37–39] and high-performance sensors [40–43]. Additionally, non-Hermitian
structures could also arise in supersymmetric quantum mechanics, where a series of supersymmetric
models have been solved exactly [44–48].

Recently, the study of non-Hermitian physics has been extended to Floquet systems, in which the
interplay between time-periodic driving fields and gains/losses or nonreciprocal effects could potentially
yield topological phases that are unique to driven non-Hermitian systems [49–63]. In early studies, various
non-Hermitian Floquet topological phases and phenomena have been discovered, including non-Hermitian
Floquet topological insulators [49,50,53–55], superconductors [52], semimetals [63], and skin effects [56,57].
Meanwhile, the time-averaged spin texture and mean chiral displacement have been suggested as

Entropy 2020, 22, 746; doi:10.3390/e22070746 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0001-8944-8976
http://www.mdpi.com/1099-4300/22/7/746?type=check_update&version=1
http://dx.doi.org/10.3390/e22070746
http://www.mdpi.com/journal/entropy


Entropy 2020, 22, 746 2 of 18

two dynamical tools to extract the topological invariants of non-Hermitian Floquet systems [49–51,53].
These discoveries extend the boundary of nonequilibrium phases of matter to driven non-Hermitian
systems, and shed light on new approaches for the detection of their intriguing features.

In previous studies, non-Hermitian Floquet phases were explored mainly in two-band systems.
According to the periodic table of topological matter, the CII symmetry class refers to the chiral symplectic
class. A topological phase in this symmetry class is protected by the time-reversal, particle-hole, and chiral
symmetries [64,65]. Moreover, the tight-binding Hamiltonian describing a system in the CII symmetry
class possesses a minimum number of four bands. In this work, we uncover a new type of non-Hermitian
Floquet topological matter in the extended CII symmetry class, which contains at least four quasienergy
bands. Our system can be realized in a periodically quenched nonreciprocal two-leg ladder, as introduced
in Section 2. Each topological phase of the system is characterized by a pair of even-integer winding
numbers (w0, wπ) ∈ 2Z × 2Z. With the change of the nonreciprocal parameters of the model, we
find rich non-Hermitian Floquet phases with large winding numbers, and various topological phase
transitions induced by non-Hermitian effects, as presented in Section 3. In Section 4, we obtain multiple
quartets of non-Hermitian Floquet edge modes in our system at zero and π quasienergies under the open
boundary condition (OBC), and establish the correspondence between the number of these modes and
bulk topological invariants (w0, wπ). In Section 5, we explore the dynamical aspects of our model by
generalizing the mean chiral displacement (MCD) to non-Hermitian Floquet systems in the CII symmetry
class, and demonstrate the relationship between the MCDs and topological winding numbers (w0, wπ).
Finally, we summarize our findings and discuss potential future directions in Section 6.

2. Model and Symmetry

The model we are going to investigate can be viewed as a driven, non-Hermitian version of the Creutz
ladder (CL) with spin-1/2 fermions and spin-orbit couplings (or spinless particles with four sublattice
degrees of freedom). The CL model refers to a quasi-one-dimensional lattice formed by two coupled legs
and subjected to a perpendicular magnetic flux [66]. It could possess symmetry-protected degenerate
zero modes at its boundaries, and therefore belong to one of the earliest examples of a topological
insulator [66]. In later studies, the CL model has been realized in photonic [67,68] and cold atom [69,70]
systems, and utilized in the investigations of Aharonov–Bohm cages [71,72], topological pumping [73],
localization [74,75], and many-body topological matter [76–80]. Recently, spin-1/2 extensions of the CL
model have also been explored in several studies [81–83], leading to the discoveries of richer topological
features. Furthermore, when time-periodic drivings are applied to the spin-1/2 CL, a series of Hermitian
Floquet topological phases in the CII symmetry class were found [84]. Each of these phases is characterized
by a pair of even-integer topological winding numbers, quantized dynamics of bulk states, together with
degenerate quartets of zero and π Floquet edge modes under the OBC [84]. In this work, the construction
of our system can be viewed as a non-Hermitian extension of the model studied in Ref. [84], and will be
referred to as the non-Hermitian periodically quenched two-leg ladder (PQTLL).

The time-dependent Hamiltonian of the non-Hermitian PQTLL model takes the form:

H(t) =

{
H‖ t ∈ [jT, jT + T/2)

H⊥ t ∈ [jT + T/2, jT + T)
, (1)

where j ∈ Z and T is the driving period. Within the first (second) half of each driving period, the system is
described by the time independent Hamiltonian H‖ (H⊥). In the middle of the driving period, a sudden
quench is applied to the system, so that its Hamiltonian is switched from H‖ to H⊥. Throughout this work,
we will set h̄ = T = 1 as the convention of units. In the lattice representation, the Hamiltonian components
H‖ and H⊥ are explicitly given by:
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H‖ = ∑
n

Jx(|n〉〈n + 1|+ H.c.)σ0 ⊗ τz −∑
n

iV(|n〉〈n + 1| −H.c.)σy ⊗ τ0, (2)

