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Abstract: Neurodegenerative diseases are characterized by irreversible cell damage, loss of neuronal
cells and limited regeneration potential of the adult nervous system. Pluripotent stem cells are
capable of differentiating into the multitude of cell types that compose the central and peripheral
nervous systems and so have become the major focus of cell replacement therapies for the treatment
of neurological disorders. Human embryonic stem cell (hESC) and human induced pluripotent
stem cell (hiPSC)-derived cells have both been extensively studied as cell therapies in a wide range
of neurodegenerative disease models in rodents and non-human primates, including Parkinson’s
disease, stroke, epilepsy, spinal cord injury, Alzheimer’s disease, multiple sclerosis and pain. In this
review, we discuss the latest progress made with stem cell therapies targeting these pathologies.
We also evaluate the challenges in clinical application of human pluripotent stem cell (hPSC)-based
therapies including risk of oncogenesis and tumor formation, immune rejection and difficulty in
regeneration of the heterogeneous cell types composing the central nervous system.

Keywords: neurodegenerative diseases; human pluripotent stem cells; cell therapy;
regenerative medicine

1. Introduction

Stem cell biology is indisputably a fast-moving field of research and over the past few years human
pluripotent stem cells (hPSC)-based therapies have progressed into early clinical trials, with several
patients now receiving hPSC-derived cells. Transplantations of retinal pigmented epithelium (RPE)
derived from human embryonic stem cells (hESC) [1–3] and human induced pluripotent stem cells
(hiPSC) [4] have been tested in patients with age-related macular degeneration (AMD), a leading
cause of blindness among the older population [5] and have shown promising results in stalling
disease progression. HiPSC-based therapy for the treatment of Parkinson’s disease (PD) entered
clinical trials in 2018, almost 30 years after the first transplants of human fetal material revealed the
potential for dopaminergic cell transplants [6,7]. In August 2019, a patient in Japan received the
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first corneal transplant made from hiPSC. Although it is still too early to ascertain the efficacy of
the procedure, the patient’s vision has reportedly improved considerably since the transplantation.
Clinical trials using hiPSC to treat spinal cord injury are also about to start in Japan [8]. The remarkable
clinical advance that these first-in-human hPSC- based therapies represent has generated considerable
excitement. However, ethical and safety concerns associated with hPSC transplantation persist and
clinical application of stem cells remains a daunting task. Although a large repertoire of hPSC-derived
cell types (>40) can be generated in vitro, each has its own challenges to overcome to be suitable for
cell therapy. Regenerative medicine should therefore address pathologies or conditions with unmet
medical needs only. Nonetheless, stem cell therapy may represent the most promising approach for a
large number of degenerative diseases given the limited capacity of intrinsic tissue regeneration.

Over the past few decades, stem cell therapies have advanced further towards the clinic to treat
damaged tissues and various degenerative diseases, especially those affecting the nervous system.
Neurodegenerative diseases are frequently characterized by the irreversible functional impairment
and/or loss of cells and limited regeneration of the adult nervous system. Cell replacement, therefore,
represents a critical strategy for the effective treatment of neurodegenerative diseases. HPSC can
be differentiated into many kinds of neuronal cells, from neural progenitors to specialized mature
neurons, astrocytes or oligodendrocytes. All have great potential in treating neuropathies such as
PD, multiple sclerosis (MS) or spinal cord injury (SCI). Recently, two studies have reported oncogenic
mutations in hiPSC [4] and hESC [9] and raised the importance of designing new strategies for
safe and efficient production and functional validation of hPSC-derived cells that can be used for
transplantation. However, there are still debates as to whether stem cell therapy is feasible, safe
and efficient or just conceptual. Considering the rising interest in stem cell-based therapies, a better
understanding of their implication in the treatment of neurodegenerative diseases is critical for the
design of appropriate strategies. It is therefore both a timely and a necessary question to review the
current state of hPSC-based therapies and their relevance in nervous system regeneration. In this
review, we discuss the progress made with cellular therapies, where cells derived from hPSC are
directly delivered in vivo, in the context of central nervous system (CNS) pathologies. Lastly, we review
the challenges of working with hPSC and discuss the hurdles that must be overcome to translate these
promising approaches to the clinic for the treatment of neurodegenerative diseases.

2. Main Text

2.1. Parkinson’s Disease

Parkinson’s disease (PD) is a progressive neurodegenerative disorder, characterized by a
progressive loss of dopaminergic neurons (DANs) within the substantia nigra, subsequently causing
bradykinesia, tremor and other debilitating symptoms such as cognitive decline. Therapies that
increase dopamine (DA) level in the brain, including the DA precursor L-DOPA (levodopa), and deep
brain stimulation are currently the gold standard treatment for PD [10]. Administration of L-DOPA can
have dramatic effects on bradykinesia and is often an effective initial treatment to improve the quality
of life of some patients. However, as the pathology progresses a decreasing number of dopaminergic
neurons are able to convert L-DOPA and fewer synapses are able to release dopamine. Subsequently
the treatment loses efficacy[11,12]. Hence, cell replacement of lost DANs for PD has long been pursued
and has profound clinical interest.

Whilst human fetal material has long been explored for Parkinson’s disease, human embryos
are not a viable source of material for cell therapy. Various human stem cell derivatives, the most
common being neural stem cells (NSCs) or neural progenitor cells (NPCs) and DANs, have already
shown an improvement in symptoms following cell transplantation in rodent and primate PD models
(Figure 1, Table 1).
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Figure 1. HPSC-based therapies for the treatment of neurodegenerative diseases. An overview of the
different cell types generated from hPSC currently being studied and developed as cell therapies for
the treatment of various neurodegenerative diseases.
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Table 1. Overview of hPSC-based therapy studies performed in neurodegenerative diseases animal models.

Disease Cell Type
Transplanted Transplant Site Animal Model Readout Reference

PD

hESC-DANs Striatum Rat, 6-OHDA apomorphine-induced rotations, adjusting step test,
cylinder test. [13]

hESC-DANs Striatum in mice,
putamen in monkeys

Mouse
Monkeys, MPTP

MRI, Neurological rating scale, video-based analysis
of spontaneous movements [14]

hESC-midbrain DANs Striatum in mice and rats,
Putamen in monkeys

Mouse, 6-OHDA Rats, 6-OHDA
Monkeys, MPTP

Amphetamine-induced rotations (Rats and mice),
stepping test (rats), cylinder test (rats). [15]

hESC-midbrain DANs Striatum Rat, 6-OHDA Amphetamine-induced rotation
Cylinder test [16]

hESC-midbrain DANs Striatum Rat, 6-OHDA

MRI
MR spectroscopy

PET-Scan
Amphetamine-induced rotations

[17]

hESC-DA progenitor cells Striatum Rat, 6-OHDA
Mouse, 6-OHDA

Amphetamine-induced rotations
Cylinder test [18]

hiPSC-DANs Striatum Rat, 6-OHDA Amphetamine- and apomorphine-induced rotations [19]

hiPSC-DANs Striatum Rat, 6-OHDA
Mouse, α-Synuclein Tg Amphetamine-induced rotations [20]

hiPSC-NPCs and hiPSC-DANs Striatum Rat, 6-OHDA Amphetamine-induced rotations [21]

hiPSC-NSCs Striatum Rat, 6-OHDA Turning-over test
Rotation-rod test [22]

hiPSC-NPCs Putamen Monkey, MPTP Raisin pick up test
Neurological rating scale [23]

hiPSC-DA progenitor cells Putamen Monkey, MPTP Neurological rating scale,
Video-based analysis of spontaneous movements [24]
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Table 1. Cont.

Disease Cell Type
Transplanted Transplant Site Animal Model Readout Reference

Stroke

hiPSC-lt-NES cells Striatum, Cortex Rat & Mouse, MCAo Staircase and corridor tests [25]

hiPSC-cortical fated lt-NES Cortex Rat, MCAo
Immunoelectron microscopy

Rabies virus retrograde synaptic tracing
electrophysiology

[26]

hiPSC-cortical fated lt-NES Cortex Rat, MCAo Cylinder and stepping test [27]

hiPSC-cortical fated lt-NES Cortex Rat, MCAo

Rabies virus retrograde synaptic tracing
Immunoelectron microscopy

Optogenetics
Electrophysiology

Cylinder test

[28]

hiPSC-NPCs Striatum Mouse, MCAo Modified neurological severity score (mNSS) [29]

hiPSC-NPCs Penumbra region of
the cortex Mouse, MCAo Adhesive removal test – latency and removal time [30]

hiPSC-NPCs Striatum Rat, MCAo

Rotarod test
Stepping test

mNSS
Apomorphine-induced rotation tests

[31]

hiPS-NPCs Right cortex Rat, Incision in common
carotid artery

Vibrissae-elicited forelimb placing test
Cylinder test [32]

hiPSC-NSC Cortex surrounding lesion Pig, MCAo MRI and histology (no functional measurement) [33]

Epilepsy

hESC-MGE progenitors Hippocampus Mouse, Pilocarpine-induced TLE

EEG recording
Novel object recognition test

Locomotion test
Handling test

[34]

hESC-MGE progenitors Hippocampus Mouse, Pilocarpine-induced TLE Morris Water Maze test,
EEG recording [35]

Learning and
Memory/AD

hiPSC-NPCs (with cholinergic
neuronal phenotype) Bilateral hippocampus Mouse, Tg PDAPP Morris Water Maze test [36]

hESC-BFCN Progenitors Bilateral Hippocampus Mouse, Tg 5XFAD and Morris Water Maze test
Electrophysiology (Whole-Cell patch-clamp) [37]

hiPSC-ML/NEP2 Hippocampus Mouse, Tg 5XFAD Immuno-histochemistry
(no functional assay) [38]
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Table 1. Cont.

