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Abstract
Our synthetic review of the relevant and related literatures on the ethics and effects of using AI in education reveals five 
qualitatively distinct and interrelated divides associated with access, representation, algorithms, interpretations, and citizen-
ship. We open our analysis by probing the ethical effects of algorithms and how teams of humans can plan for and mitigate 
bias when using AI tools and techniques to model and inform instructional decisions and predict learning outcomes. We 
then analyze the upstream divides that feed into and fuel the algorithmic divide, first investigating access (who does and 
does not have access to the hardware, software, and connectivity necessary to engage with AI-enhanced digital learning 
tools and platforms) and then representation (the factors making data either representative of the total population or over-
representative of a subpopulation’s preferences, thereby preventing objectivity and biasing understandings and outcomes). 
After that, we analyze the divides that are downstream of the algorithmic divide associated with interpretation (how learn-
ers, educators, and others understand the outputs of algorithms and use them to make decisions) and citizenship (how the 
other divides accumulate to impact interpretations of data by learners, educators, and others, in turn influencing behaviors 
and, over time, skills, culture, economic, health, and civic outcomes). At present, lacking ongoing reflection and action by 
learners, educators, educational leaders, designers, scholars, and policymakers, the five divides collectively create a vicious 
cycle and perpetuate structural biases in teaching and learning. However, increasing human responsibility and control over 
these divides can create a virtuous cycle that improves diversity, equity, and inclusion in education. We conclude the article 
by looking forward and discussing ways to increase educational opportunity and effectiveness for all by mitigating bias 
through a cycle of progressive improvement.
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1 Introduction

Digital tools and learning platforms are pervasive in educa-
tion. Educators, students in pre-K–12 and higher education, 
workers seeking to upskill or reskill, and informal learn-
ers of all ages increasingly engage with digital experiences 
(Decuypere et al. 2021). As a result, they generate enormous 

amounts of multimodal data, such as logfiles; audio, video, 
and text files; and eye tracking data (Giannakos et al. 2019). 
Analyzing those data through artificial intelligence (AI) 
techniques, such as machine learning, computer vision, and 
natural language processing, can answer instructional and 
administrative questions, discover new and non-obvious 
relationships and patterns, predict learning outcomes, and 
automate low-level decisions. Concurrently, complex and 
interrelated ethical questions about learning and teaching 
underpin the stages associated with generating, analyzing, 
and interpreting data with AI.

Our synthetic review of the relevant and related literatures 
on the ethics and effects of using AI in education reveals five 
qualitatively distinct and interrelated divides associated with 
access, representation, algorithms, interpretations, and citi-
zenship. Collectively, the divides have the potential to behave 
cyclically in a virtuous cycle, as depicted in Fig. 1, to enhance 
diversity, equity, and inclusion in education. However, unless 
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we increase reflection and action by stakeholders (i.e., learners, 
educators, educational leaders, designers, scholars, and policy 
makers), their current behaviors, choices, and interpretations 
will deepen these divides and perpetuate structural biases in 
teaching and learning, thereby furthering inequity and creating 
a vicious cycle.

The conditions necessary to do things better and do better 
things with AI-enhanced digital tools and learning platforms 
within each divide and across the cycle require ongoing col-
laborative reflection and improvement by all stakeholders. 
The COVID-19 pandemic, by accelerating the adoption of 
technology in education (Schiff 2021), has heightened the 
implications and urgency of understanding this cycle and 
its related ethical questions. As learners increasingly rely on 
AI-enhanced digital tools and online learning platforms, the 
stakes increase for all involved (Decuypere et al. 2021). In 
every segment of the cycle, we consider how social, cultural, 
and other individual differences among various stakeholders 
shape decisions. We conclude the article by looking forward 
and discussing ways to increase opportunity and equity while 
mitigating bias.

