

Trends in Stroke Presentations before and during the COVID-19 Pandemic: A Meta-Analysis

Noman Ishaque,^a Asif Javed Butt,^a Joseph Kamtchum-Tatuene,^b Ali Zohair Nomani,^{a,c} Sarah Razzaq,^d Nida Fatima,^e Chetan Vekhande,^a Radhika Nair,^a Naveed Akhtar,^f Khurshid Khan,^a Maher Saqqur,^g Ashfaq Shuaib^a

^aDivision of Neurology, Department of Medicine, University of Alberta, Edmonton, AB, Canada

^bNeuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada ^cRed Deer Regional Hospital Center, Red Deer, AB, Canada

^dDepartment of Medicine, Fatima Jinnah Medical University, Lahore, Pakistan

⁶Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA

^fDivision of Neurology, Department of Medicine, Hamad General Hospital, Doha, Qatar

⁹Department of Neurology, Trillium Health Care, University of Toronto, Mississauga, ON, Canada

Background and Purpose There are reports of decline in the rates of acute emergency presentations during coronavirus disease 2019 (COVID-19) pandemic including stroke. We performed a meta-analysis of the impact of COVID-19 pandemic on rates of stroke presentations and on rates of reperfusion therapy.

Methods Following the Meta-analysis Of Observational Studies in Epidemiology (MOOSE) guidelines, we systematically searched the literature for studies reporting changes in stroke presentations and treatment rates before and during the COVID-19 pandemic. Aggregated data were pooled using meta-analysis with random-effect models.

Results We identified 37 observational studies (n=375,657). Pooled analysis showed decline in rates of all strokes (26.0%; 95% confidence interval [CI], 22.4 to 29.7) and its subtypes; ischemic (25.3%; 95% Cl, 21.0 to 30.0), hemorrhagic (27.6%; 95% Cl, 20.4 to 35.5), transient ischemic attacks (41.9%; 95% Cl, 34.8 to 49.3), and stroke mimics (45.6%; 95% Cl, 33.5 to 58.0) during months of pandemic compared with the pre-pandemic period. The decline was most evident for mild symptoms (40% mild vs. 25%–29% moderate/severe). Although rates of intravenous thrombolytic (IVT) and endovascular thrombectomy (EVT) decreased during pandemic, the likelihood of being treated with IVT and EVT did not differ between the two periods, both in primary and in comprehensive stroke centers (odds ratio [OR], 1.08; 95% Cl, 0.94 to 1.24 and OR, 0.95; 95% Cl, 0.83 to 1.09, respectively).

Conclusions Rates of all strokes types decreased significantly during pandemic. It is of paramount importance that general population should be educated to seek medical care immediately for stroke-like symptoms during COVID-19 pandemic. Whether delay in initiation of secondary prevention would affect eventual stroke outcomes in the long run needs further study.

Keywords Stroke; COVID-19; Hospitalization; Fibrinolysis; Thrombectomy; Meta-analysis

Correspondence: Ashfaq Shuaib Division of Neurology, Department of Medicine, University of Alberta, Edmonton T6G 2G3, AB, Canada Tel: +1-780-248-1660 Fax: +1-780-248-1807 E-mail: shuaib@ualberta.ca https://orcid.org/0000-0002-3380-7068

Received: May 2, 2021 Revised: August 15, 2021 Accepted: September 5, 2021

Copyright © 2022 Korean Stroke Society

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Introduction

Coronavirus disease 2019 (COVID-19) infection was initially reported from Wuhan, China in December 2019.¹ It was declared a pandemic by World Health Organization in March 2020.² There was a significant decrease in the hospital presentations and admissions, reported for most medical emergencies, including trauma, surgical emergencies, stroke, and acute coronary syndromes (ACSs) in regions with high numbers of COVID-19 cases.³⁻⁶ A decrease in stroke admissions during the first peak of the pandemic was reported from Asia, Europe, North and South America.⁷⁻¹⁴ While the decrease was predominantly recorded for those with milder symptoms, presentation for all stroke subtypes decreased substantially. This was suggested by decrease in the utilization of the computed tomography perfusion based rapid processing of perfusion and diffusion (RAPID, iSchemaView, Redwood City, CA, USA) software for acute stroke imaging in a report from USA.^{8,13,15-17}

The decrease in stroke admissions reported during the COVID-19 pandemic; however, has not been uniform, with conflicting reports from across the globe.¹⁸ In addition, late presentation as reported by few has raised concerns that the pandemic may result in fewer patients receiving thrombolysis or endovascular thrombectomy (EVT).¹⁹ Several factors may have contributed to the recorded decrease in rates of stroke admissions and should be reviewed with caution.²⁰⁻²⁴ Studies that provide information based on prospective registries or databases are more likely to offer accurate analysis of the changes developing during the pandemic. Reports comparing the change noticed during the pandemic to retrospectively collected pre-pandemic data tend to be less accurate and should be reviewed with caution. In view of above, a meta-analysis of the published reports may help establish the link between the impact of the COVID-19, rates of stroke admissions, rates of treatment with reperfusion therapy and likelihood of being treated with reperfusion therapy. We performed a systematic review and meta-analysis of observational studies during the COVID-19 pandemic between January 2020 and July 2021. We analyzed the data to answer following questions: (1) Was there a decrease in the rates of stroke hospitalization? (2) If a decrease in stroke rates was evident, was this specific to any particular stroke type (ischemic, hemorrhagic, transient ischemic attack [TIA]) and/or any National Institutes of Health Stroke Scale (NIHSS)-based severity (mild, moderate, severe)? (3) What was the effect of the pandemic on rates of thrombolvsis and EVT?