Disease Cell Type
Transplanted Transplant Site Animal Model Readout Reference

Multiple
Sclerosis

hiPSC-OPCs Corpus Callosum Mouse, Shiverer/rag2 Survival time [39]

hiPSC-OPCs Forebrain Mouse, Shiverer/rag2 Immuno-histochemistry
(no functional assay) [40]

Spinal Cord
Injury

hiPSC-NSCs Lesion epicentre Mouse, moderate contusive SCI at
T10 level

Rotarod test
BMS score

DigiGait system
[41]

hiPSC-lt-NES Lesion epicentre Mouse, contusive SCI at T9 level BMS locomotor scale [42]

hiPSC-NPCs Lesion epicentre Mouse, moderate contusive SCI at
T11 level

BMS scale
CatWalk-automated gait analysis [43]

hiPSC-NPCs Lesion epicentre at T11 Mouse, and compression injury T11 Open-field,
footprint analysis [44]

hiPSC-NSCs Lesion epicenter at C5 Rat, C5 lateral hemisection lesions
Grid-walking

Grooming
Vertical exploration (no functional improvement)

[45]

hiPSC-NPCs Lesion epicenter at T8 Rat, balloon-induced compression
lesion at T8 level

BBB test
Beam walking test

Rotarod test
Plantar test

[46]

hiPSC-NSCs Lesion epicenter Marmoset, moderate contusive SCI
by weight-drop at C5 level

Open field rating scale
Bar grip test

Cage climbing test
[47]

hESC-OPCs Lesion epicenter at T8 of
spinal cord.

Rat, contusive injury by
weight-drop at T8 level SSEP (Somatosensory Evoked Potentials) evaluation [48]

hiPSC-OPCs T8 of spinal cord. Rat, moderate contusive SCI by
weight-drop at T8 level BBB locomotor rating scale [49]

hESC-MGE (GABAergic
progenitors)

Lumbar enlargement
level L3–L5.

Mouse, moderate contusive SCI at
T13 level

BMS scale, Open field, Von Frey, Over-grooming,
Assessment of bladder function by analysis of

voluntary Voiding Pattern and Cystometry [50]
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Table 1. Cont.

Disease Cell Type
Transplanted Transplant Site Animal Model Readout Reference

Neuropathic
Pain

hESC-MGE progenitors Spinal Cord, Lumbar
enlargement (L3–L5)

Mouse, moderate contusive SCI at
T13 level BMS scale, Open Field, Von Frey, Over-grooming. [50]

hiPSC-GABAergic neurons Spinal Cord, Lumbar
enlargement L1. Mouse, SNI

BMS scale
Von Frey,
Acetone

Open Field,

[51]

PD: Parkinson’s Disease; AD: Alzheimer’s Disease. SCI: Spinal Cord injury; hESC: human Embryonic Stem Cells; NSC: Neural Stem Cells; NPC: Neuronal Progenitor Cells; hiPSC: human
Pluripotent Stem Cells; DANs: Dopaminergic neurons; lt-NES: long-term self-renewing Neuro-Epithelial-like Stem; ML/NEP2: Macrophage-Like/Neprilysin-2; BFCN: Basic Forebrain
Cholinergic Neurons; OPC: Oligodendrocyte Progenitor Cells; MGE: Medial Ganglionic Eminence; SNI: Spared Nerve Injury.
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A pioneering study used a co-culture system of telomerase-immortalized human fetal midbrain
astrocytes with hESC to achieve high-efficiency dopaminergic neurogenesis in hESC. This highly
enriched DANs population provided significant functional benefit when transplanted into the striatum
of the 6-hydroxydopamine (6-OHDA)-lesioned rat model of PD [13]. While this study represented an
important steppingstone in the development of a stem cell-based therapy for PD, it also raised the
concern of tumor formation due to the presence of proliferating undifferentiated neuro-epithelial cells
in the graft.

Prolonged maturation of hESC-DANs in vitro prior to transplantation was showed to reduce
the risk of tumor formation without affecting their function and efficacy in a primate model of
PD [14]. More efficient and defined protocols, based on dual SMAD inhibition and activation of the
Wnt signaling, have also been developed. Midbrain DANs expressing tyrosine hydroxylase (TH,
the rate limiting enzyme in the synthesis of DA) were derived from hESC. Their function and efficacy
in vivo was demonstrated in PD models using three host species. HESC-midbrain DANs engrafted in
6-OHDA-lesioned mice and rats and their survival was associated with an amelioration of amphetamine
induced rotation behavior and bradykinesia. Scalability of the procedure was confirmed in parkinsonian
monkeys and safety was suggested by the lack of tumor formation in the three animal models [15].
A similar approach is based on dual SMAD inhibition, modulation of the Wnt signaling pathway and
embryoid body (EB) formation to direct hESC differentiation toward a ventral mesencephalic (VM) fate
and generate an enriched population of floor-plate progenitors. When transplanted into the brain of a
rat model of PD, hESC-derived VM progenitors differentiated into functional midbrain DANs, released
DA in vivo 18 weeks post-transplantation and reversed motor impairments (amphetamine-induced
rotational asymmetry) in 6-OHDA-lesioned rats [16] with an efficacy comparable to that seen with
human fetal VM cells [17]. HESC-DANs are capable of long-distance innervation of the host brain [17].
However, the overall proportion of hESC-derived DANs within the grafted region remains low, due in
part to their poor survival immediately following transplantation. Glial cell line-derived neurotrophic
factor (GDNF) has recently been shown to increase the survival, plasticity, and functional integration
of hPSC-derived VM DA progenitor grafts, in a time post-transplantation-dependent manner [18].
Interestingly, a new cell type resembling perivascular-like cells, called vascular leptomeningeal cells
(VLMC), has very recently been identified in hESC-DANergic grafts [52]. The contribution of this
population to the graft survival and function remains to be determined.

Autologous human induced pluripotent stem cells (hiPSCs) cells potentially represent a more
tolerable cell transplantation option than hESC and have attracted significant interest [19–21,23].
Han et al., 2015 confirmed that hiPSC-derived NSCs integrated into the host brain circuitry and
differentiated to DA neurons when transplanted into the striatum of 6-OHDA PD rats. Functional
recovery was evident from the 4th to the 16th week after transplantation. However, a greater
proportion of NSCs differentiated to astrocytes than neurons, with efficiencies of 51.1% and 20.5%
respectively [22]. Other studies avoided this issue by directly transplanting hiPSC-derived DANs
into the striatum of 6-OHDA rats, observing functional recovery using the amphetamine-induced
rotation test and highlighting no difference in results when comparing DANs derived from healthy
or PD hiPSC lines [19,20]. PD-hiPSC-DANs do not show increased vulnerability to external toxic
stresses compared to those generated from healthy individuals. Furthermore, when transplanted
in the brain of α-synuclein overexpressing transgenic mouse model of PD [53], PD hiPSC-derived
DANs did not exacerbate pathological α-synuclein accumulation in the host brain or in the grafts,
suggesting that hiPSC derived from PD patients are suitable for autologous cell transplantation [20].
A reduction in motor deficits was also observed after transplantation of NPCs or DANs from hiPSC
into the right side of the rat striatum [21]. However, three of twelve grafted rats showed tumor growth
and subsequent death before eight weeks suggesting the presence of oncogenic factors or remaining
undifferentiated cells. Despite the differences in the nature of the cell transplanted, these studies in
rodents demonstrated functional recovery. Therefore, transplantation of hPSC-derived neuronal cells
represents a potential therapeutic strategy to treat PD.
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In addition to rodent models, non-human primate (NHP) models of PD have been used to test
hiPSC-based therapy. Following bilateral transplantation of hiPSC-derived NPCs into the putamen
of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-treated cynomolgus monkey, cells survived
for six months and differentiated into DANs. A single parkinsonian monkey was transplanted and
behaviorally assessed for skilled reaching. Results showed a slight functional improvement [23].
A subsequent analysis from the same group found improved neurological rating scores and higher
recovery rates after transplantation of hiPSC-derived DA progenitors into the putamen of MPTP-treated
cynomolgus monkeys. HiPSC-DA progenitor cells matured and survived for at least 12 months after
transplantation and the efficacy of the cell therapy was similar to that of L-DOPA treatment. Moreover,
the effects were similar whether the donor cells were from healthy individuals or PD patients [24].
Following this study in NHPs, which was a simulation of a planned clinical trial and confirmed the
efficacy and safety of hiPSC-derived DA progenitors, a Phase I clinical trial in human PD patients was
initiated in 2018 in Japan, and others are planned for the near future in the US and in Europe [7,54,55].
Current clinical trials using hPSC-derived neuronal cells for neurodegenerative diseases/injuries are
summarized in Table 2.