2  Five qualitatively distinct and interrelated 
divides

We open our analysis by probing the ethical effects of 
algorithms and how teams of people can plan for and miti-
gate bias when using AI tools and techniques to model and 
inform instructional decisions and predict learning out-
comes. We analyze the upstream factors that feed into and 
fuel the algorithmic divide, first investigating access (who 
does and does not have access to the hardware, software, 
and connectivity necessary to engage with AI-enhanced 
digital learning tools and platforms) and then represen-
tation (the factors making data either representative of 
the total population or over-representative of a subpopu-
lation’s preferences, thereby preventing objectivity and 
biasing understandings and outcomes). We then analyze 
the algorithmic divide’s downstream consequences asso-
ciated with interpretation (how learners, educators, and 
others understand the outputs of algorithms and use them 
to make decisions) and citizenship (how the other divides 

Fig. 1  The cyclical effects of using artificial intelligence in education
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accumulate to impact interpretations of data by learners, 
educators, and others, which in turn influence behaviors 
and, over time, skills, culture, economic, health, and civic 
outcomes). Figure 2 illustrates how these upstream divides 
influence the algorithmic divide and how the algorithmic 
divide, in term, amplifies downstream effects.

3  The algorithm divide

To develop the algorithms that underpin digital tools and 
learning platforms, researchers and designers from the 
AI, educational data mining, and learning analytics com-
munities have developed and applied advanced statistical 
and computational methods to model big educational data 
(e.g., Levy 2019; Niemi et al. 2018). Such algorithms meas-
ure and enhance disciplinary knowledge and understand-
ing (Fischer et al. 2020; Heffernan and Heffernan 2014); 
predict standardized test scores (Adjei et al. 2017; Pardos 
et al. 2014) and academic achievement (Jiang et al. 2019; 
Kostyuk et al. 2018); recommend academic pathways (Shao 
et al. 2021); and measure student engagement and boredom 
(D'Mello et al. 2017), creativity (Shute and Ventura 2013), 
persistence (Wang et al. 2020), inquiry competencies (Sao 
Pedro et al. 2013), and problem-solving (Shute and Wang 
2017). Research has also shown the psychometric value of 
AI analysis techniques, when applied to big educational 
data, to detect rapid guessing in assessments (Guo et al. 
2016), understand test-taking strategies (Stadler et al. 2019), 

improve test design (Lee and Haberman 2016), and improve 
score reliability (van Rijn and Ali 2017).

Despite its relative brief history compared to other schol-
arly disciplines, these research communities have built a 
solid knowledge base and described the kinds of challenges 
associated with generalizability, interpretability, applicabil-
ity, transferability, and effectiveness needed to advance the 
field (Baker 2019). For an education community continually 
doing more with less, these algorithmic insights can be a 
welcome information source or sixth sense. However, is it 
ethical that the algorithms that inform teaching and learn-
ing may not fully represent the learners they are designed 
to educate? or that the algorithms absorb and reflect human 
biases during their design, development, and evolution when 
humans interact with them?

Algorithms that seek to do things better by increasing 
efficiencies can embed existing biases and replicate exist-
ing conditions. Large social datasets feed systemic bias into 
algorithms, and unchecked algorithms can result in systemic 
discrimination that favors certain individuals or groups over 
others. Education administrators, for example, monitor the 
behavior of students and school employees to maintain safe 
learning environments. In a recent review of the empirical 
evidence, Nance (2019) documents that schools serving pri-
marily white students in the U.S. are less reliant on coercive 
surveillance measures than schools serving higher concen-
trations of students of color, despite limited empirical evi-
dence that such measures impact school safety. To traditional 
surveillance tools, school systems now utilize surveillance-
based algorithms that continuously monitor students’ social 

Fig. 2  The upstream and downstream effects of ethical decisions involving education and artificial intelligence
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media accounts, chat messages, email, and schoolwork to 
predict and then alert school officials to potentially harm-
ful behavior (Gilman 2020). Contrary to desired outcomes, 
overreliance on extreme security measures in schools can 
increase drop-out rates and engender distrust and discord 
among members of the school community in the long term 
(Gilman 2020; Nance 2019).

