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Expression and functional profiling reveal distinct
gene classes involved in fatty acid metabolism
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Cells respond to fatty acid exposure by metabolic reorganization and proliferation of peroxisomes.
Described here is the development and application of a genome-wide screen to identify nonessential
yeast genes necessary for efficient metabolism of myristic and oleic acids. Comparison of the
resultant fitness data set with an integrated data set of genes transcriptionally responsive to fatty
acids revealed very little overlap between the data sets. Furthermore, the fitness data set enriched
for genes involved in peroxisome biogenesis and other processes related to cell morphology,
whereas the expression data set enriched for genes related to metabolism. These data suggest that in
response to fatty acid exposure, transcriptional control is biased towards metabolic reorganization,
and structural changes tend to be controlled post-transcriptionally. They also suggest that fatty acid
responsive metabolic networks are more robust than those related to cell structure. Statistical
analyses of these and other global data sets suggest that the utilization of distinct control
mechanisms for the execution of morphological versus metabolic responses is widespread.
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Introduction

Understanding how discrete subcellular processes are coordi-
nately regulated in response to stimuli and the relationship of this
regulation to cell fitness are significant systems-level problems.
Insight can come from large-scale data sets as their comprehen-
siveness, and the relative nature of the measurements made, that
is, one component relative to another or one time point relative
to another, make it appropriate to analyse the individual data
together as ‘data sets’, which through statistical analysis can
reveal new insight into the relationships between processes.

Further insight can come from integrating large-scale data
sets. The identification of multiple relationships among groups
of genes, such as identifying both a correlation of transcription
profiles and physical interactions among the encoded proteins,
strengthens the confidence of molecular associations. How-
ever, there is mounting evidence that some data types are more
complementary in nature. For example, genes required for cell
fitness can be distinct from those that are transcriptionally
responsive under the same condition (Birrell et al, 2002;
Giaever et al, 2002). For this reason, it is important to
comparatively analyse data sets that encompass different
levels of biological control. Such analyses can both direct
integration strategies and reveal insight into how different
control mechanisms are utilized by the cell.

The response of yeast cells to growth in the presence of fatty
acids includes upregulation of genes involved in fatty acid
metabolism and an increase in the size and number of
peroxisomes, subcellular organelles that house enzymes
involved in fatty acid b-oxidation. Because the response
includes not only metabolic reorganization, but also a
distinguishable change in cell structure, this response is well
suited to studying the coordinate regulation of different
cellular processes.

Results and discussion

Identification of genes necessary for fatty acid
metabolism

We developed and applied a screen to the Saccharomyces
cerevisiae haploid, viable gene-deletion set (Resgen/Invitro-
gen, Carlsbad, CA) to comprehensively identify genes neces-
sary for efficient fatty acid metabolism. The screen is based on
an assay that measures the ability of strains to form a clear
zone in the surrounding turbid agar medium containing oleic
acid, a monounsaturated fatty acid (cis-C18:1(9)) (Gurvitz et al,
1997). However, because of the low opacity of the medium,
clear zone formation was difficult to visualize and document
on oleate-containing plates (Figure 1A). To complement this
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analysis, myristic acid, a C14 saturated fatty acid, was
substituted for oleic acid. Like oleic acid, myristic acid requires
functional peroxisomal b-oxidation for its metabolism, and the
growth rate of S. cerevisiae on myristic acid was similar to that
on oleic acid (data not shown). However, the contrast of the
clear zones was dramatically improved on myristic acid
medium (Figure 1B and C), and this data set is likely to have
fewer false negatives than the oleate data set.

The deletion set was thus assayed for clear zone formation
in the presence of oleate or myristate. Strains were also
assayed for growth on acetate-containing plates, as peroxiso-

mal fatty acid b-oxidation demands a functional mitochondrial
electron transport chain for energy production, and thus this
condition serves as a control for the ability of cells to
metabolize nonfermentable carbon sources. Growth and clear
zone data for the entire deletion set are reported in
Supplementary Table 1. A sample myristate plate is shown
before and after removal of cell material (Figure 1B and C,
respectively). Three deletion strains previously known to have
defects in peroxisome biogenesis (pex5D, pex10D and pex3D)
have defects in clear zone formation and are boxed in red.
It should be noted that pex5D cells were unable to grow on
acetate medium. akr1D, a deletion strain not previously
implicated in fatty acid metabolism, but with a defect in clear
zone formation, is boxed in green.