Table 2. Clinical trials using hPSC derivatives for diseases/injuries of the nervous system.

Disease Treatment Type Phase Clinical Trial
Identifier Country

PD

parthenogenetic
hESC-NSC

(ISC-hpNSC)
Phase I NCT02452723 Australia

HLA-matched
hESC-NPC Phase I/II NCT03119636 China

hiPSC-DA
Progenitors Phase I/II JMA-IIA00384

UMIN000033564 Japan

Amyotrophic Lateral
Sclerosis (ALS)

hESC-Astrocystes
(AstroRx) Phase I/II NCT03482050 Israel

SCI hESC-OPC
(AST-OPC1) Phase I/II NCT02302157 USA

PD: Parkinson’s Disease; SCI: Spinal Cord injury; hESC: human Embryonic Stem Cells; HLA: Human Leucocyte
Antigen; NSC: Neural Stem Cells; NPC: Neuronal Progenitor Cells; hiPSC: human Pluripotent Stem Cells; DA:
Dopamine; OPC: Oligodendrocyte Progenitor Cells.

Together, these studies build on evidence that an hPSC-based therapy has considerable potential
for reversing motor defects of PD patients. The replacement of DANs from the substantia nigra by
hPSC-DANs restores the deficit of dopamine release, subsequently stimulating the medium spiny
neurons of the striatum and alleviating PD disabilities that include bradykinesia, resting tremor and
muscle rigidity. Cell replacement therapy also could reduce the side effects of medication such as
dyskinesia (uncontrolled involuntary movements) resulting from the long-term use of Levodopa.
A major limitation of such treatment however is its sole focus on motor symptoms, which comprise
only part of PD pathology. It remains unclear whether any of these treatments will have an impact on
the non-motor symptoms of PD including mood disorders, such as depression, and cognitive decline.

2.2. Stroke

Despite stroke being a significant cause of disability in adults [56], outside of long-term
rehabilitation, few therapeutic strategies exist to treat the condition. Stroke is characterized by
a sudden interruption of blood flow in a particular area of the brain. It can lead to death of a
range of neuronal cell types with limited regeneration potential and therefore, the use of hPSCs as a
cell-based replacement therapy is a promising potential approach to promote recovery. Transplantation
of neuronal cells derived from hPSCs can lead to functional improvement in animal models of
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stroke through several mechanisms including neuronal replacement, modulation of inflammation,
neuroprotection and stimulation of angiogenesis [57] (Figure 2).

Figure 2. Potential mechanisms of hPSC-based therapies for neural tissue regeneration.

Due to the heterogeneity of cells lost in stroke, several different cell types have been used
for transplantation therapies (Table 1, Figure 1). It remains unclear which of these cell types is
most advantageous.

Long-term self-renewing neuro-epithelial-like stem (lt-NES) cells are multipotent progenitors that
can give rise to glia and neurons and are most similar to the early neuroepithelium of the developing
embryo. Lt-NES cells can be derived from human iPSC or ESC [58]. In contrast to differentiated cells
that are already specialized, lt-NES cells are less lineage-restricted and can be instructed by local factors
in vivo to further differentiate into the required neuronal lineages. This could have a major advantage
in stroke where several neuronal cell types are damaged and directed differentiation to replace only
one type of neurons might not provide maximum benefit. Previously, hiPSC-derived It-NES have
shown some therapeutic promise following transplantation into the striatum or cortex of mice and
rats that with stroke-damage from middle cerebral artery occlusion (MCAo) [25–27]. Recovery of
movement was observed as shortly as one week after transplantation, suggesting that this rescue
may be due to neurotrophic factors release, such as vascular endothelial growth factor (VEGF), rather
than neuronal cell replacement. Transplanted lt-NES cells differentiate into several neuronal subtypes
including cortical neurons, and demonstrate functional characteristics of neurons, such as action
potential generation with integration into the host circuitry evident five months post-transplantation.
Motor deficits were consequently attenuated [25]. HiPSC- lt-NES which had been fated towards
a cortical phenotype in vitro prior to transplantation showed less proliferation and more efficient
conversion to mature neurons than non-fated cells [27]. Six months post-injection, transplanted
hiPSC-fated cortical neurons receive direct and functional synaptic inputs from the stroke-injured
brain [26], their axons are myelinated in the host brain and their terminals form excitatory glutamatergic
synapses with host cortical neurons [28]. Furthermore, physiological sensory stimuli can modulate
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their spontaneous activity [26] and their activity can maintain normal motor function in MCAo rats [28],
demonstrating functional integration of the grafted hiPSC-cortical neurons to the stroke-injured brains’
neural circuitry. Whilst these studies show that lt-NES cells generally become committed and lose
proliferative capacity in vivo, some cells remain proliferative and potentially tumorigenic. As such,
the risk of graft overgrowth is a substantial concern.

As an alternative strategy, hiPSC-derived NPCs have been transplanted into stroke-damaged
rodents and shown to be equally as effective in promoting functional recovery. Neuro-progenitor cells
differ from IT-NES by their more limited capacity to proliferate, although they retain multipotency.
This characteristic may help to mitigate the problem of graft overgrowth observed with It-NES
and a number of studies have claimed significant success with this strategy in both mice and rats.
NPCs (of telencephalic fate) transplanted into the striatum of ischemic mice survive, migrate and are
associated with an improvement of modified neurological severity score (mNSS) for up to six weeks
post-transplantation. The functional recovery observed in the transplanted group could be explained by
neural circuit reconstitution [29]. Similar results were found using the adhesive removal test where the
latency/speed of removal is measured. HiPSC-NPCs transplantation not only enhanced sensorimotor
functional recovery but also reportedly increased trophic support and improved blood flow in the cortex
by restoring neurovascular coupling up to 28 days post-transplantation. However, the study did not
assess the relative contributions of different neural cell types to recovery [30]. Similarly, hiPSC-NPCs
transplantation into the brain of stroke damaged rats also leads to functional improvement in both
rotarod and stepping tests, with initial motor recovery from one-week post-transplantation. A more
gradual recovery was however observed in two other metrics, the apomorphine-induced rotation
tests and the mNSS. The study highlighted the short-term effects of hiPSC-NPCs and demonstrated
their different mode of actions by showing the formation of neuronal tissues from the transplanted
hiPSC-NPCs and the reduction of inflammation, gliosis and apoptosis in the damaged brain [31].
More recently, improvement in limb asymmetry was achieved by transplantation of hiPSC-NPCs into
the right cortex of MCAO stroke-damaged rats. However, there were only modest improvements in
motor function, suggesting further clinical development would be required [32].

To date, only one study involving the use of hiPSC has been carried out in a non-rodent stroke
model. HiPSC-NSCs were transplanted into the brain parenchyma surrounding MRI-identified
lesions of an ischemic pig stroke model and were shown to survive long-term, differentiate to
neurons and oligodendrocytes and improve tissue recovery in the damaged brain. Metabolic effects
were recorded post-transplantation, such as reduced changes in white matter integrity, enhanced
cerebral blood perfusion and recovery of brain metabolism in the damaged tissue. HiPSC-NSC
post-stroke transplantation also lead to neuronal protection and reduced microglial activation. However,
no confirmation of functional recovery was assessed in this study [33].

A limitation of the field is that only short-term studies have been carried out to date. Longer-term
functional follow-ups are necessary to provide evidence of therapeutic efficacy. Stroke is also a difficult
disease to model as the pathology depends on the brain regions affected. From these studies it remains
unclear whether functional recovery could be attained in all brain regions and the extent to which the
degree of neuropathology alters the results.

2.3. Epilepsy

Epilepsy is a common neurological disorder which manifests by an excessive, rhythmic (ictal) and
abnormal brain activity causing spontaneous recurrent seizures, unusual behavior or sensations and
loss of consciousness. Dysfunction of GABAergic inhibitory interneurons plays a major role in the
pathological hyper-excitability underlying epilepsy, owing to their responsibility for dampening
neuronal activity and promoting network inhibition. Inflammation also has a significant role
in epilepsy. However, there is an active debate as to whether inflammation is the cause or
consequence of epilepsy [59,60]. Although many anticonvulsants drugs are used in the treatment of
epilepsy, their efficacy varies greatly between individuals and adverse effects are near ubiquitous



Cells 2020, 9, 2517 12 of 34

amongst patients [61]. Moreover, many patients cannot be successfully stabilized on anticonvulsants,
necessitating drastic surgery such as surgical resection of the epileptic focus (the center of epileptic
rictal activity). Consequently, the development of a stem cell-based therapy could represent a great
advantage for the treatment of epilepsy.