H⊥ = ∑
n

Jy|n〉〈n|σ0 ⊗ τx + ∑
n

i Jd(|n〉〈n + 1| −H.c.)σz ⊗ τx. (3)

Here n = 1, ..., N are the indices of unit cells, which are arranged along the horizontal (x) direction of the
ladder. σ0 and τ0 are both 2× 2 identity matrices. An illustration of the model is presented in Figure 1.
Each unit cell of the ladder contains two spin and sublattice components, and σx,y,z, τx,y,z are Pauli matrices
acting on the spin-1/2 and sublattice degrees of freedom, respectively. The system parameters Jx and Jy

represent the intercell and intracell hopping amplitudes along the horizontal (x) and vertical (y) directions
of the ladder. Jd controls the coupling strength between different sublattices in adjacent unit cells, and V
describes the amplitude of spin-orbit coupling among particles with opposite spins in the same sublattice
of nearest-neighbor unit cells. In this work, we allow Jy and Jd to take complex values, i.e., Jy = Jr

y + iJi
y

and Jd = Jr
d + iJi

d. Physically, the imaginary parts Ji
y and Ji

d could describe the nonreciprocity of hoppings
along the vertical and diagonal directions of the ladder.

↑
↓

±𝐽𝐽𝑥𝑥 𝐽𝐽𝑦𝑦 ±𝑖𝑖𝐽𝐽𝑑𝑑 ±𝑉𝑉

𝑥𝑥

𝑦𝑦

Sublattice A Sublattice B

⋯

⋯

Figure 1. Schematic diagram of the non-Hermitian two-leg ladder model. The forward (backward) copy
of the ladder corresponds to the spin up (down) components. Each unit cell of the ladder contains two
sublattices A and B. The intracell and intercell coupling parameters are denoted explicitly in the figure.
In the first (second) half of a driving period, only the couplings (Jx, V) [(Jy, Jd)] are switched on.

The Floquet operator of the non-Hermitian PQTLL model, which corresponds to its evolution operator
over a complete driving period (e.g., from t = j + 0− to j + 1 + 0−), can be expressed as:

U = T e−i
∫ 1

0 H(t)dt = e−
i
2 H⊥ e−

i
2 H‖ , (4)

where T is the time-ordering operator, which directly leads to the last equality as the system Hamiltonian
in Equation (1) is time-independent within each half of the driving period. The quasienergy spectrum ε of
the system can be obtained by solving the eigenvalue equation U|ψ〉 = e−iε|ψ〉 under a fixed boundary
condition, where |ψ〉 is the corresponding right eigenvector of U. With a ladder of N unit cells and under
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the period boundary condition (PBC), one can perform the Fourier transform |n〉 = 1√
N ∑k e−ink|k〉 to

express U in momentum space as U = ∑k |k〉U(k)〈k|. Here k ∈ [−π, π) is the quasimomentum, and

U(k) = e−ih⊥(k)e−ih‖(k), (5)

h‖(k) = Jx cos kσ0 ⊗ τz + V sin kσy ⊗ τ0, (6)

h⊥(k) =
Jy

2
σ0 ⊗ τx − Jd sin kσz ⊗ τy. (7)

Since Jy and Jd are in general complex parameters of the system, U(k) is not unitary. In terms of the
biorthogonal eigenbasis of U(k), Equation (5) can be equivalently written as:

U(k) = ∑
`=1,2

∑
η=±

e−iεη
` (k)|εη

`(k)〉〈ε
η
` (k)|, (8)

where |εη
`(k)〉 (〈εη

` (k)|) is the right (left) eigenvector of U(k) with the quasienergy ε
η
`(k) = ηε`(k) ∈ C. ` =

1, 2 are the indices of the two quasienergy bands, whose real parts satisfy Re[ε`(k)] ∈ (0, π]. The complex
dispersion {εη

`(k)} thus contains four Floquet bands, with two possible spectral gaps at quasienergies
zero and π. A topological phase transition may happen when a gap closes at one of these quasienergies.
This can be further captured by the vanishing of one of the two gap functions ∆0 and ∆π , defined as:

∆0 ≡ min
k,`

√
[Reε`(k)]2 + [Imε`(k)]2, (9)

∆π ≡ min
k,`

√
[|Reε`(k)| − π]2 + [Imε`(k)]2. (10)

In the next section, these functions will be utilized to obtain the boundaries between different Floquet
topological phases of the non-Hermitian PQTLL model.