A total of 212 strains had fatty acid-specific fitness defects
(i.e. wild-type growth on acetate and defective clear zones
on oleate or myristate), 31 of which have previously been
implicated in fatty acid metabolism or peroxisome biology
(Table I). Out of the 212 strains, 203 were identified by the
myristate screen, whereas 103 were identified by the oleate
screen. This was not surprising considering the poor visuali-
zation of clear zones and the conservative nature of the
analysis using oleic acid as the carbon source. Despite their
differences in size, 91% of the oleate data set was included in
the myristate data set, suggesting that the requirements for
metabolizing myristate and oleate are similar.

Intersecting the data sets provides a qualitative measure-
ment of significance, as the confidence is higher for genes
identified by both screens rather than by only one. In a few
cases, however, the genes are likely to have bona fide
membership exclusively in one group. For example, ECI1, a
gene necessary for the metabolism of unsaturated but not
saturated fatty acids, and PXA1 and PXA2, genes required for
long- but not medium-chain fatty acid metabolism (reviewed
in Hiltunen et al, 2003), are exclusive to the oleate data set,
as expected.

In the analysis of clear zones, we noted that for some strains,
cell material remained on the agar surface after rinsing with
water (e.g. yellow box in Figure 1B and C). Distribution
analysis of strains adhering to myristate plates (Table I and
Supplementary Table 1) revealed that adherent strains tend to
be those with myristate-specific metabolism defects (413�
the number expected by chance; binomial distribution prob-
ability P-value¼1�10�35). Agar adhesion is a characteristic of
yeast cells that undergo differentiation to a filamentous form
consisting of chains of polarized, elongated cells (Gimeno
et al, 1992). Although the laboratory strain used here does not
undergo the complete differentiation to this form, these data
might reflect functional links that have been identified
between the dimorphic transition, and peroxisomes and fatty
acid metabolism (Prinz et al, 2004; reviewed in Titorenko and
Rachubinski, 2004).

Genes of the fitness data set are distinct from
those that transcriptionally respond to fatty acids

A comprehensive data set of 202 genes that are transcription-
ally responsive to fatty acids was generated using two
complementary time-course microarray data sets from the

Figure 1 Clear zone assays. (A) Digital photograph of clear zones on an oleate
plate after cell material was removed from the agar surface by rinsing with
running water. (B, C) Greyscale images of myristate plate number 128 scanned
on a flatbed scanner with transmitted light before and after removal of cell
material, respectively. The locations of previously characterized and novel
mutants of fatty acid metabolism are boxed in red and green, respectively.
A strain resistant to cell removal is boxed in yellow.
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literature measuring the early (up toB95 min; Koerkamp et al,
2002) and long-term (up to 26 h; Smith et al, 2002) transcrip-
tional response to oleate (see Materials and methods). In order
to compare these genes to those of the fitness data set
(representing only nonessential genes), the expression data set
was reduced to include only the 172 nonessential genes.

Remarkably, of the 212 genes of the fitness data set, only 14
genes (MDH3, POX1, PEX18, POT1, PXA2, FOX2, ECI1, MLS1,
MDH2, ICL1, ACS1, HSP31, YKL187c and PEX11) were also
present in the expression data set. These results are consistent
with studies demonstrating that onlyB10% of genes predicted
to be peroxisome related by transcriptome profiling are
necessary for growth on oleic acid (Smith et al, 2002). The

results also support evidence in the literature suggesting that
genes required for optimal growth in a new environment,
including DNA damage (Birrell et al, 2002), high salt, sorbitol,
pH 8 and galactose (Giaever et al, 2002), are distinct from those
that are transcriptionally responsive to that environment. To
understand the functional relevance of this phenomenon, we
comparatively analysed the expression and fitness data sets.

Expression and fitness data sets represent
different peroxisome-related networks

Eleven of the 14 genes common to both data sets encode
peroxisomal proteins; this includes Mdh2p (Huh et al, 2003)