HESCs can be differentiated into medial ganglionic eminence (MGE) cells, precursors of GABAergic
interneurons (GINs). Significant cognitive improvement was observed after transplantation of
hESC-MGE progenitors into the hippocampus of a pilocarpine-induced temporal lobe epilepsy (TLE)
mouse model. Grafted hESC-MGE progenitor cells differentiated into active GABAergic neurons with
mature firing patterns, showing their integration into the host hippocampal circuitry and suggesting
a synaptic mode of action [34,35]. Alternatively, hESC-interneuron grafts can ameliorate memory
impairment through release of GABA or neurotrophic factors that protect hippocampal neurons and
synaptic integrity, or by releasing factors that reduce inflammation which is known to impair learning
and memory [62,63].

In one of the studies, transplanted cells were also functionally effective at reducing seizure
activity for up to four months post-transplantation, which was directly attributed to transplant-derived
inhibitory currents passed onto endogenous hippocampal neurons [34]. However, the more recent study
did not show significant seizure suppression after transplantation of hESC-GABA neurons progenitors
into the brain of TLE mice compared to media injection [35]. Moreover, in this study, tumor-like
NSC clusters were also observed in some injected mice, likely due to proliferative undifferentiated
cells remaining in the transplanted population. The discrepancies between the two studies might
therefore be explained by the difference in heterogeneity of the transplanted cell populations. Although
hPSC-based therapies have great potential in the treatment of epilepsy, further studies are necessary in
both rodent and non-rodent models to prove their efficacy in suppressing seizures and importantly to
ascertain the safety of the procedure.

2.4. Learning & Memory Disorders/Dementia (Alzheimer’s Disease)

Learning and memory are complex cognitive processes involving hippocampal function that are
severely affected by aging and some neurodegenerative disorders such as Alzheimer’s disease (AD). AD
is the most common age-related form of dementia and is clinically characterized by a progressive loss
of cholinergic neurons and synapses, deposition of neurotoxic proteins such as extracellular amyloid-β
(Aβ) plaques and intracellular neurofibrillary tangles (NFTs) [64]. While AD is currently untreatable,
increasing evidence supports the therapeutic potential of regenerative medicine to treat AD.

Over the last decade, numerous preclinical stem cell therapies have been attempted to replace
lost neurons or support existing neurons in animal models of AD. NSCs derived from mouse adult
brain or ESC were transplanted into AD rodent models and resulted in generation of cholinergic
neurons, increased synaptic strength and enhancement of memory performance [65–67]. Improvements
in learning and memory abilities have also been demonstrated after hPSC-based cell replacement
therapies (Table 1, Figure 1). HiPSC-NPCs of cholinergic phenotype were transplanted into the
hippocampus of the PDAPP (PDGF promoter driven amyloid precursor protein) transgenic mouse
model of dementia [68]. By 45 days post-transplantation, hiPSC-NPCs were found to survive and
differentiate into cholinergic and GABAergic neurons in the host brain, resulting in an improvement in
spatial memory [36]. Mouse and human ESC were also directed to differentiate into basic forebrain
cholinergic neurons (BFCN) progenitors and transplanted into the forebrain of AD mouse models.
Two months after the injection, transplanted BFCN progenitors predominantly differentiated into
mature cholinergic neurons that functionally integrated into the host endogenous cholinergic circuitry.
HESC-BFCN therapy could restore cholinergic function and alleviate cognitive deficits of two strains
of AD mouse models (5XFAD and APP/PS1) up to six months post-transplantation [37]. These results
demonstrate great potential for hPSC transplantation to improve learning and memory disorders such
as AD.
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Accumulating evidence suggests that stem cells transplantation influences the pathological features
of AD through multiple modes of action. Similar to stroke, the therapeutic potential can be partly
attributed to a paracrine effect of neurotrophic factors (in this case BDNF and GDNF) that ameliorate
various cellular functions in animal models of AD, including neural integrity, endogenous neurogenesis,
microglial activity, angiogenesis, mitochondrial function, autophagy and apoptosis [69,70] together
improving cognitive function. Of interest, while Huntington’s disease (HD) is commonly referred
as a motor disorder, cognitive impairments are present and often progress to dementia. Similar
behavioral improvements have been found after transplantation of mouse and human iPSC-NPCs into
the striatum of YAC128 HD mice [71,72]. Transplanted cells were shown to differentiate into medium
spiny neurons [71], the most affected neuronal cell type in HD, as well as GABAergic neurons [72].
HPSC-NPC may also represent an effective neuronal cell replacement therapy for HD.

While most NPC/NSC and BFCN transplantations were successful at improving cognitive
dysfunction in AD animal models, they failed to reduce the level of Aβ plaques in the AD
brain. Following a different strategy, hiPSC-derived macrophage-like (ML) cells were generated
and engineered to express Neprilysin-2 (NEP2), a secretable protease with Aβ-degrading activity.
HiPSC-ML/NEP2 were injected into the hippocampus of the 5XFAD transgenic AD mice [38,73].
Although the effect on cognitive function and neuronal damage was not examined, a significant
reduction in the level of Aβ was observed in the transplanted mouse brain. The reduction of Aβ was
not significant when unmodified hiPSC-ML were transplanted, demonstrating that the secretion of
NEP2, and not phagocytosis by hiPSC-ML, caused the elimination of Aβ. While further investigations
are necessary to evaluate their protective effect on neuronal damage and subsequent cognitive decline,
this study suggests a potential therapeutic benefit of NEP2-secreting hiPSC-ML for the treatment
of AD.

2.5. Multiple Sclerosis

Multiple Sclerosis (MS) is a chronic demyelinating disease that affects the CNS. Current therapies
are primarily directed against the immune system to treat the inflammatory component of the disorder.
However, the real challenge is to develop re-myelinating and neuro-protective therapies.

To establish a potential source of myelinogenic oligodendrocytes for the treatment of MS,
several protocols were developed to generate oligodendrocyte precursors cells (OPCs) from
hiPSC [39,74,75]. HiPSC-OPCs were transplanted into the corpus callosum of a genetic model
of congenital hypomyelination, the shiverer mouse [76]. In vivo, hiPSC-OPCs differentiated into
oligodendrocytes that produced myelin and had the ability to efficiently myelinate the hypomyelinated
shiverer brain with no evidence of tumorigenesis at nine months post-transplantation. Furthermore,
the transplants led to a significant functional improvement and significantly increased lifespan by
~20% compared to their untreated counterparts [39]. Importantly, when hiPSC were derived from four
progressive MS patients they could also be induced to form highly enriched populations of OPCs.
Although no functional assay was performed in this study, immunohistochemistry demonstrated
that the transplanted hiPSC-OPCs differentiated, expressed mature oligodendrocyte markers after
transplantation in vivo and myelinated axons in an immuno-compromised shiverer mouse brain,
highlighting the potential of autologous hiPSCs to treat MS [40].

2.6. Spinal Cord Injury

Spinal cord injury (SCI) often results in catastrophic neurological deficits which dramatically
diminish the quality of life of affected individuals. Surgery (laminotomy which involves the surgical
removal of bone to relieve pressure in the spinal canal) and rehabilitation are the only interventions
commonly used to improve functional recovery after SCI. The corticosteroid methylprednisolone
is the only pharmacotherapy currently approved and has been used to reduce inflammation in the
spinal cord (SC) acutely after injury. However, it has limited efficacy and serious side-effects, such as
gastrointestinal hemorrhage and respiratory bacterial infection, and this medication is no longer
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routinely provided [77]. Despite decades of efforts to develop effective treatments, there is still an
urgent need for new therapeutics that promote functional recovery after SCI.

Central to the pathology of SCI is a major insult to the nervous system. A trauma of the spinal
cord can cause acute damage to ascending and descending tracts and lead to axotomy (severing of
axons). Immediately after primary injury, a robust neuro-inflammatory response occurs and triggers
the secondary injury mechanisms in the chronic phases of SCI, leading to cell death and further tissue
degeneration (Wallerian degeneration). Around the site of the injury, the formation of a cyst and a
growth inhibitory scar (known as the glial scar) will prevent tissue regeneration [78]. For these reasons,
stem cells, in particular hiPSC, have attracted great interest as a potential source for cell replacement
therapy after SCI.