The topological invariants of the non-Hermitian Floquet phases in our system are determined by
the symmetries of U(k). Following the usual strategy in the study of one-dimensional (1D) Floquet
systems [85,86], we rewrite U(k) in a pair of symmetric time frames as:

U1(k) =e−
i
2 h‖(k)e−ih⊥(k)e−

i
2 h‖(k) = e−ih1(k), (11)

U2(k) =e−
i
2 h⊥(k)e−ih‖(k)e−

i
2 h⊥(k) = e−ih2(k). (12)

It is clear that U1,2(k) and U(k) are related by similarity transformations, which can be achieved by shifting
the initial time of the driving forward or backward over half a period. The Floquet operators U1,2(k)
thus share the same quasienergy dispersion with U(k), and they can be expressed in their corresponding
biorthogonal basis and as:

Uα(k) = ∑
`=1,2

∑
η=±

e−iεη
` (k)|εη

α`(k)〉〈ε
η
α`(k)|, (13)

where α = 1, 2 denote the two time frames. Moreover, the effective Hamiltonians h1,2(k) in Equations (11)
and (12) both possess the extended time-reversal symmetry T , the extended particle-hole symmetry C,
and the sublattice (chiral) symmetry S , i.e.,

T = iσy ⊗ τ0, T T ∗ = −1, T h>α (k)T −1 = hα(−k), (14)
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C = σx ⊗ τy, CC∗ = −1, Ch>α (k)C−1 = −hα(−k), (15)

S = σz ⊗ τy, S2 = 1, Shα(k)S = −hα(k). (16)

According to the symmetry classification of Floquet systems [87] and the periodic table of non-Hermitian
topological phases [9,11], the non-Hermitian PQTLL model belongs to an extended CII symmetry class
with even-integer topological invariants. In the meantime, the system also possesses the inversion
symmetry P = σx ⊗ τ0 with P2 = 1, in the sense that Phα(k)P−1 = hα(−k) for α = 1, 2. According to
Ref. [9], the coexistence of time-reversal and inversion symmetries allows a system to be immune to the
non-Hermitian skin effect [88–90]. The topological characterization and bulk-boundary correspondence
of our non-Hermitian PQTLL model can thus be treated in a standard manner, as will be presented
in the following sections. Note in passing that under the combined action of P and T , we have
(PT )h>α (k)(PT )−1 = hα(k). This is a different form of the PT -symmetry, which in general cannot
guarantee the realness of the quasienergy spectrum of Uα(k). Besides, even for a PT -symmetric system,
the spectrum can only be real in the PT -invariant regime, and will in general be transformed from real
to complex when the system parameters are varied across a PT -symmetry breaking transition [91,92].
Neverless, as will be shown in Section 4, the topological edge modes in our system always possess
real quasienergies zero or π. These Floquet edge modes are thus immune to any possible PT -breaking
transitions so long as the sublattice symmetry S is preserved.

3. Topological Invariants and Phase Diagrams

In this section, we introduce the topological invariants of our non-Hermitian PQTLL model,
and construct its topological phase diagrams for typical situations.

Following the symmetry analysis in the last section and the topological characterizations of Hermitian
Floquet phases [84,93], the Floquet operator Uα(k) in the α’s time frame possesses a topological winding
number wα, which can be defined as:

wα =
∫ π

−π

dk
4π

Tr[SQα(k)i∂kQα(k)], (17)

where α = 1, 2, k is the quasimomentum, S is the sublattice symmetry operator, and the trace is taken
over all the internal degrees of freedom including spins and sublattices. Qα(k) is usually called the
Q-matrix [94], which takes the form of a biorthogonal projector:

Qα(k) = ∑
`,η

η|εη
α`(k)〉〈ε

η
α`(k)|. (18)

Here ` = 1, 2 are the indices of the two Floquet quasienergy bands, whose real parts are positive. η = ±
denote the signs of the real parts of quasienergies. The right (left) eigenvectors {|εη

α`(k)〉} ({|εη
α`(k)〉})

can be obtained by expressing the Floquet operator in the α’s time frame as Uα(k) = Vα(k)Λα(k)V−1
α (k),

where Λα(k) is diagonal and {|εη
α`(k)〉} ({|εη

α`(k)〉}) are given by the columns of Vα(k) ([V−1
α (k)]†) [94].

Therefore, Qα(k) can be viewed as a flattened effective Hamiltonian of Uα(k), whose eigenphases with
positive and negative real parts are set to zero and π, respectively. Note that since Qα is given by the
difference between the projectors of two sets of bulk quasienergy bands (with η = ±), its formalism
does not rely on the exact number of bands possessed by the system [9]. Indeed, through the formalism
of the projector in Equation (18), only the net information of bands contained in the two quasienergy
ranges Re(ε) ∈ (−π, 0) and Re(ε) ∈ (0, π) are taken into accout, which generalizes the winding number of
two-band systems to multiple-band cases [9]. For a system with the sublattice symmetry S and the spectral
gaps at ε = 0, π, the total number of bulk bands is even. Furthermore, the set of Pauli matrices σx,y,z plus
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the 2× 2 identity σ0 could not satisfy all the symmetry requirements of the CII class (i.e., T T ∗ = −1,
CC∗ = −1 and S2 = 1) simultaneously. Therefore, a 1D Floquet system in the CII symmetry class contains
at least four quasienergy bands. The model we introduced satisfies this requirement for the minimal
number of bulk bands.