Table I List of genes of the fitness data set

Gene identified by both screens Gene identified by one screen

Gene Ole Myr a Gene Ole Myr a Gene Ole Myr a Gene Ole Myr a Gene Ole Myr a

ACS1 2 2 PEX14 1 1 ADE2 3 2 MLS1 3 1 YIP4 3 2
ADO1 1 2 PEX15 1 1 ADY3 3 2 a MRS3 3 4 YMR31 3 2
ADR1 1 2 PEX17 1 1 ALF1 2 3 NGG1 3 1 YPT11 3 2
AKR1 1 1 a PEX18 2 2 ARF1 3 2 a NOP6 3 2 a ZWF1 3 2
ARP1 2 2 PEX19 1 2 ARN1 3 2 NPL6 3 2 YBL012C 3 2
ASR1 2 2 PEX3 1 1 ARP5 3 2 PAC10 3 2 a YDR049W 3 1 a
BCK1 1 2 a PEX4 1 1 ATG12 2 3 PAP2 3 2 a YDR290W 3 2
BOR1 2 2 PEX6 2 2 AVL9 3 2 PCL1 3 2 YDR442W 3 2
BPT1 2 2 PEX7 1 2 a BDF1 3 2 PEX22 3 1 YDR532C 3 2
CBS1 1 1 PEX8 1 1 BLM3 3 1 a PIM1 3 2 a YHL044W 3 2 a
CDC10 1 1 PIP2 1 1 BUB3 3 2 POP2 3 2 a YIL029C 3 4
CKB2 2 1 PMP3 2 2 a CAP1 3 2 a PPR1 3 2 YIL165C 3 4
CLA4 2 2 POT1 1 2 CBC2 3 2 a PRE9 3 1 a YJL149W 3 2
DID2 1 1 POX1 1 1 CBF1 3 2 PTK2 3 2 YJL160C 3 2 a
DJP1 2 2 PPE1 2 1 CCH1 3 2 PXA1 2 3 YJL175W 3 2
DYN2 1 1 PUF6 2 2 CCZ1 3 2 PXA2 2 3 YKR035C 3 2
ELP3 2 1 PUT3 2 2 CIN8 3 2 RCY1 3 2 YLL020C 2 3
FAB1 1 2 RAM1 2 2 CLG1 3 2 RPL13B 3 2 YLR065C 3 2
FAT1 2 2 RMD1 2 2 CSM1 3 2 RPL2B 3 2 YLR358C 3 2
FEN1 1 2 RPL31A 1 2 DMA1 3 4 RSC1 3 1 a YLR412W 3 2 a
FOX2 1 1 RPL34B 2 2 DUN1 3 2 a RTS1 3 2 YNL045W 3 2
FYV6 1 2 RVS161 2 1 a EAF7 5 2 RTT106 3 2 YNL305C 3 2
HNT3 2 2 SAC7 1 2 EAP1 3 2 SAK1 3 2 YOR246C 1 3
KEX1 2 2 SAP190 2 2 ECI1 1 3 SEC22 3 1 VPL107W 3 2
KNS1 2 1 SGO1 1 1 ELF1 3 1 a SEL1 3 1
LEA1 2 2 SIN3 1 2 ELM1 3 2 SHE4 3 2
LPE10 1 1 SLA2 1 1 a ERG3 3 2 SOH1 3 2
LSC2 1 1 SLT2 2 2 a ERG6 2 3 SOK1 3 2
LYS4 1 2 SLX8 2 2 FIG4 3 2 STO1 3 2 a
MDH2 1 2 SMI1 2 2 FMP13 3 2 TIF3 3 1
MDH3 1 2 SNF7 1 1 FMT1 3 2 TNA1 3 2 a
MDM20 2 2 SPR6 2 2 GUP1 3 1 TOF2 3 2
MRS2 1 1 SRB2 1 2 HDA2 3 2 TPM1 3 2
MUB1 2 2 TOF1 2 2 HIR2 5 2 TRM9 3 1
NAT3 2 2 a UBI4 2 2 HMF1 2 3 UBP6 3 2 a
NCA3 2 1 UBR2 1 1 HNT1 3 2 UGA3 3 2
NCS6 1 2 a VPS41 1 1 HOT13 3 2 a UPF3 3 2
NIP100 2 1 YPT7 2 2 HSP31 3 2 a URA4 3 2
NPL4 2 2 YER134W 2 1 a HTZ1 3 2 URM1 3 2 a
OAF1 1 1 YCL005W 2 1 ICL1 3 1 VAM10 3 2
OPT1 1 2 YDR149C 2 2 IXR1 3 2 VAM7 3 2
OSH2 2 2 YEL007W 1 2 KRE6 3 2 a VID21 3 2 a
PEX1 1 1 YGL152C 1 1 KTI12 3 2 VPS64 3 2
PEX10 1 1 YIL102C 2 2 LDB7 3 2 a VPS65 3 2 a
PEX11 1 2 YJL211C 1 1 LSM6 3 2 a VPS68 3 2
PEX12 1 1 YKL187C 1 2 LSM7 3 2 a VPS69 3 2 a
PEX13 1 1 YNL285W 1 2 MET14 3 2 WHI4 3 2 a