Human iPSC-derived neurospheres were transplanted into a mouse model of contusive SCI at
the T10 level [41]. The cells differentiated to neurons, oligodendrocytes and astrocytes. Functional
recovery was evident 112 days after injury in multiple motor parameters including gait and overall
locomotion. However, only 22% of the cells differentiated into mature neurons. In a further study
using hiPSC-lt-NES transplanted in a mouse at the T9 level, 75% of transplanted cells differentiated
to neurons. Functional recovery of the hindlimb was found using the Basso Mouse Scale (BMS) and
was associated with improvements in the motor evoked potential (recorded from the hindlimb and
stimulated in motor cortex) [42].

HiPSC-NPCs have also been transplanted into an immuno-competent mouse model of SCI but
showed very limited survival, no reduction of the size of the lesion and no functional recovery [43].
In contrast, functional improvement of hindlimb dysfunction and structural recovery of the spinal cord
were evident following transplantation of hiPSC-NPC in a mouse study [44]. The same discrepancies
were reported in rat models of SCI. HiPS-NPCs were injected into C5 lesion sites of immunodeficient
rats. Although the majority of cells differentiated to neurons whose axons were found to have integrated
and formed synapses with host neurons three months post-transplantation, there was no functional
improvement (assessed by the grid-walking, grooming, and vertical exploration) [45]. In contrast,
a study with a much larger sample size (34 transplanted and 35 control rats) showed clear functional
motor improvement (measured by the Basso, Beattie and Bresnahan (BBB) locomotor scale method,
beam walking, rotarod and plantar test) after transplantation of hiPSC-NPCs at the T8 level of the
spinal cord. After 17 weeks, hiPSC-NPCs differentiated to astrocytes, oligodendrocytes and specific
neurons (interneurons, dopaminergic, serotoninergic and motor neurons), but a large portion of the
grafts was glial cells. Interestingly, human ChAT (cholineacetyltrabsferase) positive motor neurons
were found in the ventral part of the spinal cord while human calbindin expressing interneurons were
localized in the central part of the SC, showing that the cells can migrate to specific regions of the tissue
and adopt specific phenotypes [46]. Despite promising results, the degree of functional recovery after
stem cell transplantation remains modest. Recently, Notch activation induced by injury in the SC has
been shown to orient transplanted hiPSC-NPCs towards astrocyte lineage and reduce their therapeutic
efficiency [79]. Remarkably, modulation of notch signaling by GDNF in transplanted cells increased
their neuronal fate and enhanced their electrical integration independently of an effect on cell survival.
This strategy resulted in an improved functional recovery after transplant and represents an important
optimization of hiPSC-NPCs therapy for SCI.

HiPSC-NSCs have also been trialed as cell therapy in a marmoset model of SCI. Injury was induced
at the C5 level of the spinal cord and behavioral analyses were performed for up to 12 weeks afterwards.
Functional recovery was observed in motor parameters such as open field, bar grip and cage climbing
tests. However, although transplanted cells were found to differentiate into all three lineages (neurons,
astrocytes and oligodendrocytes), approximately one quarter of the cells remained immature. Despite
this limitation, no tumorigenicity was observed in the limited time frame of the study [47]. Longer and
additional studies in large animals would be required to reinforce the current evidence.

Because re-myelination of axons is an essential component of the recovery, others have evaluated
the therapeutic potential of OPCs, derived from hESC or hiPSC, for the restoration of neuronal pathways
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after moderate contusive SCI in rats. In both cases, most cells differentiated to mature oligodendrocytes
expressing Myelin Basic Protein (MBP) and integrated in the host spinal cord. Transplanted 2 h after
injury, hESC-OPCs lead to an improvement of somatosensory evoked potential (SSEPs) recorded at the
cortex showing functional improvement of sensory pathways [48]. Transplantation of hiPSC-OPCs 24 h
after injury resulted in a reduction of the cavity size and glial scarring at the injury site. A significant
increase in number of myelinated axons was also reported. Although the mechanisms involved are
still unclear, hiPSC-OPCs improve recovery of motor function (measured using the BBB scale) after
transplantation into SCI [49]. Of note, mouse iPSC- NSCs derived from both wildtype and shiverer
mice were transplanted into the spinal cord of a mouse model of SCI at the T6 level. While both cell
lines integrated and differentiated into oligodendrocytes, astrocytes and neurons, wildtype-derived
cells demonstrated a much greater improvement in locomotor function, demonstrating the key role of
re-myelination in functional recovery of the spinal cord [80].

Lastly, some investigations have focused on other pathological aspects of SCI, which include
neurogenic bladder disorders and neuropathic pain. A shared hallmark of both conditions is the
loss of GABAergic inhibitory tone in the injured spinal cord [81,82]. HESC were induced to form
MGE progenitor cells and transplanted in the lumbar enlargement of SCI mice. By six months
post-transplantation, hESC-MGE progenitors integrated and differentiated into mature GABAergic
neurons and glial cells. HESC-MGE grafts improved neurogenic bladder dysfunction and relieved
central neuropathic pain, two of the most debilitating SCI-related symptoms [50].

Despite all preclinical studies performed in rodents to establish an hPSC-based approach for
spinal regenerative medicine, clinical trials using hPSC to target SCI have not been fully conducted.
The Food and Drug Administration (FDA) approved the first clinical trial in the US for the use of
hESC-derived oligodendrocytes to treat SCI. Geron Corporation started the trial on 4 patients in 2010
but it was later closed for business reasons. Asterias Biotherapeutics re-initiated a Phase 1/2a Dose
Escalation Study with 25 patients in 2015 but, to date, no results have been reported (Clinical Trial ID
NCT02302157, Table 2). Clinical trials using transplantation of hiPSC-NPCs are also scheduled to start
in Japan [8].

2.7. Neuropathic Pain

Chronic neuropathic pain is an exacerbated or prolonged pain caused by damage or disease
affecting the somatosensory nervous system (including nerve injury, cancer, diabetes or viral infection).
Chronic neuropathic pain can be classified as a neurodegenerative disease [83,84] that culminates in
decreased central inhibition in the spinal cord [85–87].

Neuropathic pain is currently treated with non-specific management strategies such as
anti-epileptics, antidepressants and, in some cases, opioids. However, these treatments are known
to have poor efficiency, produce undesirable side effects and/or long term addiction [88,89]. Cell
replacement therapies to treat neuropathic pain have been explored as a means to increase GABA
locally at the site of central dysfunction. Functional replacement of spinal GABAergic inhibitory
neurons has been initially performed by the transplant of mouse embryonic MGE progenitor cells
and resulted in attenuation of neuropathic pain by restoring central inhibition through release of
GABA [90,91]. HESC-MGE progenitor cells have also been transplanted into the mouse spinal cord
and shown to alleviate central neuropathic pain following SCI [50]. Most recently, we have generated
matured functional GABAergic neurons from hiPSC and transplanted them into the spinal cord of
mice with established peripheral nerve injury, providing pain relief for up to two months without
damaging the spinal cord or affecting the mice motor function [51]. Given the potent analgesic effect of
the GABAergic transplants and the resultant potential for its clinical use, a long-term study is currently
underway to ascertain the efficacy and safety of this procedure. However, a limitation of this strategy
is the control of GABAergic neurons migration and GABA release. An excessive restoration of central
inhibition in the spinal cord, especially in the ventral horn, could potentially affect motor function and
lead to debilitating disorders.
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3. Current Challenges

The challenges in the clinical application of hPSC transplantation for the treatment of
neurodegenerative diseases or conditions fall broadly into two categories: issues with hPSC
transplantation generally (including hPSC generation and differentiation), and those specific to
the regeneration of the central nervous system (Figure 3).

Figure 3. Challenges in clinical application of hPSC transplantation for the treatment of
neurodegenerative diseases. In purple are summarized the current issues associated with the use of
hPSC in regenerative medicine of the CNS, in yellow the potential solutions. * Note contradictory
findings regarding the role of glial scar in CNS regeneration.

3.1. Transplantation of Stem Cells

3.1.1. Pluripotency and Cancer

Pluripotent stem cells have the unlimited capability to self-renew and differentiate into virtually
all cell types of the body. These attributes make them an attractive candidate for cell replacement
therapies and hPSC hold much hope for regenerative medicine. However, when transplanted in vivo
undifferentiated hPSC form teratomas and the risk of tumor formation has largely restricted the clinical
application of hPSC.