Methods

Data sources and study selection

The data supporting the findings of study are available from the corresponding author upon reasonable request. The PubMed and Embase databases were systematically searched from January 1st, 2020, until July 24th, 2021, for studies published in English. We used a combination of the following terms for the database search: "Stroke," "Cerebrovascular accidents," "COVID-19," "Coronavirus Disease 2019." Details of the search strategy can be found in Supplementary Table 1. The current meta-analysis is compliant with the Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA) statement.²⁵

Two authors (N.I. and A.J.B., both neurologists) independently screened the study titles and abstracts after removal of duplicates. Articles identified as potentially fulfilling our inclusion criteria underwent full-text evaluation by four authors (N.I., A.J.B., C.V., and R.N., all neurologists). We included studies only if they were original reports or observational studies with information on the rates of stroke cases and hospitalization before and during the COVID-19 pandemic. We excluded studies that did not provide information on the pre-COVID-19 stroke rates or were reviews without original data.

Data extractions and quality assessment

Publication quality was assessed using the Newcastle-Ottawa Quality assessment scale for cohort studies.²⁶ This scale is used to assess the Participant Selection, Comparability, and Outcome. A 'good quality' publication was defined as having 3 or 4 stars in selection domain and 1 or 2 stars in comparability domain and 2 or 3 stars in outcome domain. 'Fair quality' was defined as having 2 stars in selection domain and 1 or 2 stars in compatibility domain and 2 or 3 stars in outcome domain. 'Poor quality' was defined as having 0 or 1 star in selection domain or 0 stars in comparability domain or 0 or 1 stars in outcome domain. We only included studies that were of 'good or fair quality!

N.I., A.J.B., C.V., and R.N. extracted relevant data using a standardized data extraction form. Any disagreements were resolved by discussion. Extracted data included name of first author, year of publication, geographical location of the study, rate of total strokes, rate of ischemic strokes, hemorrhagic strokes, TIAs, stroke mimics, onset to door times (mean±stan-dard deviation [SD]), classification of stroke center (primary or comprehensive stroke center), rates of reperfusion therapies, and severity of stroke based on NIHSS scores (mean±SD at presentation and number of mild [NIHSS <5], moderate [NIHSS of

5–15], and severe [NIHSS >15] strokes) before and during the pandemic. Wherever the mean \pm SD of NIHSS or onset-to-door time were not reported, they were estimated from the median and interquartile range.²⁷ Reperfusion therapy was defined as intravenous thrombolysis or EVT.

Statistical analysis

We used meta-analysis with random effects models to pool the percent change in the number of various stroke presentations (ischemic, hemorrhagic, TIA, stroke mimic, mild, moderate, severe) and the likelihood of receiving treatment with intravenous thrombolysis or thrombectomy across studies. For studies reporting the onset-to-door time, we pooled the standardized mean difference between the pre-pandemic and the pandemic period. Publication bias was assessed by inspecting funnels plots and performing the Egger test. Heterogeneity between studies and subgroups was assessed using the chi-square test on the Cochran Q statistic and quantified by the l^2 index. All analyses were performed with STATA version 17.0 (StataCorp., College Station, TX, USA). All tests were 2-tailed and unpaired with a significance threshold of $P \le 0.05$.

Results

The systematic database search retrieved 4,853 records, which were screened, and 116 studies underwent full-text evaluation. After excluding 79 studies for reasons outlined in Figure 1, 37 studies with 375,657 patients, meeting 'fair or good' quality criteria were selected for further analysis.^{8,28-63} Twenty-four studies met criteria for 'good' quality and 13 met criteria for 'fair' quality (Supplemetary Tables 2–4). Most studies compared the pandemic period (ranging from January to June 2020) to a similar period in the preceding year (range January to June 2019)^{28-31,33,35,39,41-43,45,46,48-50,52,54-58,60} or the months preceding the pandemic (range September 2019 to December 2019).^{8,32,34,36-38,40,44,47,51,53,59,61-63}

Rates of stroke admissions and severity of symptoms

There was decline in rates of stroke admissions during the pandemic. The rate of all types of stroke presentations during pandemic was 26.0% lower than during pre-pandemic period (95% confidence interval [CI], 22.4 to 29.7) as shown in Table 1 and Figure 2. There was a publication bias with smaller studies reporting larger percent changes (Egger intercept=3.8; P=0.02) (Table 1 and Supplementary Figure 1). Analysis by stroke types showed that both ischemic and hemorrhagic

Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) flow diagram of the observational studies selection process.

stroke presentation rates decreased during the pandemic (Table 1). Specifically, the rate of ischemic stroke presentations during pandemic was 25.3% lower than during the pre-pandemic period (95% Cl, 21.0 to 30.0) (Figure 3) while the rate of hemorrhagic stroke presentations during the pandemic was 27.6% lower (95% Cl, 20.4 to 35.5) (Figure 4). Additionally, rates of TIAs and stroke mimics declined by 41.9% (95% Cl, 34.8 to 49.3) (Supplementary Figure 2) and 45.6% (95% Cl, 33.5 to 58.0) (Supplementary Figure 3), respectively.

Subgroup analysis revealed that there was a decrease in stroke rates during the pandemic for all severity categories with mild strokes (percent change, 40.2; 95% Cl, 21.7 to 60.2) (Supplementary Figure 4) being the most affected (Table 1) as compared with moderate (percent change, 25.6; 95% Cl, 11.0 to 43.8) (Supplementary Figure 5) and severe strokes (percent change, 29.1; 95% Cl, 17.4 to 42.4) (Supplementary Figure 6). Regarding the distribution of mild, moderate, and severe strokes, there was an overall decrease in the share of mild strokes and a corresponding increase in the share of moderate and severe strokes (Supplementary Figures 7–9). During the pandemic, the odds for admitting a mild stroke versus a moderate or severe stroke was 0.78 (95% Cl, 0.67 to 0.90; l^2 =73.5%) (Supplementary Figure 7).