Genes previously implicated in fatty acid metabolism and/or peroxisome biology are underlined. For oleate (Ole) and myristate (Myr) assays, numbers reflect clear
zone sizes (4, bigger than wild-type; 3, wild-type; 2, moderately small; 1, very small or not detectable). Those annotated with ‘a’ adhered to the agar after removal of cell
material.
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and Icl1p, the latter of which has been shown to be
peroxisomal only in other organisms (Titorenko et al, 1996;
Igamberdiev and Lea, 2002). We therefore first analysed
peroxisomal proteins of each data set. Cytoscape software
(version 2.1; Shannon et al, 2003) (www.cytoscape.org) and
large-scale physical interaction data (see Materials and
methods) were used to generate and analyse a peroxisome-
related physical interaction network for each data set
(Figure 2). The networks show known peroxisomal proteins
(bold circles) and data set proteins that interact with them
(coloured circles). To increase connectivity, metabolites
(diamonds) that are either substrates or products of proteins
in the network are also included.

Both networks show the 11 peroxisomal proteins found in
both data sets (yellow circles), most of which are involved
in key processes integral to fatty acid utilization, including
fatty acid transport (Pxa2p), peroxisomal b-oxidation (Pot1p,
Fox2p, Pox1p, Eci1p and Pex11p) and the glyoxylate cycle
(Mls1p, Mdh3p and Icl1p). However, proteins unique to the
fitness data set (green circles in Figure 2B) are primarily
involved in peroxisome biogenesis (including 14 peroxins
encoded by PEX genes, and the chaperone Djp1p), whereas
those proteins unique to the expression data set (red circles in
Figure 2A) are primarily involved in metabolism (including
Cta1p, Dci1p, Cit2p, Cat2p, Gpd1p and Tes1p) and include
only two peroxins. This trend is also reflected by the
interaction types for each network; 78% (31 of 40) of the
proteins unique to the expression data set interact with
metabolites, as compared to only 9% (three of 33) of the
proteins unique to the fitness data set. Overall, visualization of
the networks in this manner reveals that for peroxisome-
related proteins, the expression data set primarily represents
metabolic processes, whereas the fitness data set mainly
represents biogenesis.

The fitness and expression data sets represent
dissimilar gene ontologies

To test whether the complementary nature of the functional
classes represented by each data set extends beyond peroxi-
somes, the data sets were compared with respect to their gene
ontology (GO) annotation frequencies (see Materials and
methods). This analysis showed that not only were the genes
of each data set different, but the functional categories they
represented were also different.

GO slim terms represented in each data set are depicted in
pie charts (Figure 3) (see also Supplementary Table 3). Cellular
component terms for each data set are presented in Figure 3A.
Although ‘peroxisome’ (r) was significantly enriched in both
data sets as expected, the data sets were otherwise very
different. Cytoskeleton (g) and nucleus (q) were most
significantly enriched in the fitness data set, compared with
cell wall (c), plasma membrane (s) and cytoplasm (e) for the
fitness data set. Biological process term enrichments were also
very different (Figure 3B). Significantly over-represented
terms in the expression data set are related to metabolism
(m, b and n) and stress response (w), whereas the enriched
terms of the fitness data set relate to the organization and
biogenesis of cell structures (r, j, p and dd) and cell regulatory

events (bb and u). Molecular function data are not shown, but
for this category the expression data set had a significant
enrichment of ‘oxidoreductase’, whereas the fitness data set
was significantly enriched for the terms ‘protein binding’ and
‘protein kinase activity’.

This analysis supports and extends the conclusion that the
fitness and expression data sets represent different gene
classes. The fitness data set enriched for terms related to the
organization and dynamics of subcellular structures, including
not only peroxisomes, but also (actin) cytoskeleton and
vesicle-mediated transport. These terms appear to reflect the
dynamic nature of peroxisomes, which may involve their
budding from the endoplasmic reticulum and other fission and
fusion events (reviewed in Titorenko and Rachubinski, 2001;
Tabak et al, 2003). Indeed, the actin cytoskeleton has recently
been identified as having a role in peroxisome fission,
movement and inheritance (Hoepfner et al, 2001; Marelli
et al, 2004; Fagarasanu et al, 2005). The fitness data set was
also enriched for regulatory proteins including ubiquitin-
related proteins (Ubi4p, Urm1p, Ubr2p and Ubp6p), which
might relate to the recently identified roles of ubiquitin in
protein import into peroxisomes (Purdue and Lazarow, 2001;
Kiel et al, 2005; Kragt et al, 2005).