With the help of (w1, w2) in Equation (17) and the topological characterization of chiral symmetric
Floquet systems [86], we can construct another pair of topological winding numbers (w0, wπ) as:

w0 =
w1 + w2

2
, wπ =

w1 − w2

2
. (19)

According to Ref. [84], these invariants would only take even-integer values, and they provide a complete
characterization for all 1D Hermitian Floquet topological phases in the CII symmetry class. Furthermore,
the requirement of two invariants reveals the difference between Floquet and non-driven systems. Since the
Floquet operator U possesses two quasienergy gaps at ε = 0 and π, there could be two types of degenerate
edge modes at these quasienergies, whose numbers are thus counted by two distinct topological invariants.
In the following, we will demonstrate that the topological invariants (w0, wπ) in Equation (19) could
also characterize the Floquet phases of the non-Hermitian PQTLL model, and they always take real and
even-integer values for a gapped topological phase. Note in passing that for our system, the spectral gaps
take the form of lines through zero and π quasienergies. For a non-driven system with the sublattice
symmetry S , the non-Hermitian topological phases can be characterized by a winding number w ∈ 2Z [9],
which count the number of zero-energy edge modes under the open boundary conditions. Our results
extend this topological characterization to 2Z× 2Z, with the second even integer wπ being related to the
line-gap induced at the quasienergy π by the periodic driving fields.

By evaluating (w0, wπ) numerically with Equations (17) and (18), we obtain the topological phase
diagrams of the non-Hermitian PQTLL model for two typical cases, as presented in Figure 2 and 3.
In Figure 2, we show the phase diagram of the system with respect to the real and imaginary parts
of the vertical hopping amplitude Jr

y and Ji
y. The other system parameters are all chosen to be real and

set as (Jx, Jd, V) = (0.5π, 4π, 0.1π). From the phase diagram, we see clearly that with the increase of
the nonreciprocal parameter Ji

y, a series of topological phase transitions can be induced, with each of
them being followed by the quantized change of w0 or wπ by an integer multiple of two. The resulting
non-Hermitian Floquet topological phases could possess large and even-integer topological invariants due
to the interplay between drivings and non-Hermitian effects. Moreover, phases carrying larger topological
winding numbers can be realized when the diagonal hopping amplitude Jd takes larger values. Therefore,
the realization of non-Hermitian PQTLL model could also provide us with a convenient platform to
explore non-Hermitian phases with large and even-integer topological numbers.

In Figure 3, we present the topological phase diagram of the non-Hermitian PQTLL model versus the
imaginary parts of the vertical and diagonal hopping amplitudes Ji

y and Ji
d. The other system parameters

are fixed at (Jx, Jr
y, Jr

d, V) = (0.5π, 0.6π, 4π, 0.1π). From the phase diagram, we again observe rich
non-Hermitian Floquet topological phases characterized by (w0, wπ) ∈ 2Z× 2Z, and multiple topological
phase transitions induced by the change of the two non-Hermitian parameters. Furthermore, in certain
regions of the phase diagram (e.g., around Ji

y = 6), we find phase transitions accompanied by the increase
of topological winding numbers (w0, wπ) when the value of Ji

d rises.The emergence of such phases with
stronger topological signatures in deeper non-Hermitian regimes (here at larger Ji

d) is unique to Floquet
non-Hermitian systems. In the meantime, it also suggests an approach to prepare topological phases with
large winding numbers under the collaboration of drivings and nonreciprocity.
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Figure 2. The topological winding numbers w0 [in panel (a)] and wπ [in panel (b)] versus the real and
imaginary parts of the vertical hopping amplitude Jr

y and Ji
y. The other system parameters are chosen as

(Jx, Jd, V) = (0.5π, 4π, 0.1π). In both panels, each region with a uniform color corresponds to a Floquet
topological phase of the non-Hermitian periodically quenched two-leg ladder (PQTLL) model, with the
values of winding numbers (w0, wπ) denoted explicitly therein. The lines separating different regions are
the boundaries between different topological phases, which can be obtained numerically from the gap
closing conditions ∆0 = 0 and ∆π = 0 with the help of Equations (9) and (10).
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4
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Figure 3. The topological winding numbers w0 [in panel (a)] and wπ [in panel (b)] versus the imaginary
parts of vertical and diagonal hopping amplitudes Ji

y and Ji
d. The other system parameters are set as

(Jx, Jr
y, Jr

d, V) = (0.5π, 0.6π, 4π, 0.1π). In both panels, each region with a uniform color refers to a Floquet
topological phase of the non-Hermitian PQTLL model, with the values of winding numbers (w0, wπ)

shown explicitly in the figure. The lines separating different regions are the boundaries between different
non-Hermitian Floquet topological phases, which can be obtained numerically by setting ∆0 = 0 and
∆π = 0 in Equations (9) and (10).

In the following two sections, we will present the edge states and bulk dynamics of the non-Hermitian
PQTLL model, which would provide us with more transparent signatures about its topological properties.
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4. Edge States and Bulk-Edge Correspondence

One of the key features for a gapped topological phase is the presence of degenerate edge states under
the OBC [95]. In this section, we demonstrate the existence of Floquet topological edge modes at zero- and
π-quasienergies in our non-Hermitian PQTLL model, and relate their numbers to the bulk topological
winding numbers (w0, wπ) in Equation (19).