 Table 1. Percent decrease in the number of strokes by type, region, and severity

Region	Studios	Persent change (OE0/6 CI)	Heterogene	ity assessment	Egger test for publication bias		
Region	Studies	Percent change (95% CI)	l ²	Р	Intercept	Р	
All strokes							
Overall	37	26.0 (22.4–29.7)	99.6	<0.001	3.8	0.02	
Asia	7	39.9 (32.7–47.4)	96.9	<0.001	-3.4	0.262	
Europe	19	20.5 (17.9–23.3)	97.3	<0.001	0.5	0.47	
Northern America	10	29.2 (16.7–43.5)	99.8	<0.001	6.4	0.13	
Global	1	11.5 (11.3–11.7)	NA	NA	NA	NA	
Ischemic strokes							
Overall	34	25.3 (21.0–30.0)	99.4	<0.001	2.7	0.02	
Asia	7	40.8 (33.3-48.5)	95.8	<0.001	-1.3	0.58	
Europe	18	17.8 (15.4–20.4)	96.2	<0.001	0.27	0.65	
Northern America	9	29.9 (16.8–44.9)	99.7	<0.001	6.9	0.10	
Hemorrhagic strokes							
Overall	24	27.6 (20.4–35.5)	98.1	<0.001	1.9	0.25	
Asia	6	31.0 (11.2–55.2)	98.0	<0.001	-1.8	0.60	
Europe	12	25.6 (18.8–33.0)	93.7	<0.001	1.1	0.06	
Northern America	6	25.8 (10.9–44.1)	98.1	<0.001	3.6	0.13	
Transient ischemic attacks							
Overall	22	41.9 (34.8–49.3)	96.4	<0.001	1.8	0.001	
Asia	3	51.5 (47.1–56.0)	NA	NA	-0.3	0.77	
Europe	15	38.3 (30.9–45.9)	93.3	<0.001	1.3	0.005	
Northern America	3	49.9 (17.5–82.3)	98.5	<0.001	3.2	0.40	
Stroke mimics							
Overall	8	45.6 (33.5–58.0)	95.9	<0.001	2.5	0.40	
Asia	2	52.8 (47.5–58.1)	NA	NA	NA	NA	
Europe	5	39.7 (29.2–50.7)	92.7	<0.001	2.7	0.40	
Northern America	1	78.1 (68.9–85.2)	NA	NA	NA	NA	
Stroke with NIHSS <5							
Overall	9	40.2 (21.7–60.2)	99.7	<0.001	6.8	0.21	
Asia	5	54.4 (46.6–62.1)	93.2	<0.001	0.8	0.82	
Europe	2	6.9 (6.0-7.8)	NA	NA	NA	NA	
Northern America	2	50.4 (48.3–52.6)	NA	NA	NA	NA	
Stroke with NIHSS 5–15							
Overall	8	25.6 (11.0–43.8)	98.9	<0.001	2.4	0.32	
Asia	5	32.9 (20.6–46.5)	93.9	<0.001	-1.8	0.3	
Europe	2	-6.6 (5.5-7.7)*	NA	NA	NA	NA	
Northern America	1	33.8 (27.8–40.4)	NA	NA	NA	NA	
Stroke with NIHSS >15							
Overall	9	29.1 (17.4–42.4)	97.1	<0.001	2.0	0.26	
Asia	5	33.8 (18.7–50.8)	NA	NA	-0.8	0.70	
Europe	2	12.4 (10.4–14.5)	NA	NA	NA	NA	
Northern America	2	30.1 (26.4–33.9)	NA	NA	NA	NA	

Cl, confidence interval; NA, not available, the statistic cannot be computed due to the small number of studies ($n \le 3$); NIHSS, National Institutes of Health Stroke Scale.

*There was an increase in the number of moderate strokes in Europe which explains the minus sign.

Author	Year	All strokes pre-pandemic	All strokes pandemic	Absolute change		ES (95% CI)	% Weight
Asia					1		
Akhtar et al	2021	420	314	-106		25 2 (21 3 29 6)	2.71
Hasan et al	2021	534	401	-133	•	24.9 (21.4, 28.7)	2.73
Kim et al.	2020	820	393	-427	1	52.1 (48.7, 55.5)	2.76
Libruder et al.	2021	1469	791	-678		46.2 (43.6, 48.7)	2.79
Tavanaei et al.	2021	210	106	-104	🗕	49.5 (42.8, 56.2)	2.62
Wu et al.	2020	2274	1222	-1052	i 🔶	46.3 (44.2, 48.3)	2.80
Zhang et al.	2020	407	257	-150	!	36.9 (32.3, 41.6)	2.71
Subtotal (I2=96.9%, P=0.	0)				 	39.9 (32.7, 47.4)	19.12
Furana					1		
Europe Relectring et al	0000	105	100	40			0.57
Dalestrino et al.	2020	100	123	-42		25.5(19.4, 32.0)	2.57
Douiri et al.	2021	7002	6022	-14		9.0 (5.4, 14.5)	2.00
Dobios et al	2021	7902	1923	-979		12.4 (11.7, 13.1)	2.01
Débiec et al. D'Anna et al	2021	380	294	-45		21.0 (10.3, 20.7)	2.04
Gdovinová et al	2021	1954	1521	-00 -433		22.0(10.7, 27.1) 22.2(20.4, 24.1)	2.70
Jansen et al	2020	70	63	-7		10 0 (4 9 19 2)	2.30
Kristoffersen et al.	2021	218	105	, _113	¯ ¦ - ₩	51 8 (45 2 58 4)	2.62
Kwan et al.	2020	196	168	-28	🖝 i 👘	14.3 (10.1, 19.9)	2.60
Mariet et al.	2021	2362	2049	-313	■ !	13.3 (11.9, 14.7)	2.80
Melaika et al.	2021	304	168	-136	-	44.7 (39.2, 50.4)	2.68
Ramírez-Moreno et al.	2021	205	162	-43	-	21.0 (16.0, 27.1)	2.61
Raymaekers et al.	2021	1023	860	-163	▲ 1	15.9 (13.8, 18.3)	2.77
Richter et al.	2020	59149	47983	-11166		18.9 (18.6, 19.2)	2.82
Rinnkel et al.	2020	290	232	-58	●	20.0 (15.8, 25.0)	2.67
Sacco et al.	2020	3121	2328	-793	•	25.4 (23.9, 27.0)	2.80
Slowik et al.	2020	1126	993	-133	•	11.8 (10.1, 13.8)	2.78
Uidhir et al.	2020	881	703	-178		20.2 (17.7, 23.0)	2.77
Uphaus et al.	2020	194	146	-48		24.7 (19.2, 31.3)	2.60
Subtotal (I ² =97.3%, P=0.	0)				1	20.5 (17.9, 23.3)	50.88
Northern America					i i		
Aboul Nour et al	2021	167	100	-67		40 1 (33 0 47 7)	2 57
Balucani et al.	2021	7786	6330	-1456		18.7 (17.8, 19.6)	2.81
Desai et al.	2020	176	102	-74	i 🛖	42.0 (35.0, 49.4)	2.58
Esenwa et al.	2020	312	177	-135	!	43.3 (37.9, 48.8)	2.68
Havenon et al.	2020	11383	10830	-553		4.9 (4.5, 5.3)	2.81
Ortega-Gutierrez et al.	2020	1319	933	-386	•	29.3 (26.9, 31.8)	2.78
Pandey et al.	2020	722	573	-149	e ا	20.6 (17.8, 23.7)	2.76
Sharma et al.	2020	410	281	-129		31.5 (27.2, 36.1)	2.71
Wallace et al.	2021	2692	1225	-1467		54.5 (52.6, 56.4)	2.80
Wang et al.	2020	320	255	-65		20.3 (16.3, 25.1)	2.68
Subtotal (I ² =99.8%, P=0.	0)					29.2 (16.7, 43.5)	27.18
Global					i i		
Noqueira et al	2021	91373	80894	-10479		11 5 (11 3 11 7)	2 82
. oguona ot al.		0.070	00007	10470	- i		2.02
Heterogeneity between g	roups: P	=0.000			i ii	00.0 (00.4.00)	100.00
Overall (I ² =99.6%, P=0.0) ;					26.0 (22.4, 29.7)	100.00
					I 0 30 6	I SO	
					5 50 0		