In contrast to the fitness data set, the expression data set
reflects a reallocation of resources to fit the new metabolic
state of the cell (enrichment of precursors of metabolism and
energy, and carbohydrate metabolism) and detoxification
(enrichment of oxidoreductases and stress response). The
component term enrichments are in agreement with these
findings; for example, many of the genes annotated as plasma
membrane are related to metabolite transport (including
ATO3, PHO89, PMA2, HXT2, PTR2, FRE1 and PNS1) or stress
response and detoxification (PDR5, HSP30, ATR1, TPO1, TPO4
and AQR1).

In general, transcriptional control is biased
towards genes with metabolic roles

The above analysis suggests that for the cellular response to
fatty acids, which involves both morphological and metabolic
changes, transcriptional control is biased towards genes with
metabolic roles. To test the global applicability of this bias, we
estimated the representation of transcriptionally regulated
genes in a comprehensive data set of genes whose products
interact with metabolites (Prinz et al, 2004), and in the fatty
acid-related expression and fitness data sets (see Materials and
methods). For this analysis, transcriptionally regulated genes
were defined as those occurring as DNA targets at least once in
the global genome localization data set (Po0.001; Harbison
et al, 2004). This data set contains protein–DNA interactions
for virtually all of the yeast DNA-binding transcriptional
regulators (203 activators and repressors) under a variety of
conditions (rich media, and for 84 regulators, at least one of 12
other environmental conditions not including fatty acid
exposure). Interestingly, the expression and metabolic data
sets had 56 and 44% more transcriptionally regulated genes
than expected by chance (binomial distribution probability
P-values of 6.0�10�10 and 7.0�10�20, respectively); by
contrast, the fitness data set did not show any enrichment,
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suggesting that transcriptional control is biased towards genes
with metabolic roles.

Conclusion

Comparative analysis of fitness and expression data sets
related to fatty acid exposure identified a relationship between
the functional class of a gene and the mechanism of its
regulation. The enrichment of proteins related to the dynamics
and assembly of cell structures in the fitness and not the
expression data set suggests that these processes tend to be
regulated post-transcriptionally. Perhaps other regulatory
mechanisms such as protein modification are favoured for
structural responses because they make feasible the regulation
of complex assemblies rather than of individual components,

which reduces the biosynthetic cost and increases the speed of
the response. The bias of transcriptional regulation towards
metabolically related genes suggests that coordination rather
than speed is important for metabolic reorganization. Co-
ordinate changes to multiple metabolic pathways might be
critical for reducing toxicity and for balancing levels of small
molecules and intermediates involved in multiple pathways.

This study also revealed a relationship between the
functional class of a gene and its requirement for cell fitness
as genes necessary for fatty acid utilization tended to be related
to cell structure, but not metabolism. These data do not
necessarily suggest that transcriptionally controlled metabolic
reorganization is not important for cell fitness; indeed, genes
annotated with the biological process ‘transcription’ were
enriched in the fitness data set. It does suggest, however, that
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at least with respect to fatty acid metabolism, metabolic
networks are more robust and resistant to perturbation, than
structural complexes involved in the response.

Although the focus here was on the cellular response to fatty
acid exposure, these trends appear to be more widespread.
Further global analysis, data integration and assessment of
cellular responses to differing environmental cues will help to
understand the relationships in more detail.

Materials and methods

Myristate screen and generation of the ‘fitness’
data set

The entire mata haploid viable yeast deletion set from S. cerevisiae
strain BY4742 (Resgen/Invitrogen) was assayed for the formation of
clear zones in turbid medium containing myristate or oleate, and for
growth on medium containing acetate. The entire deletion set was
pinned in quadruplicate on YEPD agar (1% yeast extract, 2% peptone,
2% glucose, 2% agar) in omnitrays using a 96-floating-pin replicator
and colony copier (V and P Scientific, San Diego, CA) resulting in a
total of 384 colonies on each plate. Colonies were replicated in
triplicate onto acetate, oleate or myristate agar omnitrays. Plates were
incubated for 3–4 days at 301C. Omnitrays contained 40 ml of YPBA
agar (0.67% yeast nitrogen base, 0.1% yeast extract, 0.5% potassium
phosphate buffer, pH 6.0, 2% agar, 2% acetate), 20 ml of YPBO agar
(0.3% yeast extract, 0.5% potassium phosphate buffer, pH 6.0, 0.5%
peptone, 0.2% Tween 40, 2% agar, 0.1% oleic acid) or 20 ml of YPBM
agar (0.67% yeast nitrogen base, 0.1% yeast extract, 0.5% potassium
phosphate buffer, pH 6.0, 2% agar, 0.5% Tween 40, 0.125% myristic
acid). For turbid fatty acid media, detergent and fatty acid were mixed
together, warmed to 601C and added to media after autoclaving.