Because educational issues are far more complex than 
a single algorithm can capture, educators and policymak-
ers have a responsibility to avoid overly relying on any sin-
gle algorithm to make important decisions (Daniel 2019). 
They also have a responsibility to understand the basics of 
algorithmic development and how designers mitigate bias 
(Kirkpatrick 2016; Shah et al. 2020). Although a machine-
developed algorithm might be able to make accurate predic-
tions, ethical questions arise about whether decision makers 
can or should trust a solutions that rely on black-box systems 
about which stakeholders have no information or insight. By 
asking critical questions regarding a digital tool or learning 
platform’s underlying data sources, algorithm development, 
and ongoing testing, educational leaders can elicit the trans-
parency from developers and vendors that students deserve. 
Three essential questions follow.

First, how did the developer ensure that the data used 
to develop algorithms represent user diversity? Develop-
ers need to document and address inclusivity, stakeholder 
awareness, and potential ethical risks during the design and 
testing of algorithms to ensure that all populations are repre-
sented and protected from harm (Mitchell et al. 2020; Yapo 
and Weiss 2018).

Second, how did the developer protect against algorith-
mic bias in its digital tool or learning platform? To date, 
algorithm development has largely occurred with minimal 
oversight or deep consideration of ethics and bias (Luckin 
et al. 2016). A recent survey of U.S. corporate executives 
revealed that although 9 in 10 respondents believe ethical 
standards in the development and use of emerging technolo-
gies can represent a competitive advantage for businesses, 
about 2 in 3 of those surveyed acknowledged existing bias 
in AI technologies used by their company (RELX 2021). AI 
algorithms are not neutral entities; rather, they are theory-
laden and reflect particular world views (Ferrero and Barujel 
2019). For organizations that create digital tools and learn-
ing platforms, mitigating algorithmic bias begins with the 
staffing of the team responsible for developing and validat-
ing an algorithm. Mitigating bias requires a diversity of dis-
ciplines, research questions, life experiences, cultures, races, 
religions, ages, sexes, sexual orientations, and disabilities 
(Nielsen et al. 2018). To their work, the team individually 
and collectively must practice active reflexivity by reflecting 
on their beliefs, practices, and judgments during and after 
the research process, acknowledging how these may have 
influenced the research (Finlay 2016; Soedirgo and Glas 

2020). When outside teams incorporate data that they did 
not collect directly, it can drastically diminish the value of 
their reflexivity and potentially compromise the validity of 
their research outcomes (Daniel 2019).

Third, how does the developer continue to monitor the 
tool or platform for bias? The threat of bias requires con-
stant review and audits of equity, quality, and fairness (Edu-
cational Testing Service 2014; Shute et al. 2020), as well as 
policies and markets that incentivize iterative improvements 
in the accuracy, fairness, reliability, and accountability of 
these algorithms.

4  Upstream divides

Algorithmic bias and the divide it creates do not occur in 
isolation. Rather, distinct factors act as its fuel: the access 
divide stems from who does and does not have access to the 
hardware, software, and connectivity necessary to engage 
with digital learning tools and platforms; the representa-
tion divide occurs when data representative of populations 
or over-representative of a subpopulation’s preferences 
prevents objectivity and influences understandings and out-
comes. Both divides predetermine the data that algorithms 
include in their development, validation, and refinement.