The Floquet quasienergy spectrum of our system under the OBC is obtained by solving the
quasienergy eigenvalue equation U|ψ〉 = e−iε|ψ〉, with the Floquet operator U given by Equation (4).
With the quasienergy ε, we can define the gap functions under the OBC as:

∆0 ≡
√
(Reε)2 + (Imε)2, ∆π ≡

√
(|Reε| − π)2 + (Imε)2. (20)

It is clear that ∆0 = 0 (∆π = 0) only when the spectrum gap closes at the quasienergy 0 (π). (∆0, ∆π) can
thus be used to characterize the behaviors of the Floquet spectrum around the quasienergies ε = 0 and π.

In Figure 4a,b, we present the gap functions ∆0 (red solid lines) and ∆π (blue dashed lines) of the
non-Hermitian PQTLL model versus the imaginary parts of the vertical and diagonal hopping amplitudes
Ji
y and Ji

d for two typical sets of system parameters, respectively. In both panels, we see clearly that with
the increase of the nonreciprocal hopping parameter Ji

y or Ji
d, the system undergoes a series of topological

phase transitions. Each transition is accompanied by the closing and reopening of a line gap through the
quasienergy zero or π, together with the increase or decrease of the number of Floquet zero or π edge
modes by an integer multiple of four, as denoted in the figure. Intriguingly, by enhancing the strength of
nonreciprocity, we observe transitions from topological phases with smaller winding numbers (w0, wπ)

to larger ones with more edge modes in Figure 4b. The physical mechanism behind this interesting
observation is again the interplay between drivings and non-Hermitian effects. Besides, it also indicates
the possibility of preparing non-Hermitian Floquet topological states with the help of nonreciprocity.

Furthermore, comparing the number of quartets of the zero (π) edge modes n0 (nπ) and the bulk
winding number w0 (wπ) in each regime of the non-Hermitian Floquet topological phase, we find the
following bulk-edge correspondence relations:

|w0| = 2n0, |wπ | = 2nπ . (21)

These relations hold so long as the symmetries that are protecting the non-Hermitian Floquet topological
phases of the system are preserved. Experimentally, Equation (21) could also provide us with a window
to look into the topological invariants of non-Hermitian Floquet systems in the CII symmetry class by
imaging the edge modes. More generally, in the symmetric time frame α (= 1, 2), we can directly define a
noncommutative winding number [84,94,96,97] under the OBC as:

w̆α ≡
1

2NB
TrB(SQα[Qα, n̂]), (22)

where S is again the sublattice symmetry operator, and n̂ = ∑N
n=1 n|n〉〈n|σ0 ⊗ τ0 is the unit-cell position

operator of the ladder. The total number of unit cells N contains two parts, i.e., N = NB + 2NE, where NB
and NE are the number of unit cells in the bulk (n ∈ [NE + 1, NE + NB]) and edge (n ∈ [1, NE] ∪ [N− NE +

1, N]) regions of the system, and the trace TrB(·) is only taken over the bulk degrees of freedom. Different
from the previous study [84], the Q-matrix for our non-Hermitian Floquet system in the α’s time frame
and under the OBC is expressed in the biorthogonal basis as:
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Qα ≡∑
n,η

η|εη
αn〉〈ε

η
αn|, (23)

where n = 1, 2, ..., 2N, η = ±, and |εη
αn〉 is the right Floquet eigenvector satisfying Uα|εη

αn〉 = e−iεη
n |εη

αn〉.
The left eigenvectors can be obtained by writing Uα as Uα = VαΛαV−1

α , where Λα is diagonal and {|εη
αn〉}

correspond to the columns of (V−1
α )† [94]. Similar to the Q-matrix under the PBC, Qα here can be

viewed as an effective Hamiltonian of the Floquet operator Uα, whose eigenvalues are set to 1 (−1) if the
corresponding quasienergies of Uα satisfying Re(εη

n) > 0 [Re(εη
n) < 0]. With the help of w̆1 and w̆2 in

Equation (23), we can construct another pair of topological invariants [84]:

w̆0 =
w̆1 + w̆2

2
, w̆π =

w̆1 − w̆2

2
. (24)

In a fixed time frame α, previous studies have shown that w̆α = wα [84]. Therefore, we find the following
bulk-edge correspondence relations for 1D non-Hermitian Floquet systems in the extended CII symmetry
class, i.e.,

(|w0|, |wπ |) = (|w̆0|, |w̆π |) = (2n0, 2nπ). (25)

Since the second equality holds also under the OBC, it can be employed to investigate the effect of
impurity on non-Hermitian Floquet topological phases, and characterize the non-Hermitian Floquet
Anderson insulators that may appear due to the interplay between drivings, non-Hermiticity, and disorder.
These topics are beyond the scope of the current work, and will be explored in the future.