Figure 2. Percent change in all strokes by geographic region. ES, effect size; CI, confidence interval.

Regional difference

Included studies reported on rates of stroke presentations from Asia, Europe, and North America. The highest decrease in presentations for all types of strokes combined as well as ischemic strokes, hemorrhagic strokes, and TIAs during the pandemic was reported from Asia, 39.9% (95% CI, 32.7 to 47.4), 40.8% (95% CI, 33.3 to 48.5), 31.0% (95% CI, 11.2 to 55.2), and 51.5% (95% CI, 47.1 to 56.0), respectively (Table 1 and Figure 2). Whereas Europe had the smallest decrease in rates of presentations for all types of strokes combined, ischemic strokes,

Author	Year	lschemic stroke pre-pandemic	Ischemic stroke pandemic	Absolute change		ES (95% CI)	% Weight
Asia							
Akhtar et al.	2021	286	225	-61	•	21.3 (17.0, 26.4)	2.95
Hasan et al.	2021	153	116	-37	•	24.2 (18.1, 31.5)	2.85
Kim et al.	2020	710	315	-395		55.6 (52.0, 59.2)	3.01
Libruder et al.	2021	948	550	-398	I 🍝	42.0 (38.9, 45.2)	3.02
Tavanaei et al.	2021	190	95	-95		50.0 (43.0, 57.0)	2.89
Wu et al.	2020	1984	1132	-852		42.9 (40.8, 45.1)	3.04
Zhang et al.	2020	337	167	-170	i 🗕	50.4 (45.1, 55.7)	2.96
Subtotal (I ² =95.8%, P=0.0	D)					40.8 (33.3, 48.5)	20.73
Europe							
Balestrino et al.	2020	99	79	-20		20.2 (13.5, 29.2)	2.75
Brunetti et al.	2021	148	135	-13		8.8 (5.2, 14.4)	2.85
Douiri et al.	2021	6864	5975	-889		13.0 (12.2, 13.8)	3.05
Dębiec et al.	2021	170	153	-17	💽 i	10.0 (6.3, 15.4)	2.87
D'Anna et al.	2021	283	235	-48		17.0 (13.0, 21.8)	2.94
Gdovinová et al.	2020	1683	1332	-351		20.9 (19.0, 22.9)	3.04
Jansen et al.	2021	53	47	-6		11.3 (5.3, 22.6)	2.54
Kristoffersen et al.	2021	143	76	-67	I -	46.9 (38.9, 55.0)	2.84
Kwan et al.	2020	177	142	-35	•	19.8 (14.6, 26.3)	2.88
Mariet et al	2021	1451	1308	-143		9.9 (8.4, 11.5)	3.04
Melaika et al.	2021	246	151	-95	i 🛨	38.6 (32.8, 44.8)	2.93
Ramírez-Moreno et al.	2021	155	124	-31	.	20.0 (14.5, 27.0)	2.86
Richter et al.	2020	37748	31165	-6583		17.4 (17.1, 17.8)	3.06
Rinnkel et al.	2020	194	180	-14		7.2 (4.3, 11.7)	2.89
Sacco et al.	2020	2399	1810	-589	•	24.6 (22.9, 26.3)	3.04
Slowik et al.	2020	1126	993	-133		11.8 (10.1, 13.8)	3.03
Uidhir et al.	2020	822	662	-160		19.5 (16.9, 22.3)	3.02
Uphaus et al.	2020	138	110	-28	-	20.3 (14.4, 27.8)	2.83
Subtotal (I ² =96.2%, P=0.0	D)				#	17.8 (15.4, 20.4)	52.46
Northern America							
Aboul Nour et al.	2021	144	83	-61	I	42.4 (34.6, 50.5)	2.84
Balucani et al.	2021	6144	4921	-1223		19.9 (18.9, 20.9)	3.05
Desai et al.	2020	161	96	-65	i 🗕	40.4 (33.1, 48.1)	2.86
Esenwa et al.	2020	270	153	-117	I 🔶	43.3 (37.6, 49.3)	2.94
Havenon et al.	2020	9662	9194	-468		4.8 (4.4, 5.3)	3.06
Ortega-Gutierrez et al.	2020	1319	933	-386		29.3 (26.9, 31.8)	3.03
Pandey et al.	2020	632	518	-114		18.0 (15.2, 21.2)	3.01
Sharma et al.	2020	391	274	-117	•	29.9 (25.6, 34.6)	2.97
Wallace et al.	2021	1912	877	-1035		54.1 (51.9, 56.4)	3.04
Subtotal (I ² =99.7%, P=0.0	D)					29.9 (16.8, 44.9)	26.81
Heterogeneity between gr	roups: P=0	0.000			i i		
Overall (I ² =99.4%, P=0.0));					25.3 (21.0, 30.0)	100.00
						1	
					0 30	60	