Pluripotent stem cells share a number of characteristics with cancer cells. Both fundamentally
possess an indefinite capacity to proliferate, the ability to bypass DNA repair checkpoints [92,93] and
express oncogenic markers. For example, c-MYC transcription factor (TF) is highly expressed in both
cancerous cells [94–96] and hESC [97,98] and is central for generating iPSC [99,100]. Recently, c-MYC has
been identified as the major oncogenic effector of Wnt/β-catenin signaling in hESC tumorigenicity [101].
Many of the genes and networks associated with pluripotency are also conserved in cancerous cells.
The key pluripotency marker OCT4 is involved in the development of multiple cancers, such as
ovarian [102,103], cervical [104], colorectal [105,106], liver [107], and oral cancer [108]. Generally, OCT4
expression correlates with worse cancer outcome in most tumors [109], while its down-regulation is
associated with slowed tumor progression [110]. OCT4 is not the only important pluripotency factor.
It forms a complex with other TFs such as SOX2 and NANOG to regulate the expression of different
genes and maintain ESCs in an undifferentiated state. NANOG also plays a role in the self-renewal of
CD24+ cancer stem cells in hepatocellular carcinomas [111] and has been found aberrantly expressed
in a variety of human cancers, including head and neck squamous cell carcinomas (HNSCC) [112,113].
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SOX2 has been shown to be expressed in at least 25 different types of cancer and to drive cancer cell
survival [114]. Another stemness factor, KLF-4 (Krüppel-like factor 4), has been reported to promote
DNA repair checkpoint uncoupling and cellular proliferation in breast cancer by p53 suppression [115].
KLF4 also acts as an oncogene in Glioblastoma by supporting glioblastoma stem cells survival and
promoting their proliferation [116]. Pluripotent stem cells are also known to possess many of the
hallmarks of cancer, including lack of contact inhibition in vitro [117], loss of p53 [118,119] and Rb
(retinoblastoma tumor suppressor protein) inactivation regulating their cell cycle [120]. Furthermore,
long-term culture generates cytogenetic abnormalities and stem cells are highly susceptible to acquire
mutations that are advantageous to regrowth. Given the high genomic instability of hPSC, oncogenic
mutations are likely to accumulate over time during the production of large quantities of cells needed
for cell therapy. Notably, 44% of genes up-regulated as a result of genomic instability in hESCs were
functionally linked to genes commonly expressed in a range of cancers [121]. An important example
is the spontaneous acquisition of p53 mutations by both hiPSCs and hESCs in prolonged culture,
similar to the ones observed in human cancer [9]. This may result in a high proportion of potentially
tumorigenic cells within the culture, making the cells unsuitable for transplantation in humans.

After hPSC differentiation, residual undifferentiated or partially differentiated cells may remain
and induce tumor formation when implanted into animal models. In the case of neurodegenerative
diseases, the risk is not only the development of teratomas from undifferentiated hiPSC/hESC but also
undifferentiated neural tumors, whether primitive neuroectodermal tumors or gliomas, from partially
differentiated neuronal cells. Persistent proliferation and tumorigenic masses were observed after
transplantation of hPSC neuronal derivatives in rodent models of PD [13,21], epilepsy [35], and SCI [122],
which highlights the importance of developing efficient, safe and clinically relevant protocols for
complete elimination of undifferentiated cells.

3.1.2. Methods to Prevent Tumor Formation

In an effort to overcome this issue, several strategies have been explored for the development
of safer stem cell therapies. Prolonged maturation of hPSC-DANs in vitro prior to implantation has
been shown to reduce graft overgrowth and tumor formation in primate model of PD brain [14].
However, although this study showed behavioral improvements of monkeys transplanted with
mature hESC-DANs, the elimination of undifferentiated hESC could not fully prevent the risk of
tumor formation due to persistent proliferating immature neural cells. Others have implemented
a purification step by fluorescence activated cell sorting (FACS) to select more mature neuronal
cells for transplantation, eliminate undifferentiated cells and avoid tumor formation [15,34,50,123].
Undifferentiated cells can also be eliminated using small molecules. Treatment of a hESC-derived
population with chemical inhibitors of Survivin signaling (quercetin or YM155) induced selective
apoptotic cell death of undifferentiated hPSCs and was sufficient to prevent teratoma formation after
hPSC transplantation [124]. Inhibition of β-catenin signaling with chemical inhibitor FH535 in hESC
reduced teratoma formation by 79%. Although the β-catenin pathway plays a fundamental role in
hESC self-renewal and maintenance of stem cell properties, its inhibition in hESC before induction of
differentiation did not compromise their pluripotency [101]. Similarly, pre-treatment of hPSC-NPCs
with γ-secretase inhibitor, an inhibitor of Notch signaling, decreased the proliferative capacities and
promoted differentiation of undifferentiated neural cells, thereby preventing tumor formation upon
transplantation into SCI model rodents [125].

Suicide genes have also been employed for the elimination of undifferentiated and potentially
tumorigenic cells. Herpes simplex virus thymidine kinase (HSV-TK) is the most commonly
used suicide gene in hESC/hiPSC and has proven efficient in eliminating tumor formation after
transplantation [126–130]. However, of HSV-TK substrate ganciclovir has a poor capacity to cross the
blood-brain barrier (BBB) [131] and its long-term administration is associated with potential health risks
associated with, such as impairment of renal function, hepatic dysfunction, and pancytopenia [128].
The use of HSV-TK may therefore not be suitable in cell therapy, especially for neuronal disorders.
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Moreover, by targeting DNA synthesis, HSV-TK has the ability to induce apoptosis specifically in highly
proliferative cells but may not be efficient to eliminate slowly dividing cells. A cell-cycle-independent
fail-safe strategy using an inducible caspase 9 (iC9) gene has also shown its efficacy in ablating
teratomas derived from iPSCs [132–134] or tumors originating from malignant transformation of
transplanted hiPSC-NPCs in a mouse model of SCI [135]. A specific chemical inducer of dimerization
(CID, AP1903) activates iC9 which subsequently triggers an apoptotic response that kills hPSCs or
their derivatives within 24 h. A less conventional method of “microRNA switch” (miR-switch) has
also demonstrated success. MicroRNA-302-5p (miR-302a) is highly expressed in undifferentiated
hPSCs but progressively decreases upon differentiation to become undetectable in fully differentiated
cells. A miR-switch based on miR-302a activity was developed to identify residual undifferentiated
and partially differentiated cells following differentiation of hiPSCs. Selective hiPSC elimination was
achieved by controlling puromycin resistance using the miR-302a switch and prevented teratoma
formation in an in vivo tumorigenicity assay [136].

All these approaches provide a safeguard for clinical use of hPSC-cell therapies. However, because
most of hPSC transplantation studies are performed in immune-deficient animals or in presence of
immune-suppressive drugs, the real risk of tumor formation in immune-competent hosts is mostly
unknown. Recently, using multiple models of humanized mice it has been suggested that autologous
hPSC-derived therapies are unlikely to form teratomas in the presence of natural killer (NK) cells [137].

3.1.3. Oncogenic Risks Associated with Reprogramming

Despite their obvious advantage, using hiPSC in regenerative medicine implies additional risks.
Genome-wide studies have unveiled numbers of large and point mutations in hiPSC, leading to serious
doubts regarding their safety and potential clinical applications [138,139]. It is therefore critical to
evaluate the safety of hiPSC (and their derivatives) generated prior to transplantation. Following this
idea, oncogenic mutations were detected in the hiPSCs reprogrammed from the somatic cells of the
second patient enrolled in the clinical trial testing hiPSC-derived RPE as cell replacement therapy for
macular degeneration. As a result, the transplantation of the second patient was postponed and the
trial terminated. The mutations were not detectable in the patient’s original fibroblasts [4].

Reprogramming adult somatic cells to a state of pluripotency requires their exposure to multiple
reprograming factors (Oct4, Sox2, Klf4, c-Myc or Nanog and Lin-28) which are critical for both the
acquisition and maintenance of induced pluripotency but can promote oncogenic transformation as
previously discussed. The process of reprogramming itself also induces genomic alterations. Single
nucleotide variations (SNVs) sometimes occur in the coding region of a gene, resulting in the expression
of a mutated protein that can lose or gain function and become potentially harmful. Copy-number
variations (CNVs), involving the duplication or deletion of a large portion of DNA, can also be
generated by reprogramming, causing potentially dangerous mutations in different genes [140].
Furthermore, the first generations of iPSCs were reprogrammed using retrovirus as delivery method for
reprogramming factors [100,141] which integrate into the genome of the cells and therefore can cause
potentially dangerous mutations. Non-integrative reprogramming methods that reduce the occurrence
of genetic variations [142–144] have since been developed and are a prerequisite for clinical use of
hPSC. These include DNA-based methods such as Sendai virus vectors [145], episomal vetors [146] and
excisable piggyBac vectors [147]. DNA-free reprogramming methods, including messenger RNA [148]
and proteins [149,150], have also proven efficient and are often preferred as they are transitory
methods and are eliminated rapidly. In contrast, NPC and DANs derived from hiPSC generated
using lentiviruses exhibit residual expression of exogenous reprogramming genes. Furthermore,
a protein-based reprogramming method leads to more robust hiPSC that are highly expandable without
senescence [21]. Vector- and transgene-free hiPSC-NPCs were transplanted into a model of stroke [30]
or PD [21,24]. No tumor formation was observed for up to 12 months post-transplantation.
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3.1.4. The Epigenetic Landscape of Induced Pluripotent Stem Cells

To acquire pluripotency, a somatic cell needs to be reprogrammed from a differentiated state into
a permissive state similar to the early embryo. During this process of reprogramming, the genome
may permanently be altered through aberrant imprinting, activation of endogenous retroviruses [151],
and incomplete reprogramming.