Despite edge states, the topological signatures of non-Hermitian Floquet phases can also be extracted
from bulk dynamics, as will be discussed in the next section.

(a) (b)

(4,4) (4,3)(3,3)(2,3) (2,2) (2,1) (1,1) (1,2) (2,2) (2,3)

Figure 4. Gap functions ∆0 (red solid lines) and ∆π (blue dashed lines) versus the imaginary part of
vertical and diagonal hopping amplitudes Ji

y and Ji
d in panels (a,b), respectively. The system parameters are

(Jx, Jr
y, Jd, V) = (0.5π, 1.5π, 4π, 0.1π) for panel (a) and (Jx, Jy, Jr

d, V) = (0.5π, 0.6π + 6i, 4π, 0.1π) for panel
(b). The number of quartets of zero and π edge modes (n0, nπ) are denoted explicitly near ∆0 = ∆π = 0
in both panels, which are related to the winding numbers (w0, wπ) through the relations in Equation (21).
The ticks along the horizontal axis denote the bulk gap closing points, whose numerical values are
(yπ

1 , y0
1, y0

2, yπ
2 , yπ

3 , y0
3) ≈ (1.09, 2.14, 3.02, 3.97, 5.05, 6.47) in panel (a) and (d1, d2) ≈ (1.86, 2.41) in panel (b).
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5. Dynamical Probe to the Topological Phases

The mean chiral displacement (MCD) refers to the time-averaged chiral displacement S n̂ of a
wavepacket in a lattice, where S is the sublattice symmetry operator and n̂ is the position operator
of the unit cell. The MCD was first introduced as a dynamical probe to the winding numbers of
1D topological insulators in the symmetry classes AIII and BDI [98], and later extended to Floquet
systems [93,99,100], two-dimensional systems [101], many-body systems [102], systems in other symmetry
classes [84], and recently also to non-Hermitian systems [50,51,53]. In the meantime, the MCD has also been
measured experimentally in photonic [98,103] and cold atom [104,105] setups. In this section, we further
generalize the MCD to non-Hermitian Floquet systems in the CII symmetry class, and employ it to
dynamically characterize the topological phases found in the non-Hermitian PQTLL model.

For a non-Hermitian Floquet system with sublattice symmetry S , we define the MCD Cα as the
stroboscopic long-time average of the chiral displacement operator S n̂ in a given symmetric time frame α

(= 1, 2), i.e.,

Cα = lim
M→∞

1
M

M

∑
m=1
〈ψ(m)|S n̂|ψ(m)〉, (26)

where m counts the number of driving periods, which has been set to 1 following our choice of units.
|ψ(m)〉 and |ψ(m)〉 are the initial states evolved over m’s driving periods in the right and left Hilbert
spaces, respectively. The Cα defined in this way is generally a complex number for finite M due to the
implemented biorthogonal average. However, we will show that the imaginary part of Cα tend to vanish
in the long-time limit M→ ∞.

Taking the Fourier transform from the position to momentum representation, and choosing the initial
state to uniformly fill the non-Hermitian quasienergy band (`, η) (` = 1, 2, η = ±), we find the following
form of MCD:

Cη
α` = lim

M→∞

1
M

M

∑
m=1

∫ π

−π

dk
2π

cη
α`(k), (27)

cη
α`(k) =

〈εη
α`(k)|U

m†
α (k)S i∂kUm

α (k)|εη
α`(k)〉

〈εη
α`(k)|U

m†
α (k)Um

α (k)|εη
α`(k)〉

. (28)

Here |εη
α`(k)〉 (〈εη

α`(k)|) is the right (left) quasienergy eigenvector, and the corresponding Floquet operators
can be expressed in the biorthogonal basis as:

Uα(k) =∑
`,η

e−iεη
` (k)|εη

α`(k)〉〈ε
η
α`(k)|, (29)

U†
α(k) =∑

`,η
e+iεη∗

` (k)|εη
α`(k)〉〈ε

η
α`(k)|. (30)

Note that in Equation (27), a normalization factor has been added to cancel the changing norm
of the state during the nonunitary evolution. Inserting the identity in biorthogonal basis I =

∑`,η |ε
η
α`(k)〉〈ε

η
α`(k)|, and using the orthonormality between left and right eigenvectors 〈εη

α`(k)|ε
η′

α`′(k)〉 =
δ``′δηη′ , the denominator of cη

α`(k) in Equation (28) can be simplified as:

〈εη
α`(k)|U

m†
α (k)Um

α (k)|εη
α`(k)〉 = e2Im[ε

η
` (k)]m, (31)
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where Im[ε
η
`(k)] yields the imaginary part of the quasienergy ε

η
`(k). Similarly, the numerator of cη

α`(k) can
be expressed as:

〈εη
α`(k)|U

m†
α (k)S i∂kUm

α (k)|εη
α`(k)〉 = e2Im[ε

η
` (k)]m〈εη

α`(k)|S|i∂kε
η
α`(k)〉 − ei2Re[εη

` (k)]m〈ε−η
α` (k)|S|i∂kε

−η
α` (k)〉, (32)

where we have also used the fact S|εη
α`(k)〉 ∝ |ε−η

α` (k)〉 to arrive at the second term on the right hand side
of Equation (32). Plugging Equations (31) and (32) into Equation (28), we find the integrand cη