Figure 3. Percent change in the number of ischemic strokes. ES, effect size; Cl, confidence interval.

hemorrhagic strokes, and TIAs, 20.5% (95% CI, 17.9 to 23.3), 17.8% (95% CI, 15.4 to 20.4), 25.6% (95% CI, 18.8 to 33.0), and 38.3% (95% CI, 30.9 to 45.9) (Table 1 and Figure 2). Rates of presentations for all strokes combined, ischemic strokes, hemorrhagic strokes, and TIA decreased in North America by 29.2% (95% CI, 16.7 to 43.5), 29.9% (95% CI, 16.8 to 44.9), 25.8% (95% CI, 10.9 to 44.1), and 49.9% (95% CI, 17.5 to 82.3) (Table 1 and Figure 2). Highest decrease in rates of stroke mimics was reported from North America 78.1% (95% Cl, 68.9 to 85.2) in comparison to 52.8% (95% Cl, 47.5 to 58.1) in Asia and 39.7% (95% Cl, 29.2 to 50.7) in Europe (Table 1 and Figure 2).

The admission rates of all strokes were reported to have dropped maximally during the pandemic in regions of the world that were most severely affected by the pandemic like certain states of the USA (California, Texas, New York, Illinois,

			Hemorrhagic				
		Hemorrhagic stroke	stroke	Absolute			%
Author	Year	pre-pandemic	pandemic	change		ES (95% CI)	Weight
Asia							
Akhtar et al.	2021	56	54	-2		3.6 (1.0, 12.1)	4.26
Hasan et al.	2021	381	285	-96	L 🔶	25.2 (21.1, 29.8)	4.70
Kim et al.	2020	44	42	-2	<u>◆</u> ।	4.5 (1.3, 15.1)	4.14
Libruder et al.	2021	169	72	-97		57.4 (49.9, 64.6)	4.60
Tavanaei et al.	2021	20	11	-9	⊢	45.0 (25.8, 65.8)	3.58
Wu et al.	2020	290	90	-200	I 🔶	69.0 (63.4, 74.0)	4.67
Zhang et al.	2020	70	90	20		–28.6 (., 100.0)	-
Subtotal (I ² =98.0%, P=0	0.0)				\mathbf{O}	31.0 (11.2, 55.2)	25.96
Europe							
Balestrino et al.	2020	17	20	3		–17.6 (., 100.0)	
Douiri et al.	2021	1000	917	-83	i i	8.3 (6.7, 10.2)	4.75
Dębiec et al.	2021	18	11	-7		38.9 (20.3, 61.4)	3.49
D'Anna et al.	2021	48	41	-7	•	14.6 (7.2, 27.2)	4.19
Jansen et al.	2021	6	6	0		0.0 (0.0, 39.0)	2.33
Kristoffersen et al.	2021	29	10	-19		65.5 (47.3, 80.1)	3.88
Mariet et al	2021	368	286	-82		22.3 (18.3, 26.8)	4.69
Melaika et al.	2021	31	11	-20	! 🗕	64.5 (46.9, 78.9)	3.93
Ramírez-Moreno et al.	2021	22	20	-2	←	9.1 (2.5, 27.8)	3.67
Richter et al.	2020	4518	3803	-715	•	15.8 (14.8, 16.9)	4.77
Rinnkel et al.	2020	42	20	-22	_! 	52.4 (37.7, 66.6)	4.12
Sacco et al.	2020	400	322	-78		19.5 (15.9, 23.7)	4.70
Uphaus et al.	2020	12	7	-5		41.7 (19.3, 68.0)	3.09
Subtotal (I ² =93.7%, P=0	0.0)				\$	25.6 (18.8, 33.0)	47.61
Northern America							
Aboul Nour et al.	2021	23	17	-6	-	26.1 (12.5. 46.5)	3.70
Balucani et al.	2021	773	697	-76		9.8 (7.9, 12,1)	4.74
Esenwa et al.	2020	42	24	-18		42.9 (29.1. 57.8)	4.12
Havenon et al.	2020	1721	1636	-85	•	4.9 (4.0. 6.1)	4.76
Pandev et al.	2020	90	55	-35	T 🖊	38.9 (29.5, 49.2)	4.44
Wallace et al.	2021	292	152	-140		47.9 (42.3, 53.7)	4.67
Subtotal (I ² =98.7%, P=0	0.0)				\$	25.8 (10.9, 44.1)	26.44
Heterogeneity between	aroupe:	P-0 916					
	0).	-0.310				27 6 (20 4 35 5)	100.00
Overall (1 = 30.1 /0, F=0	.0),				1	27.0 (20.4, 00.0)	100.00
					┞╷╷		
					0 30 60		

.

Figure 4. Percent change in the number of hemorrhagic strokes. ES, effect size; CI, confidence interval.