5  The access divide

When employed by well-trained educators, researchers 
have demonstrated that digital tools and learning platforms 
have developed and enhanced the following for learners: 
(a) knowledge within academic disciplines; (b) cognitive 
skills, such as problem-solving, critical thinking, and sys-
tems thinking; (c) interpersonal skills, such as communi-
cations, social skills, teamwork, and cultural sensitivity; 
and (d) intrapersonal skills, such as self-management, time 
management, self-regulation, adaptability, and executive 
functioning (Clark et al. 2016; D’Angelo et al. 2014; Díaz 
et al. 2019; Fishman and Dede 2016; National Academies 
of Sciences 2000, 2020). Given that the benefits of educa-
tional technologies accrue to those learners and educators 
with regular access to the hardware, software, and connec-
tivity to use digital tools and learning platforms regardless 
of their physical location, is it thus ethical that all learners 
and educators do not have access to the hardware, software, 
and connectivity necessary to engage with digital tools and 
learning platforms?

Universal and equitable access among learners and 
educators has not yet been realized, falling short of the 
goal of educational equity in which every learner has 
access to the resources they need irrespective of race, 
gender, ethnicity, language, disability, sexual orientation, 
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family background, or family income (Council of Chief 
State School Officers 2018). Chandra and Colleagues’ 
(2020) analysis of 2018 American Community Survey 
data found that about 30% U.S. K–12 public school stu-
dents and about 10% of K–12 teachers live in house-
holds either without an Internet connection or without a 
device adequate for distance learning at home. Addition-
ally, about 17% of K–12 public school students live in 
households with neither an adequate connection nor an 
adequate device for distance learning at home.

Researchers at LearnPlatform (2021) conducted an 
analysis of daily U.S. K–12 student use of educational 
technologies used by 2.5 million students in 17 states from 
February through December 2020. Their analysis, repre-
sented in Fig. 3, illustrates the access and usage divide 
between more affluent districts (i.e., districts with up to 
25% free and reduced-price lunch student populations) 
and less affluent districts (i.e., districts with 25–100% 
free and reduced-price lunch student populations). The 
y-axis is LearnPlatform’s educational technology usage 
index, which is based on the number of visits to different 
tools per 1000 users. The index provides standardization 
across different user groups, while also adjusting for the 
breadth of different tools used. After school closures in 
spring of 2020 due to COVID-19, more affluent districts 
recovered quickly and increased engagement while less 
affluent districts did not return to pre-pandemic engage-
ment levels until the fall of 2020.

6  The representation divide

One outcome of learners and educators engaging with digital 
tools and learning platforms is extraordinarily large amounts 
of micro-, meso-, and macro-data formats (Fischer et al. 
2020) that vary by (a) volume, the size and scale of data and 
data sets; (b) variety, the production of data from different 
data sources and in different formats and grain sizes; (c) 
velocity, the speed at which data are created; (d) veracity, the 
noise, bias, and uncertainty in data; and (e) value, the admin-
istrative, instructional, monetary, and knowledge produced 
from analysis of data (based on European Economic and 
Social Committee 2017). The data contain not only summa-
tive evaluations of students’ knowledge, ability, and skills, 
but also the processes of their learning and acquisition of 
relevant skills and knowledge (Ercikan and Pellegrino 2017).

When significant numbers of learners do not have access 
to the hardware, software, and connectivity necessary to 
access and engage with digital learning platforms, they are 
prevented from generating data used to develop and validate 
algorithms that inform instruction and other decisions. When 
those learners systematically come from vulnerable popula-
tions (e.g., rural learners, learners with special needs, learn-
ers in low-income families), the access creates a representa-
tion divide. This is an example of the “big data paradox,” a 
mathematical tendency of big datasets to minimize one type 
of error due to small sample size, but magnify another that 
tends to get less attention: flaws linked to systematic biases 
that make the sample a poor representation of the larger 
population (Powell 2021). Is it ethical that a lack of learner 

Fig. 3  Daily K–12 student usage of educational technologies from 
February through December 2020 by more affluent and less affluent 
U.S. School Districts. Note. LearnPlatform (2021) EdTech Engage-

ment & Digital Learning Equity Gaps. Reprinted with permission by 
K. Rectanus, September 7, 2021
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and educator access means those with access contribute to 
data sets and are therefore considered in subsequent models, 
algorithms, and interpretations based on that data, whereas 
those without access do not contribute?