α`(k) to be:

cη
α`(k) = 〈ε

η
α`(k)|S|i∂kε

η
α`(k)〉 − 〈ε

−η
α` (k)|S|i∂kε

−η
α` (k)〉e

i2ε
η
` (k)m. (33)

The first term on the right hand side of Equation (33) will be related to the winding number of the system
in the α’s time frame. If Im[ε

η
`(k)] > 0, the second term on the right hand side of Equation (33) will vanish

in general after taking the sum over m and the limit M → ∞, as imposed in Equation (27). However,
when Im[ε

η
`(k)] < 0, the factor ei2ε

η
` (k)m will contribute an exponentially growing factor to cη

α`(k) after the
summation over m, making it diverge in the limit M→ ∞.

To remove the divergence, we introduce another pair of Floquet propagators for the right and left
initial states with Im[ε

η
`(k)] < 0, which are given by:

Úα(k) =∑
`,η

e+iεη
` (k)|εη

α`(k)〉〈ε
η
α`(k)| = U−1

α (k), (34)

Ù†
α(k) =∑

`,η
e−iεη∗

` (k)|εη
α`(k)〉〈ε

η
α`(k)| = [U†

α(k)]
−1. (35)

Comapring with Equation (29), it is clear that Úα(k) is just the inverse of Floquet operator Uα(k), which can
be obtained by simply reversing the signs of all the system parameters in our model. Note that Úα(k) and
Ùα(k) correspond to the Floquet operators in the left and right Hilbert spaces, respectively. They have
different expressions in the biorthogonal Floquet eigenbasis, and are therefore distinguished by different
accents on their heads. With these considerations, we modify the definition of Cη

α` in Equation (27) to:

Cη
α` = lim

M→∞

1
M

M

∑
m=1

∫ π

−π

dk
2π
·
{

cη
α`(k) Im[ε

η
`(k)] > 0

čη
α`(k) Im[ε

η
`(k)] < 0

, (36)

where cη
α`(k) is given by Equation (28), and čη

α`(k) takes the form:

čη
α`(k) =

〈εη
α`(k)|Ù

m†
α (k)S i∂kÚm

α (k)|εη
α`(k)〉

〈εη
α`(k)|Ùm†

α (k)Úm
α (k)|εη

α`(k)〉
. (37)

Following the steps in the derivations of Equations (31) and (32), we find the denominator and numerator
of čη

α`(k) to be:

〈ε̃η
α`(k)|Ù

m†
α (k)Úm

α (k)|εη
α`(k)〉 = e−2Im[ε

η
` (k)]m, (38)

〈εη
α`(k)|Ù

m†
α (k)S i∂kÚm

α (k)|εη
α`(k)〉 = e−2Im[ε

η
` (k)]m〈εη

α`(k)|S|i∂kε
η
α`(k)〉 − e−i2Re[εη

` (k)]m〈ε−η
α` (k)|S|i∂kε

−η
α` (k)〉. (39)

Plugging them into Equation (37), we further obtain:

čη
α`(k) = 〈ε

η
α`(k)|S|i∂kε

η
α`(k)〉 − 〈ε

−η
α` (k)|S|i∂kε

−η
α` (k)〉e

−i2ε
η
` (k)m. (40)
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It is clear that under the condition Im[ε
η
`(k)] < 0, the second term on the RHS of Equation (40) will in

general vanish under the summation and long-time average limM→∞
1
M ∑m, as imposed in Equation (36).

Next, we extend the initial state of our system to an incoherent summation of all uniformly filled
Floquet bands (`, η), which is equivalent to an “infinite-temperature” state at each quasimomentum k.
In the lattice representation, such an initial state corresponds to the uniform population of all the four
internal degrees of freedom (spins and sublattices) in the central unit cell of the ladder, which is relatively
easy to prepare. For such an initial state, the MCD becomes Cα = ∑`,η Cη

α`. With the help of Equations (33),
(36) and (40), it can be written more compactly as:

Cα = ∑
`,η

∫ π

−π

dk
2π
Aη

α`(k)

[
1− lim

M→∞

1
M

1− ei2sε
η
` (k)M

e−i2sε
η
` (k) − 1

]
, (41)

where Aη
α`(k) ≡ 〈ε

η
α`(k)|S|i∂kε

η
α`(k)〉, and s ≡ sgn{Im[ε

η
`(k)]} refers to the sign of Im[ε

η
`(k)]. It is not hard

to see that the second term on the right hand side of Equation (41) will tend to vanish in the long-time
limit M → ∞, so long as ε