Georgia, Ohio, Pennsylvania, New Jersey),^{31,32,41,46} Italy,^{28,45} Iran,⁴⁸ and Germany.⁵⁰

Time from onset to admission

_

As stroke treatment is time-sensitive, we next analyzed the time (in minutes) from onset/last seen well to hospital arrival. The onset-to-door time was reported in 14/37 studies.^{29,30,44,46,48,49,52,54,55,57-59,61,63} There was no difference in mean onset-to-door time during pandemic when compared to pre-pandemic period (standardized mean difference=-0.2; 95% Cl, -0.8 to 0.3).

Thrombolysis and endovascular treatment

The effect of the pandemic on the rates of thrombolysis was reported in 28/37 studies and 25/37 studies reported on the rates of EVT before and during the pandemic. The rate of intravenous thrombolytic (IVT) therapy for acute ischemic strokes dropped by 27.2% during the pandemic (95% Cl, 22.7 to 32.0) (Supplementary Figure 10). This drop in rates of IVT was highest in Asia (40.3%; 95% Cl, 27.8 to 53.3) followed by North America (26.9%; 95% Cl, 12.7 to 43.9) and Europe (25.7%; 95% Cl, 19.7 to 32.1) (Supplementary Figure 10). The likelihood of receiving IVT therapy did not differ between pre-pandemic and pandemic periods in primary stroke centers odds ratio (OR)

	IVT pa	andemic	IVT prep	bandemic			Odds ratio	Weight
Study	Yes	No	Yes	No			with 95% CI	(%)
Primary Stroke Center								
Uidhir et al., 2020	112	550	122	700	_		1.17 [0.88, 1.55]	4.89
Uphaus et al., 2020	21	89	19	119			1.48 [0.75, 2.91]	1.61
Heterogeneity: τ^2 =0.00, l ² =0.00%, H	l ² =1.00				•		1.21 [0.93, 1.57]	
Test of $\theta_i = \theta_j$: Q(1)=0.39, <i>P</i> =0.53								
Comprehensive Stroke Center								
Melaika et al., 2021	17	134	33	213			0.82 [0.44, 1.53]	1.85
Desai et al., 2020	7	89	10	151		-	-1.19 [0.44, 3.23]	0.83
Slowik et al., 2020	143	850	195	931		-	0.80 [0.64, 1.02]	5.57
Kristoffersen et al., 2021	14	62	36	107			0.67 [0.34, 1.34]	1.56
Aboul Nour et al., 2021	13	70	17	127			- 1.39 [0.64, 3.02]	1.29
Kim et al., 2020	27	288	74	636			0.81 [0.51, 1.28]	2.85
Tavanaei et al., 2021	18	77	25	165			- 1.54 [0.79, 3.00]	1.67
Douiri et al., 2021	836	5,139	918	5,946	-		1.05 [0.95, 1.17]	7.65
Libruder et al., 2021	79	471	121	827			1.15 [0.84. 1.56]	4.53
Debiec et al., 2021	54	99	68	102		_	0.82 [0.52. 1.29]	2.93
D'Anna et al., 2021	27	208	46	237			0.67 [0.40, 1.11]	2.49
Jansen et al., 2021	15	32	17	36			0.99 [0.43. 2.30]	1.13
Heterogeneity: $\tau^2 = 0.01$, $I^2 = 25.47\%$.	$H^{2}=1.3$	4			-		0.95 [0.83. 1.09]	
Test of $\theta_i = \theta_i$: Q(11)=13.22, P=0.28								
Mixed								
Ramírez-Moreno et al., 2021	17	107	35	120		-	0.54 [0.29, 1.03]	1.79
Pandey et al., 2020	66	452	70	562	—		1.17 [0.82, 1.68]	3.86
Brunetti et al., 2021	19	116	37	111 -			0.49 [0.27, 0.91]	1.90
Rinnkel et al., 2020	50	130	59	135			0.88 [0.56, 1.38]	2.97
Heterogeneity: τ^2 =0.11, I ² =63.15%,	H ² =2.7	1					0.77 [0.51, 1.16]	
Test of θ _i =θ _j : Q(3)=8.08, <i>P</i> =0.04								
Net energidie d								
	E 470	05 000	0.400	04 550			4 04 [0 07 4 00]	0.00
Richter et al., 2020	5,173	25,992	6,190	31,558	_		1.01 [0.97, 1.06]	8.23
Gdovinova et al., 2020	276	1,056	393	1,290		-	0.86[0.72, 1.02]	6.55
Wallace et al., 2021	145	732	339	1,573	-		0.92 [0.74, 1.14]	5.91
Havenon et al., 2020	304	8,890	266	9,396			1.21 [1.02, 1.43]	6.67
Wu et al. , 2020	791	341	1,199	785	_	-	1.52 [1.30, 1.77]	6.85
Balucani et al., 2021	617	4,304	805	5,339	_	-	0.95 [0.85, 1.06]	7.50
Sacco et al., 2020	345	1,465	531	1,868			0.83 [0.71, 0.96]	6.91
Heterogeneity: τ^2 =0.04, I ² =91.22%,	H ² =11.3	39					1.02 [0.87, 1.19]	
Test of $\theta_i = \theta_j$: Q(6)=42.51, <i>P</i> =0.00								
Overall							0.98 [0.89, 1.08]	
Heterogeneity: τ^2 =0.03, I^2 =75.57%,	H ² =4.09	9						
Test of θ _i =θ _j : Q(24)=68.17, <i>P</i> =0.00					Prepandemic	Pandemic		
Test of group differences: Q₁(3)=4.2	25, <i>P</i> =0.	.24			-			
	-			-	1/2	1 2	_	

Random-effects REML model

Figure 5. Probability of receiving intravenous thrombolytic (IVT) based on type of stroke center. Cl, confidence interval; REML, restricted maximum likelihood.