While no data set is perfect, sets with duplicated, out-
dated, incomplete, inaccurate, incorrect, inconsistent, or 
missing records have the potential to create data bias, which 
is the systemic distortion in data that compromise repre-
sentativeness (Marco and Larkin 2000; Olteanu et al. 2019). 
The lack of representation in data plays out in otherwise 
well-intentioned technologies. For example, investigating 
the racial, skin type, and gender disparities embedded in 
commercially available facial recognition technologies, 
Buolamwini and Gebru (2018) revealed how those systems 
largely failed to differentiate and classify darker female faces 
while successfully differentiating and classifying white 
male faces. The poor classification for darker female faces 
stemmed from the data sets used to develop the algorithms, 
which included a disproportionality large number of white 
males and few Black females. When researchers used a more 
balanced data set to develop the algorithm, it produced more 
accurate results across races and genders.

7  Downstream divides

Downstream divides result from algorithms fed by data 
that disproportionately draw from those learners who have 
access and representation. The downstream consequence of 
an interpretation divide occurs when learners, educators, 
and others misinterpret the outputs of algorithms or rely 
on inherently faulty algorithmic outputs to make decisions. 
The consequence of a citizenship divide represents how the 
other divides accumulate to impact interpretations by learn-
ers, educators, and others, which then influence behaviors 
and, over time, skills, culture, economic, health, and civic 
outcomes.

8  The interpretation divide

When we reach the interpretation divide, educators and 
learners excluded through the access and data divides have 
not contributed to the data sets used to develop algorithms. 
As classroom instruction and education policy has increas-
ingly relied on data-based decision-making (DBDM), 
educators, researchers, and policymakers cite data and its 
interpretation to justify and guide decisions at the student 
and classroom level, scaling up to entire populations and 
subpopulations of students in schools, districts, states, and 
countries (Schildkamp et al. 2013). Data generated when 
students and educators engage digital tools and learn-
ing platforms provide yet another data source to support 

decision-making. However, is it ethical for educators to 
use data and the outputs of algorithms to make decisions 
without having received training on how to interpret or use 
them? Users’ knowledge of DBDM can be (a) missing, they 
never learned how to interpret it in the first place; (b) inert, 
they know how to interpret the data but do not know when 
or how to apply it; (c) routinized, they apply an interpreta-
tion technique without thinking through whether it is the 
right technique for the given situation; (d) surface, they are 
familiar but not proficient with an interpretive technique; or 
(e) perishable, they knew something at one point but have 
lost it because they have not applied it recently (based on 
the fragile knowledge construct developed by Perkins 1992).

An additional risk to interpreting data from learning 
platforms and other sources comes from confirmation bias, 
which occurs when individuals or groups search for or inter-
pret data in a way that confirms their experiences and pre-
conceptions, leading to biased decisions. In their summary 
of research on confirmation bias, MacLean and Dror (2016) 
note that an inaccurate, initial understanding of a situation 
can compromise an individual’s or group’s attempts to reach 
correct decisions. They further note that individuals working 
alone or in groups tend to seek out and give greater weight to 
information consistent with their expectations, while ignor-
ing, discrediting, or trivializing information that is inconsist-
ent with their working theory.

To counteract the interpretation divide, Mandinach and 
Schildkamp (2021) make several recommendations that edu-
cation decision makers can enact, including prioritizing and 
supporting data interpretation education for teachers. Addi-
tionally, they recommend that those analyzing data refrain 
from relying on a single data source, such as assessments or 
that generated from a learning platform, instead consider-
ing it along with other classroom data sources. Contextual-
izing the data is also critical: “Educators need data, such 
as demographics, attendance, health, transportation, justice, 
motivation, home circumstances (i.e., homelessness, foster 
care, potential abuse, poverty), and special designations (i.e., 
disability, language learners, bullying), to contextualize stu-
dent performance and behavior” (p. 2).