η
`(k) = ±π/2,±π have solutions only at a discrete set of k-points in the first

Brillouin zone, which is the case for our system.
Finally, the relation between Cα and the winding number wα in the α’s time frame can be established

as follows. Inserting the expression of projector Qα(k) in Equation (18) into the definition of wα in
Equation (17), and taking the trace in the biorthogonal basis, we find:

wα =
∫ π

−π

dk
4π ∑

``′ ,ηη′
ηη′〈εη

α`(k)|i∂k

[
|εη′

α`′(k)〉〈ε
η′

α`′(k)|
]
S|εη

α`(k)〉. (42)

Using again the orthonormality between left and right eigenvectors and the fact S|εη
α`(k)〉 ∝ |ε−η

α` (k)〉,
the expression for wα can be simplified to:

wα = ∑
`,η

∫ π

−π

dk
2πi
〈εη

α`(k)|S|∂kε
η
α`(k)〉. (43)

Comparing Equation (43) with Equation (41), we find the relation between the long-time averaged MCD
Cα and winding number wα as:

wα = −Cα, α = 1, 2. (44)

Furthermore, with the help of the relations between (w1, w2) and the topological invariants (w0, wπ) in
Equation (19), we arrive at the relations between the MCDs and the topological winding numbers of 1D
non-Hermitian Floquet systems in the CII symmetry class, i.e.,

w0 = C0 ≡ −
C1 + C2

2
, wπ = Cπ ≡ −

C1 − C2

2
. (45)

These relations establish a connection between the topology and dynamics of the non-Hermitian Floquet
states in the system. They also provide us with a powerful way to probe the non-Hermitian Floquet
topological phases in the CII symmetry class by measuring the MCDs experimentally in a pair of symmetric
time frames.

For completeness, we demonstrate the relations in Equation (45) by numerically simulating the
dynamics. The results for two typical cases are presented in Figure 5a,b. In both panels, the time average
is taken over M = 20 driving periods, which is well within reach in current experiments. It is clear that
the MCDs and topological winding numbers are consistent for all the non-Hermitian Floquet topological
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phases considered in the figure, and the small deviations are mainly originated from the finite-time effect.
Furthermore, a quantized jump of the MCD is observed every time when the system passes through
a topological phase transition point. Experimentally, the MCDs have been measured in both the cold
atom [104,105] and photonic systems [98,103], in which non-Hermiticity and driving fields can also be
implemented [1]. Furthermore, the MCDs may also be detected directly in momentum space with the
help of a recently proposed setup certaining the nitrogen-vacancy-center in diamond [36]. Putting these
together, we conclude that the MCD can indeed be employed as a dynamical probe to the topological
phases and phase transitions in our non-Hermitian PQTLL model, and also in other 1D non-Hermitian
Floquet systems in the CII symmetry class.

0 1 2 3 4 5 6 7 8
2

4

6

8

0 0.5 1 1.5 2 2.5 3 3.5 4
2

4

6

(a)

(b)

Figure 5. The topological winding numbers w0 (blue solid lines), wπ (red dashed lines), mean chiral
displacements (MCDs) C0 = −C1+C2

2 (magenta circles), and Cπ = −C1−C2
2 (black squares) versus

the imaginary parts of vertical and diagonal hopping amplitudes Ji
y and Ji

d of the non-Hermitian
PQTLL model in panels (a,b), respectively. The other system parameters are chosen as (Jx, Jr

y, Jd, V) =

(0.5π, 1.5π, 4π, 0.1π) for panel (a) and (Jx, Jy, Jr
d, V) = (0.5π, 0.6π + 6i, 4π, 0.1π) for panel (b). The MCDs

are averaged over M = 20 driving periods for the results in both panels.

6. Conclusions

In this work, we introduced a periodically quenched two-leg ladder model subjecting to nonreciprocal
inter-leg hoppings. The system belongs to an extended CII symmetry class in the non-Hermitian periodic
table [9,11], which is further characterized by a pair of even-integer topological winding numbers
(w0, wπ) ∈ 2Z× 2Z due to the existence of time-periodic drivings. We established the topological phase
diagrams of the model, and observed rich non-Hermitian Floquet topological phases with large winding
numbers. In particular, Floquet phases carrying larger topological invariants can emerge in stronger
non-Hermitian regimes thanks to the collaboration between drivings and non-Hermiticity. Under the open
boundary condition, Floquet topological edge modes with zero and π quasienergies appear as fourfold
degenerate quartets around the boundaries, whose exact numbers are determined by the bulk topological
invariants (w0, wπ). Besides the bulk-edge correspondence, we introduced the generalized mean chiral
displacement as another probe to the topological features of our system dynamically, and showed that the
MCDs in the long-time limit yield the topological invariants of one-dimensional non-Hermitian Floquet
systems in the CII symmetry class. Our work not only uncovers a new type of topological phase originated
from the interplay between drivings and non-Hermitian effects, but also paves the way for the dynamical
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characterization of non-Hermitian Floquet topological matter. In future work, it would be interesting to
extend our findings to other symmetry classes, higher spatial dimensions, and superconducting systems.
Furthermore, intriguing non-Hermitian Floquet phases and phenomena are expected to appear under the
effects of disorder and many-body interactions, which certainly deserve thorough explorations.
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