	EVT Pa	andemic	EVT Pre	pandemic		Odds ratio	Weight
Study	Yes	No	Yes	No	1	with 95% CI	(%)
Primary Stroke Center							
Uphaus et al., 2020	29	81	26	112		1.54 [0.85, 2.81]	2.19
Heterogeneity: τ^2 =0.00, I^2 =NA, H^2 =	NA					1.54 [0.85, 2.81]	
Test of $\theta_i = \theta_j$: Q(0)=0.00, P=NA							
Comprehensive Stroke Center							
Melaika et al., 2021	16	135	24	222		1.10 [0.56, 2.14]	1.84
Desai et al., 2020	16	80	19	142		- 1.49 [0.73, 3.07]	1.61
Slowik et al., 2020	30	963	40	1,086		0.85 [0.52, 1.37]	3.14
Aboul Nour et al., 2021	14	69	16	128		— 1.62 [0.75, 3.52]	1.41
Kim et al., 2020	44	271	98	612		1.01 [0.69, 1.49]	4.37
Tavanaei et al., 2021	14	81	16	174		— 1.88 [0.88, 4.04]	1.45
Kwan et al., 2020	28	114	33	144		1.07 [0.61, 1.88]	2.47
Douiri et al., 2021	121	5,854	121	6,743		1.15 [0.89, 1.49]	7.02
Libruder et al., 2021	59	491	97	851		1.05 [0.75, 1.48]	5.06
Dębiec et al., 2021	34	119	39	131		0.96 [0.57, 1.62]	2.76
D'Anna et al., 2021	13	222	11	272		- 1.45 [0.64, 3.30]	1.27
Jansen et al., 2021	8	39	21	32 —		0.31 [0.12, 0.80]	1.00
Heterogeneity: τ^2 =0.00, I ² =0.00%, I	H ² =1.00				•	1.08 [0.94, 1.24]	
Test of $\theta_i = \theta_j$: Q(11)=12.61, P=0.32							
Mixed							
Ramírez-Moreno et al., 2021	13	111	13	142		1.28 [0.57, 2.87]	1.31
Pandey et al., 2020	49	469	80	552		0.72 [0.49, 1.05]	4.48
Brunetti et al., 2021	29	106	27	121		1.23 [0.68, 2.20]	2.30
Rinnkel et al., 2020	20	160	23	171		0.93 [0.49, 1.76]	1.99
Heterogeneity: τ^2 =0.02, I^2 =20.53%,	H ² =1.26	i			•	0.93 [0.68, 1.27]	
Test of $\theta_i = \theta_j$: Q(3)=3.14, <i>P</i> =0.37							
Not specified							
Richter et al., 2020	2,524	28,641	2,906	34,842		1.06 [1.00, 1.12]	12.92
Gdovinová et al., 2020	109	1,223	172	1,511		0.78[0.61, 1.01]	7.10
Wallace et al., 2021	91	786	174	1,738		1.16[0.89, 1.51]	6.69
Havenon et al., 2020	406	8,788	319	9,343		1.35 [1.17, 1.57]	10.23
Wu et al. , 2020	185	947	250	1,734		1.35 [1.10, 1.66]	8.41
Balucani et al., 2021	224	4,697	228	5,916		1.24 [1.03, 1.49]	8.96
Heterogeneity: τ^2 =0.03, I^2 =80.88%	H ² =5.23	3			•	1.15 [0.99, 1.33]	
Test of $\theta_i = \theta_j$: Q(5)=21.98, <i>P</i> =0.00							
Overall					•	1.11 [1.00, 1.22]	
Heterogeneity: τ^2 =0.02, I ² =49.68%,	H ² =1.99	9					
Test of $\theta_i = \theta_j$: Q(22)=41.17, P=0.01					Prepandemic Pandem	ic	
Test of group differences: Q _b (3)=2.	71, <i>P</i> =0.4	14					
				1/8	1/4 1/2 1 2	4	
					·· · -		

Random-effects REML model

Figure 6. Probability of being treated with endovascular thrombectomy (EVT) based on type of stroke center. CI, confidence interval; NA, not appplicable; REML, restricted maximum likelihood.

1.21 (95% Cl, 0.93 to 1.57) as well as in comprehensive stroke centers OR 0.95 (95% Cl, 0.83 to 1.09) (Figure 5). Although rates of EVT decreased during the pandemic by 20% (95% Cl, 13.7 to 27.0) (Supplementary Figure 11), the likelihood of receiving EVT increased during the pandemic OR 1.11 (95% Cl, 1.00 to 1.22) (Figure 6). Largest decrease in rates of EVT was in Asia 34.2% (95% Cl, 19.4 to 50.7) followed by North America 20.7% (95% Cl, 6.8 to 39.2) and Europe 15.6% (95% Cl, 9.0 to 23.5). The likelihood of receiving EVT did not differ between two periods in comprehensive stroke center (OR, 1.08; 95% Cl, 0.94 to 1.24) as well as in primary stroke center (OR, 1.54; 95% Cl, 0.85 to 2.81) (Supplementary Figure 11).

Discussion

In this systematic review and meta-analysis of 37 fair-to-good quality studies reporting the rates of stroke presentations in relation to the COVID-19 pandemic, we found that there was an overall significant decrease ranging between 25% and 50% in all stroke types including ischemic, hemorrhagic, TIAs, and stroke mimics during the months of the COVID-19 pandemic when compared with the pre-pandemic period. Stroke presentations declined nearly by approximately 40% for patients with mild symptoms. Although the absolute rates of IVT and EVT decreased during the pandemic, the likelihood of being treated with reperfusion therapy did not change during the pandemic either in primary or in comprehensive stroke centers. This systematic review and meta-analysis included some observational studies with publication bias but it is because of observational nature of studies and unique period of pandemic that might have affected data collection.

Among stroke categories, patients presenting with TIA had the highest decline during pandemic, with a decrease of 40%. Due to transient nature of neurological symptoms, patients may have chosen not to seek medical care as it might increase the risk of contracting COVID-19 infection. This trend is worrisome as it may lead to delay in diagnosis and initiation of prevention therapies. Patients with TIA are at higher risk of stroke in early period after TIA.^{14,21} There is considerable evidence that the risk of stroke is reduced significantly with appropriate assessment and early treatment.²¹ Whether delay in delivery of appropriate treatment will affect stroke outcomes subsequently is therefore a big concern. Population-based awareness campaigns to highlight the need to seek early medical attention should be conducted in the community, especially for those with TIAs and milder symptoms.