Educational leaders can also support the design of 
thoughtful frameworks that take and make sense of data 
from a variety of sources. For example, Mandinach and Mis-
kell (2018) studied the affordances of technologies used in 
blended learning environments and how they affected teach-
ing and learning activities. The study used mixed methods 
to examine whether the blended learning environments pro-
vided enhanced access to and more diverse data for teach-
ers and students from which to make educational decisions. 
The study found that the technologies provided more diverse 
data to administrators, teachers, and students and allowed 
for flexible adaptations to virtual and face-to-face learning 
to meet students’ needs. The blended environments helped 
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to create data cultures within the schools where educators 
used data to communicate and have an impact on instruc-
tional activities.

To do things better, Schildkamp et al. (2019) identify five 
key building blocks for educational leaders wanting to culti-
vate effective teams that use data and mitigate confirmation 
bias in their school: (a) discussing and establishing a vision, 
norms, and goals of data use with educators; (b) meeting 
educators where they are by providing individualized tech-
nical and emotional support; (c) sharing knowledge across 
the team and providing autonomy; (d) creating a safe and 
productive climate within the team that focuses on data use 
for improvement rather than accountability; and (e) broker-
ing knowledge and creating a network that is committed to 
data use.

To do better things with AI-enhanced learning technolo-
gies, educators need to capitalize on each learner’s unique 
skills and interests to facilitate new learning. The Universal 
Design for Learning (UDL) Framework is a research-based 
example of how to plan for a culturally responsive, equity-
focused learning environment to improve teaching and learn-
ing for all people (CAST 2018). UDL involves providing 
multiple means of engagement (the why of learning), rep-
resentation (the what of learning), and action & expression 
(the how of learning). Using this framework, teachers can 
help students to access, build on, and internalize information 
on their way to becoming expert learners who are purposeful 
and motivated, resourceful and knowledgeable, and strategic 
and goal-oriented (Chardin and Novak 2020).

In adopting a UDL framework, teachers, students, and 
other stakeholders become partners in a democratic pro-
cess in which every individual plays an active role and the 
perspectives of diverse groups are considered, fostering a 
culturally responsive learning environment (Chardin and 
Novak 2020). Culturally responsive teaching requires allow-
ing students to draw upon their own culture to guide the 
curriculum while constantly reflecting on the teacher’s cul-
tural perspective to avoid allowing bias to unwittingly shape 
their instruction. Further, a culturally responsive perspective 
demands that stakeholders focus not only on who has access 
to information and who does not, but also on whose informa-
tion is valued and whose is not. In the classroom, this entails 
giving every student a voice and a safe space to explore ideas 
and reasoning.

As an example, in a class exploring fractions for the first 
time, a teacher may ask a student to position a given fraction 
on a number line and justify their decision. A teacher who 
allows the student to explain their reasoning and to respond to 
questions from the class regardless whether the answer is cor-
rect or incorrect has acknowledged the value of that student’s 
perspective and opened up the entire class to a possibly differ-
ent way of approaching problems (Shepard 2019). Effective AI 
to do better things will be based around a similar democratic 

process that involves shared power, considers diverse voices, 
and protects individual rights from powerful institutions (see 
Shohamy 2016).

9  The citizenship divide

Though many early researchers and scholars associate the 
digital divide with unequal access to technology hardware 
and the Internet, the disparity among the haves and have 
nots not only precludes learners and educators from access-
ing information and collaborating over distance and time but 
also diminishes their ability to accumulate social capital and 
prepare for success in a knowledge-based economy (Culp 
et al. 2005; Ritzhaupt et al. 2020; Valadez and Duran 2007). 
Across life outcomes, such as health, wages, and indicators 
of civic engagement and trust, adults with higher levels of 
literacy, numeracy, and 21st-century skills, as well as technol-
ogy access, fare better than their counterparts with lower skill 
levels and less connectivity (Kirsch et al. 2021; Ramsetty and 
Adams 2020).