Growth and clear zone formation around cell patches were scored
by visual inspection. Growth was scored as 3, 2 or 1 for patches with
wild type, moderate or little/no growth, respectively. Clear zone sizes
around cell patches were scored as 4 for larger than wild type, 3 for
wild type, 2 for less than wild type and 1 for small or not detectable. To
facilitate the analysis of clear zones, plates were scored before and
after cell material was removed from the agar surface by rinsing the
plate under running water. A 600 dpi greyscale image of each myristate
plate was generated by placing the plate face up on a flatbed scanner
and scanning with transmitted light. Images were saved as jpeg files.
Oleate and myristate data were merged. The 212 genes for which the
corresponding deletion strain had wild-type growth on acetate and a
defective clear zone on oleate and/or myristate make up the ‘fitness’
data set.

Generation of the ‘expression data set’

A comprehensive data set of genes transcriptionally responsive to fatty
acids was generated by analysing two complementary time-course
data sets in the literature (Koerkamp et al, 2002; Smith et al, 2002). For
the Smith and Koerkamp data sets, the data analysed were for
effectively all the genes in the genome and for the published
differentially expressed genes, respectively. For each time-course data
set, gene expression profiles comprised of the gene expression ratios
(oleate versus reference carbon source) for each time point were
created. For each profile, as a statistical measure, we used the
integration of the expression ratios over the time course. The
significance of differential expression across the time course was
calculated by a hypothesis test using an empirical probability density
function determined from kernel density estimation (Bowman and
Azzalini, 1997). For each gene, the P-values from the two data sets
were then combined using Stouffer’s Z (Hedges and Olkin, 1985). The
combined P-value represents the significance of differential expression
in response to fatty acids in both experiments. P-values for all genes are
listed in Supplementary Table 2. We selected the 202 genes that had
combined P-values o0.025 as genes that have significant differential
expression in response to fatty acids. From these, we selected the 172

genes that were among the 4770 nonessential genes analysed in the
clear zone assay. These genes make up the expression data set.

Physical interaction data sets

Protein–protein interactions were downloaded from the SGD website
on 05/26/05 in Cytoscape format using the Batch Download tool.
Metabolites that are substrates or products of proteins in the network
were obtained from Prinz et al (2004), which is a modified version of
interactions compiled previously (Forster et al, 2003).

Gene Ontology slim term enrichment

GO slim terms for each gene in the yeast genome were downloaded
from the Saccharomyces Genome Database (SGD) website
(www.yeastgenome.org) on 05/26/05. For each term, the observed
frequencies in each data set (expression or fitness) were compared
with those expected by chance (the frequency of annotation for the
4770 nonessential genes). For enriched terms, the probability that the
observed distribution would be found by chance was determined by
calculating the binomial distribution probability using Microsoft Excel
and the probability mass function. This algorithm has been used by
others to estimate the significance of term enrichments with similar
population and sample sizes (Begley et al, 2004).

Analysis of general transcriptional regulation

All yeast genes in SGD were annotated with their respective regulators
identified by a previously published large-scale genome-wide location
analysis (P-values o0.001; Harbison et al, 2004). Genes annotated
with at least one regulator were termed ‘regulated’, whereas genes
with no annotations were termed ‘non-regulated’. The observed
frequency of regulated genes in each data set (expression or fitness)
was compared with that expected by chance (the frequency of
annotation to the 4770 nonessential genes). For over-represented
terms, the significance of enrichment was calculated as outlined for GO
slim terms (above). The analysis of the transcriptional regulation of
metabolic genes (those that are reported to interact with metabolites;
Prinz et al, 2004) was the same except that the expected frequencies
were calculated using the frequency of annotation to all yeast genes
rather than the nonessential genes.

Supplementary information

Supplementary information is available at Molecular Systems Biology
website (www.nature.com/msb).
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