IPSC derived by reprogramming show DNA methylation signatures similar to their somatic
tissue of origin, which promote their differentiation into lineages related to the donor cell and
restrict their participation to other cell fates [152–154]. Reprogramming also generate aberrant
differential methylation (often a reduction in DNA methylation) differing from the somatic donor cell
or hESC [153]. In general, hiPSC retain their specific epigenetic signature across differentiation and
as a result, were reported to have impaired differentiation potential compared to hESC [152,153,155].
While prolonged expansion of iPSC in culture can reset iPSC and allows the loss of this epigenetic
memory [156], extended culturing also promotes the accumulation of genetic defects as discussed
previously, and induces other epigenetic abnormalities such as chromosome X erosion in female
hPSC [157,158]. In addition to causing differentiation defects, epigenetic alterations can confer a
proliferative advantage to the cells, due for example to an increased expression of oncogenes located
on the reactivated chromosome X [159], and potentially pose additional risks of cancer for the clinical
application of hiPSC.

3.1.5. Immune Rejection

A crucial step toward successful clinical application of hPSC is to overcome the immune response
that may be evoked by their transplantation. Since their groundbreaking discovery by Shinya Yamanaka
in 2006, iPSC have revolutionized regenerative medicine. In addition to avoiding the ethical concerns
linked to the destruction of human embryos, the main advantage of hiPSC over hESC is that they can
be derived directly from the patients themselves and be used for autologous cell replacement therapy.
Unlike an allogenic graft using hESC, autologous transplantation with hiPSC would, in theory, elicit
negligible immune response, eliminating the risk of graft rejection.

IPSC immunogenicity was not initially questioned as it seemed obvious that the reprogrammed
iPSC carried the same markers of immunogenicity that they expressed in their original somatic
state. Zhao et al., 2011 were the first to investigate the matter by testing the immunological reactions
triggered by auto-graft of undifferentiated mouse and human iPSC in syngenic or humanized mice
respectively [160,161]. Although autologous cells were generally assumed to be immune-tolerated by
the recipient they originally came from, an unexpected immune response to teratomas formed from
autologous murine or human iPSC (but not mESC) was reported and associated with an infiltration of T
lymphocytes and necrosis [160]. Similarly, transplantation of autologous hiPSC-derived smooth muscle
cells (SMCs) into skeletal muscles of humanized mice triggered an immunogenic response and resulted
in T cells infiltration of the graft, while autologous hiPSC-derived retinal pigment epithelial (RPE)
cells were well tolerated and showed low immunogenicity both in the eyes and skeletal muscles [161].
Because integration-free methods were used for reprogramming, immune-rejection could not be caused
by malignant transformation due to vector integration. These results initially raised serious doubts
about the possible use of hiPSC in regenerative medicine.

However, many studies have since counterbalanced this initial observation. Immunogenicity of
endothelial, hepatocyte and neuronal cells derived from ESC and iPSC was tested by assessing cytotoxic
T lymphocyte response in vitro and in vivo after transplantation in syngeneic mice. No immune
response to syngeneic iPSC was observed [162]. Similarly, differentiated skin and bone marrow
tissues derived from mouse iPSC showed no difference in the success rate of transplantation when
compared to mouse ESC-derived tissues. Furthermore, no immune response, including T cell
infiltration, was observed for tissues derived from syngeneic iPSC or ESC [163]. These results were
further confirmed by the successful transplantation of porcine iPSC-NPC into the spinal cord of
syngeneic mini-pigs in the absence of immunosuppression. Long-term survival with neuronal and
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glial differentiation and no immune rejection of the transplanted cells were noted [164]. More recently,
patient-derived hiPSC-DAN progenitors were shown to trigger immune rejection after transplantation
into allogenic humanized mice, but showed absence of immunogenicity when transplanted into
patient-humanized (using the patient’s peripheral blood mononuclear cells) mice [7].

Several mechanisms such as epigenetic and genetic instability in hiPSC could explain immune
responses in transplant recipients even when differentiated cells are transplanted. A host immune
response (T-cell infiltration) to hiPSC appears to be dependent on the antigenic profile of the transplant.
Misexpression of immunogenic antigens, Zg16 and Hormad1, was found in hiPSC-derived SMCs,
but not in hiPSC-derived RPEs, and potentially explains the disparity in immunogenicity of these
two hiPSC derivatives after transplantation in humanized mice [161]. First, epigenetic abnormalities
observed in hiPSC could lead to abnormal expression of immunogenic proteins during specific lineage
differentiation of hiPSCs but not hESCs. Second, genomic translocation or point mutations acquired
during the process of reprogramming could create new immunogenic determinants. Importantly,
despite the controversy, the lack of immunogenicity of hiPSC-derived cells has been confirmed in
the patient who received his own hiPSC-derived RPE to treat macular degeneration [4] and in the
Parkinson’s patient who was transplanted with his own hiPSC-DAN progenitors [7].

Many practical concerns arise with autologous transplantation. Autologous hiPSC-cell therapies
are labour-intensive and a highly time-consuming process. The time pressure often associated with
treating conditions such as severe SCI or stroke is incompatible with the time required to perform
personalized stem cell work (e.g., derivation of hiPSC from the patient, cell banking, and differentiation
into the relevant cell type). Early neuronal transplantation following SCI is indeed very beneficial
as it can potentially avoid secondary injury and enhances recovery [48,49]. The use of allogeneic
hiPSC/hESC lines for subsequent administration into SCI patients is therefore likely more feasible.
Another concern is the disease status of the donor cells from patients who have disease-specific genetic
backgrounds. To avoid disease recurrence, the disease-causing mutation would need to be corrected in
hPSC prior to transplantation, or allogeneic transplantation may also become the preferred option for
genetic degenerative diseases.

In contrast to hiPSC, an allogenic graft using hESC would incontestably require some form of
pharmacological immunosuppression to avoid rejection by the recipient’s immune system. Long term
immunosuppression comes with risks of infections and cancer and may lead to serious complications
such as cardiovascular diseases [165]. The highly polymorphic major histocompatibility complex
(MHC), known as HLA (Human Leukocyte Antigen) Class I and II in human, allows the immune
system to recognize the body’s own cells and target foreign elements. HESCs express low level
of HLA class I but not class II molecules. It has first been suggested that hESCs possess unique
immune-privileged characteristics as they have a considerably weaker capacity to stimulate T cells
compared with other graft types and can evade immune allo-rejection [166,167]. However, allogeneic
NK cells can eliminate human ESCs in vitro and in vivo [137,168]. Secondly, following transplantation
hESC will undergo differentiation into various cell types that express HLA molecules, leading to robust
T-dependent allogeneic rejection.

In organ transplantation, matching HLA-A, -B, and -DR, improves the graft survival rates [169]
and could represent a promising approach to reduce the use of immunosuppressant drugs in hPSC
transplantation procedures. However, matching HLA types between donors and recipients is
notoriously difficult. One way to produce HLA matched cells for cell-based therapy is by using
histocompatible hPSC with homozygous HLA loci. This strategy not only significantly reduces the
possibility of the derived cells being rejected by the recipient’s immune system but also makes a
single cell line suitable for millions of patients. A relatively small number of HLA homozygous
lines could be sufficient to provide immune matched cells to a large percentage of the world’s
population. It is estimated that by selecting those homozygous for the 10 most frequent HLA-A,-
B, or -DRB1 haplotypes, 10, 75, and 140 HLA-homozygous iPSC lines would match approximately
50%, 80%, and 90% of the Korean/Japanese population, respectively [170,171]. This strategy would
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be more challenging for populations with higher racial and genetic diversity such as the US. A bank
of 100 hiPSC lines homozygous for the most frequent HLA in each population could match up to
88% of European Americans, 63% of Asian Americans, 52% of Hispanic Americans and 45% only of
African American [172]. Allele-specific HLA targeting was also performed in heterozygous hiPSC to
generate pseudo-homozygous HLA hiPSC that could reduce the number of donors needed for HLA
matching [173]. MHC matching was tested for dopaminergic transplants in NHPs and was able to
reduce the immune response and improve engraftment of the transplant [174]. This idea has however
been recently challenged. In the absence of immunosuppression, MHC matching alone is insufficient
to prevent long-term rejection of iPSC-derived neuronal grafts in the lesioned brain of NHP [175].
Similarly, although the immunogenicity of allogeneic iPSC-cardiomyocytes (CMs) was reduced by
MHC-matching, it was not completely abolished and an appropriate level of immunosuppression was
required for successful engraftment in the heart of macaques [176].