Add to this that education is not alone in its susceptibility 
to bias; examples of algorithmic bias also associated with life 
outcomes abound in the criminal justice system (Angwin et al., 
2016; Završnik 2019), social services (Eubanks 2017), and job 
recruitment (Caliskan et al. 2017; Raghavan et al. 2020). There 
are also interaction effects among algorithms. For example, 
Hao (2020) illustrates the deleterious interactions between 
credit-reporting algorithms that affect access to private goods 
and services (e.g., obtaining a home or student loan, employ-
ment, and renting an apartment) and U.S. Government agency 
algorithms purchased from private vendors that affect access to 
public benefits and leave citizens without insights or recourse 
when algorithms generate mistakes. Individually, they dispro-
portionately and systematically affect the poor, but together 
they have a greater, negative effect on life outcomes than either 
has on its own.

Is it ethical that without intervention, each cohort of learn-
ers is poised to perpetuate structural stigmas associated with 
access, achievement, identity, and power and thereby preserve 
the trends of the past, with some subgroups unduly benefiting 
and others not? As Zwitter (2014) warns, the more that the 
lives of learners and educators become mirrored in the data 
they generate through digital tools, learning platforms, and 
other media, the more their present, past, and future potentially 
become more transparent and predictable.

10  The cyclical effects of using artificial 
intelligence in education

Learner and educator engagement with digital platforms 
and other technologies that generate massive amounts of 
data could create a virtuous cycle by implementing new 
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mechanisms for advancing what is known about how peo-
ple learn, developing new administrative procedures on how 
best to use scarce resources, discovering novel relationships 
and patterns, increasing the accuracy of predictions, and 
improving the automation of low-level tasks and decisions. 
Coupled with these opportunities for a virtuous cycle are 
technical, ethical, and logistical challenges that will grow 
more complex over time and which may lead to a vicious 
cycle of inequity.

As an illustration, the ability of AI to find patterns in 
rich datastreams and make predictions about what students 
do and do not know is central to learning engineering, an 
instructional design strategy that applies a principled set 
of evidence-based strategies to the continual re-design of 
educational experiences to optimize their effectiveness and 
efficiency (Dede et al. 2019). This in turn enables personal-
ized learning, which requires four fundamental capabilities 
(Dede 2019):

1. Developing multimodal experiences and a differentiated 
curriculum based on universal design for learning prin-
ciples;

2. Enabling each student’s agency in orchestrating the 
emphasis and process of his or her learning, in concert 
with the evidence about how learning works best and 
with mentoring about working toward long-term goals;

3. Providing community and collaboration to aid students 
in learning by fostering engagement, a growth mindset, 
self-efficacy, and academic tenacity; and

4. Guiding each student’s path through the curriculum 
based on diagnostic assessments embedded in each edu-
cational experience that are formative for further learn-
ing and instruction.

Substantial evidence shows that combining these four 
attributes, which AI helps to enable, leads to learning expe-
riences that provide strong motivation and good educational 
outcomes for a broad spectrum of students.

Unwise use of AI-enhanced, educational technology 
for learning and teaching further magnifies the structural 
disparities already inherent in society. To take an ethical 
approach to addressing the divides described in the cycle 
and to increase opportunity and equity while mitigating 
bias, educators, designers, and policymakers must constantly 
reflect on the ethical questions raised in this article and a 
constellation of investments and actions. The following strat-
egy is based on Dede (2015):

1. Empower communities of researchers, funders, poli-
cymakers, practitioners, and other stakeholders to use 
new forms of evidence to puzzle through and answer 
questions together. Investigations should focus on the 
purpose of the study, prior research, and research ques-

tions before selecting data and methods for answering 
those research questions.

2. Infuse evidence-based decision-making continuously 
with constant reflection on issues of cultural responsive-
ness, equity, quality, and fairness.

3. Use new and traditional forms of micro-, meso-, and 
macro-data to develop new ways of measuring learning 
and impact for formative, summative, and administrative 
purposes.

4. Work to reconceptualize how data are generated, col-
lected, stored, accessed, analyzed, interpreted, and acted 
on by different categories of users (e.g., educators vs. 
research vs. policymaking) for different purposes.

5. Develop new types of analytic methods to enable rich 
findings from complex forms of educational data and 
new forms of visualizations to identify useful patterns 
in educational data that may not be obvious and help 
educators more easily navigate, interpret, and act on data 
(Daniel 2019).

6. Build human capacity through professional development 
and degree programs to better integrate pedagogical and 
ethical uses data science into the design, development, 
and use of digital learning platforms and digital tools.

Correspondingly, anticipating the promise and pitfalls 
of AI, entities have been set up to offer guidance to those 
developing AI (e.g., IEEE Global Initiative on Ethics of 
Autonomous and Intelligent Systems, 2019; UNESCO 2019) 
and to monitor the development and deployment of AI tools 
(Digital Promise n.d.; European Commission n.d.). In the 
education community, the EdSAFE AI Alliance launched in 
2021 as an international group of tech companies, educators, 
policymakers, and other stakeholders organized to collec-
tively scrutinize the quality of new AI tools and techniques 
and inform future regulations (“Edsafe AI Alliance to Drive 
Healthy Ecosystem of AIEd Sector,” 2021). Over the com-
ing years, the alliance will define new safety, accountability, 
fairness, and efficacy (i.e., SAFE) industry benchmarks to 
address data security, reliability, and equity in learning.

11  Conclusion and future work

By addressing the ethical questions associated with each 
segment of the cycle and by addressing these recommen-
dations, we can begin to realize the potential of a virtu-
ous cycle: lifelong education and improved life outcomes. 
Much of this article is about using AI to make conven-
tional educational practices more effective and efficient 
through analyzing large datasets to promote evidence-
based decisions. Doing things better is a useful objective, 
but a more important aspect of AI-based analytics is the 
ways they can enable doing better things. In future, if 
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work, civic participation, and personal fulfillment are to 
be equitable and sustainable, today’s industrial-era sys-
tems of schooling must change. Using AI, instructors can 
create, evaluate, and improve transformative lifewide, life-
long learning experiences that provide students with the 
sophisticated knowledge, skills, and dispositions they need 
in our evolving global digital civilization (Dede 2020). 
The future will be quite different than the immediate past: 
We and our children face a world-wide interdependent 
civilization shaped by economic turbulence from AI and 
globalization (Osei Bonsu and Song 2020), failure to reach 
the United Nations (2015) sustainability goals, global cli-
mate change (National Academies of Sciences 2020), and 
rapid shifts driven by world-wide mobile devices equipped 
with social media (e.g., Mozur 2018). We stand on the 
brink of an epic half-century, equivalent in its challenges 
and opportunities to those faced from 1910 to 1960: two 
world wars, a global pandemic, a long-lasting economic 
depression, and constant conflicts between capitalism and 
communism.

To fulfill their responsibilities in preparing learners 
of all ages for this turbulent, disruptive future, educators 
at every level are now faced with developing people’s 
capacity for unceasing reinvention to face an uncertain 
and changing workplace, and for inventing and master-
ing occupations that do not yet exist. Students must 
develop personal dispositions for finding opportunity in 
uncertainty: creating new value, reconciling tensions and 
dilemmas, and assuming moral/ethical agency on equity 
and respect for diversity (Organisation for Economic Co-
operation and Development 2018). Students must acquire 
knowledge and skills underemphasized in current curricu-
lum standards and omitted from today’s high-stakes sum-
mative tests: fluency of ideas, social perceptiveness, sys-
tems thinking, originality, and conflict resolution (Bakhshi 
et al. 2017). Advances in AI, which are accelerating this 
challenge, can also help us to meet it, if we develop ways 
to use AI wisely, ethically, and virtuously.
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