As an alternative, a number of groups have set out to generate universal stem cells capable of
evading any patient’s immune system. These approaches consist of manipulating genes that encode
for HLA I and II proteins [173,177–179]. While ablation of HLA class II can be achieved by targeting its
transcriptional master regulator CIITA, disruption of the Beta-2Microglobulin (B2M) gene eliminates
surface expression of all HLA class Ia and b molecules and prevent the cells from being recognized
as allogeneic by CD8+ T cells. However, B2M KO hPSC become vulnerable to NK cell-mediated
rejection through missing-self response. Forced expression of minimally polymorphic HLA-E is one
way to confer resistance to NK cells when HLA I is removed [180]. Individual deletion of the highly
polymorphic HLA class Ia (HLA-A,-B,-C) genes represent another strategy to protect the donor cells
from CD8+ T cell-mediated cytotoxicity without losing the HLA class Ib (non-polymorphic HLA-E,-G)
protective function against NK cells mediated lysis [173,179]. Over-expression of PDL1 and CD47 also
confers an additional advantage by protecting cells from T cell rejection and preventing macrophage
engulfment respectively [177,179]. Engineered hypo-immunogenic hPSC showed reduced immune
rejection in vivo, unlocking their full potential for regenerative medicine.

3.2. Regeneration of the Central Nervous System

In humans, or in mammals in general, the adult CNS has a limited regenerative capacity and
is unable to fully restore its function after injury. Consequently, CNS trauma generally results in
severe and persistent functional deficits which drastically reduce quality of life. This regeneration
failure is mainly due to the very limited number of neural stem cells that the CNS retains into
adulthood, which prevents the replacement of lost neurons, and to its low capacity to repair damaged
neurons. Human brains, in particular, are controversially reported to have limited or no adult de novo
neurogenesis [181–183]. The adult CNS also shows limited axonal regeneration which results from the
lack of intrinsic growth capability of existing neurons (due to insufficient growth promoting signals)
and an inhibitory CNS microenvironment.

3.2.1. CNS Microenvironment

The non-permissive nature of the CNS environment for axonal regeneration is largely attributable
to non-neuronal components of the CNS [184], in particular the neurite growth inhibitory myelin
proteins secreted by oligodendrocytes.

Lesions in the CNS cause changes in the microenvironment directly surrounding the site of the
injury. Myelin, a lipid-rich substance normally insulating the axons, becomes severely damaged
and leaves the axons exposed and vulnerable to myelin-derived inhibitory molecules such as Nogo,
myelin-associated glycoprotein (MAG), and oligodendrocyte-myelin glycoprotein (OMgp). Nogo-A is
considered to be the major inhibitor of axonal regeneration and is thought to launch a signaling cascade
which induces cytoskeletal changes and destabilization in the growth cones [185]. Its expression varies
greatly after SCI, initially decreasing the first 3 days to reach a peak after 7 days. High levels of
Nogo-A may be required for its inhibitory action. The fluctuation in expression of Nogo-A suggests a
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7-day window for treatment of SCI [186,187]. Current approaches have focused on administration of
Nogo-receptor blocking peptides and anti-NogoA blocking antibodies to promote axon regeneration in
rodent and primate models of SCI. Neutralization of the neurite growth inhibitor Nogo-A by intrathecal
antibodies has shown enhanced functional recovery and regeneration of injured CNS in SCI rats [188].

Another critical component of the limited regenerative potential of the adult CNS is
neuro-inflammation. In addition to severed axons, trauma to the spinal cord causes blood-spinal cord
barrier disruption, which in turn causes localized neuronal death. This induces further oxidative
stress and glutamate release causing excitotoxic death of neighboring neurons and glia. Shortly after
the injury, resident microglia become reactivated, initiating a robust immune response by secreting
various cytokines, and peripheral macrophages are recruited to the lesion site. This inflammatory
response may have additional deleterious effect on neuronal regeneration and prevent functional
recovery. Depletion of peripheral macrophages [189] and administration of the anti-inflammatory
drug minocycline [190] have been shown to enhance axonal regeneration and improve functional
recovery after SCI. However, a beneficial role of neuro-inflammation has also been described.
Macrophage/microglia activation, by intraspinal injection of pro-inflammatory molecules, results
in a better regenerative outcome after SCI, either by promoting sectioned axons regrowth [191] or
reducing axonal loss [192]. These conflicting results have led to considerable debate concerning the
neurotoxic or neuroprotective effect of inflammation in CNS regeneration.

Because of the importance of the immune component in CNS regeneration, caution is necessary
in translating preclinical models of neurodegenerative diseases to human. As discussed previously,
functional recovery following transplantation of various hES/hiPS cell-derived neural cell types has
been well reported in rodents with SCI, PD, stroke or MS. However, in most cases, transplantations
were tested in immune-deficient animals and cannot translate directly to human patients. Interestingly,
unlike successful studies performed in immuno-deficient mice, the transplantation of hiPSC-NPCs
in immuno-competent SCI mice treated with tacrolimus (an immunosuppressive drug) led to very
disappointing results. Behavioral assessment showed failure to improve functional recovery and
overall poor long-term survival [43]. Whether the discrepancy in the results can be attributed to the
difference in immunocompetency of the mouse models is unclear but would benefit from further
investigation. Similarly, chronic neuropathic pain cell therapy studies used immunosuppressed
animals [50,51] which may affect the results. Whilst transplantation studies using syngenic fetal
mouse material suggest this will not affect analgesia, given the important role of immune cells in pain
pathogenesis [193,194] or CNS regeneration, further investigation is needed to establish the potential
effect of immunosuppression.

3.2.2. Glial Scarring

The glial scar is one of the most established barriers of CNS regeneration. The glial scar has been
largely studied in the context of SCI, but also occurs after traumatic brain injury or ischemic stroke and
in neurodegenerative diseases such as AD, or in demyelinating and inflammatory pathologies such
as MS.

As discussed previously, damage to the spinal cord is followed by an acute inflammatory
response. Resident microglia are activated, and peripheral immune cells (including macrophages
and lymphocytes) enter the lesion site. This inflammatory reaction eventually becomes chronic and
at this point, astrocytes proliferate, hypertrophy and overlap to contain the damage and isolate the
lesion from the spared tissue, forming a regeneration-inhibiting glial scar. The repressive nature of
the glial scar has been largely attributed to a high concentration of ECM (extra-cellular matrix) and
inhibitory proteins, including myelin-associated chondroitin sulfate proteoglycans (CSPGs) secreted by
astrocytes [195]. CPSGs have been described to impair neuronal growth in vitro by signaling through
the Rho/ROCK pathway [196]. Degradation of CSPGs using chondriotinase enzyme was sufficient
to restore synaptic activity below the lesion site in SCI rats [197] and promoted functional recovery
following SCI [198,199]. Similarly, an increase of CSPG concentration caused a decrease in neurite
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length in vitro [200]. Other cell types implicated in glial scarring include pericytes. The inhibition
of pericytes proliferation following SCI was recently shown to enhance neuronal survival, cause a
reduction in glial scar formation and improve functional recovery after SCI [201].

Conversely, a beneficial role of the glial scar has also been described. By preventing resident
astrocytes from proliferating after SCI (using conditional genetic ablation), recovery from spinal
cord lesions was reduced. The injured area in the spinal cord expanded, more axons were severed
and an increased neuronal death was observed in mice unable to generate glial scars. This study
also demonstrated that astrocytes of the glial scar are a major source of neurotrophic factors (CNTF,
HGF, IGF1) required for the survival of neurons adjacent to the lesion after SCI [202]. Furthermore,
a supportive role of the glial scar in regeneration of neurons has also recently been identified. Preventing
astrocytic scar formation, by selectively killing proliferative scar-forming astrocytes or deleting of
STAT3 signaling specifically in astrocytes, stopped stimulated axon regrowth in mice. Prevention of
the scarring does not reduce overall CSPG production post-injury, due to the quantity of non-astrocytic
cells producing CSPGs [203]. The astrocytic glial scar has also been recently shown to not prevent
remyelination in a rat model of MS [204]. These results demonstrate the importance of apparently
growth inhibiting programs in reacting to CNS damage appropriately, and highlight a tightly regulated
mechanism that leads to successful repair.

4. Conclusions

Over the past decades, neurodegenerative diseases and nervous system injury have been a major
focus of regenerative medicine, with many studies dedicated to developing efficient and clinically
relevant hPSC replacement therapies for the treatment of a variety of neurological disorders. However,
the clinical feasibility of these therapies requires further assessment. A deeper understanding of
differentiation pathways and mechanisms will permit the development of defined cell populations
that can be used as more potent therapeutics. Moreover, the increased risk of cancer caused by the use
of hiPSCs raised serious reservations regarding the development of autologous cell therapies. Future
directions will concentrate on banking clinically safe and universally compatible hPSC to overcome the
challenge of immune rejection. Nonetheless, hPSC therapies provide genuine hope for a wide range of
currently devastating degenerative diseases, and will eventually change the way we see aging and the
associated tissue degeneration by redefining the impossible.
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