The rates of stroke mimics were significantly reduced by a percentage ranging from 33.5% to 58%. In the study from Qa-

tar, a striking decrease to nearly one-thirds in rates of stroke mimic admissions was the major reason for the fall in stroke admissions during the pandemic months compared with the preceding months.⁸ Patients with stroke mimics may avoid hospitalization due to fear of contracting COVID-19 infection.^{13,15,16,28}

Similar to TIAs, mild strokes decreased by 40% during the pandemic. In comparison, moderate strokes decreased by 25% and severe strokes decreased by 29%. Whereas, two recent systematic reviews and meta-analysis on stroke in patients with COVID-19 infections revealed that stroke is an uncommon complication of the illness and develops in less than 1.5% of patients.^{64,65} Interestingly, initial reports also suggested that strokes of increased severity were seen more frequently in patients with severe COVID-19 infections admitted to hospitals.⁷ These cases may be secondary to the direct prothrombotic effects of the COVID-19 illness. There are reports of the formation of recurrent thrombi during the treatment of acute stroke.⁷ The COVID-19 virus may directly damage the cerebral vascular endothelium, making it more prothrombotic and this may explain the higher incidence of severe strokes.^{89,66-69}

While different trends were observed for thrombolysis delivery in various studies across the globe, our composite analysis shows that the rates of both IVT and EVT dropped by slightly more than one-fourth and one-fifth during the pandemic. This may be related to possible delayed hospital arrival and an overall decrease in the absolute number of patients with mild and moderate stroke seeking medical care.^{21,29,30,46,54,55,59,60,62,70} However, the likelihood of being treated with IVT did not differ between two periods in comprehensive stroke centers and that of being treated with EVT increased during the pandemic, which might be due to adequate changes made in workflow of acute stroke care in comprehensive stroke centers.⁷¹ Higher likelihood of being treated with EVT might also have been caused by higher likelihood of large vessel occlusions due to prothrombotic state driven by COVID-19 virus, as reported by multiple studies.^{7-9,66-69}

There was a decrease in the rates for all types of stroke from all geographical regions of the world. These findings are similar to the decrease in admission rates of several other illnesses.⁴⁻⁶ A decrease in admission rates for ACS has been reported from all geographic regions of the world and appears to parallel the severity of the lockdowns.⁷² A decrease for most acute and chronic illnesses has also been reported from New York recently, where the effect was most apparent for infections and septicemia.⁷³ In Qatar, a decline in admissions to the emergency department varying from 9% to 75% was observed for acute surgical emergencies, ACS, bone fractures, and cancer whereas admissions for respiratory conditions increased.⁵ In Finland, there was a reduction in the rates of several acute medical illnesses seen in the emergency department, including infections (28%), back or limb pain (31%), and psychiatric illness (19%). Interestingly and in contrast, there was no decrease in the number of stroke or ACS admissions during the period of observation.²¹ This may be driven by selection bias due to severity of stroke symptoms or reporting of acutely managed cases.

The most prevalent hypothesis for decline in rates of presentation of acute illnesses to the hospital relates to the fear of contracting COVID-19 when coming to the hospital. It may stand especially true for patients with transient or milder symptoms.^{20,21,40} This in turn may be magnified from 'stay-athome' orders, leading to deferring urgent care as suggested in a recent survey from the United Kingdom.⁷⁴ In Germany, the initial early decline in stroke-related consultations in the pandemic and later increase for telemedicine services, paralleled the population activities during lockdowns.²² Another study from France also reported that there appeared to be a relationship between the decrease in stroke admissions and the severity of the COVID-19 pandemic.⁶⁰ The alternative hypothesis is that of decreased incidence of cardiovascular events related to lifestyle changes.^{40,75} Similarly, in Greece the significant decrease in ACS admissions in three municipalities appeared to be directly related to lifestyle changes including reduced passive smoking, working hours, alcohol and junk food consumption, and increased sleeping hours related to lockdown.⁷⁶ Although appealing, the study mainly addressed people with low burden of cardiovascular risk factors and thus the results should be interpreted carefully.

Other factors proposed to explain the decrease in emergency visits for acute illnesses include reduced social contact resulting in lowered "third-party" detection of unappreciated acute stroke symptoms.⁴⁰ Another speculation is that of beneficial reduction in air pollution related to decreased carbon dioxide emissions and lower temperatures in relation to lockdowns during the peak of the pandemic.^{21,22,77} A decrease in physical activity during lockdown may also have potential protective effects. An increase in physical activity is known to increase blood pressure, potentially increasing the risk of stroke and ACS.^{20,78}

Our study has certain strengths and limitations. First, it is a composite analysis of studies comparing pre-pandemic to pandemic period and thus addresses the skepticism around the commonly raised concerns regarding stroke care. Second, we not only compared stroke presentations, but also analyzed the effect of stroke severity on relative differences in presentations. Third, the results are based on studies from multiple continents and diverse regions which is reflective of the global impact of the pandemic. The main limitation of this analysis is that this was based on observational studies. Also, although the likelihood of thrombolysis and thrombectomy seems unchanged, the effects the pandemic might have on stroke outcomes in terms of secondary prevention warrants further study. Comprehensive prospective registries recording the above stated parameter may help address these concerns as the pandemic evolves.

Conclusions

We meta-analyzed 37 studies that reported the rates of stroke presentation before and during the COVID-19 pandemic from various geographic regions. Rates of all stroke types declined significantly during the pandemic, but most profoundly for transient and milder symptoms, and stroke mimics. This resulted in lower rates of treatments with IVT as well as EVT. Whether delay in delivery of secondary prevention for those with mild symptoms would affect eventual stroke outcomes in the long run needs further study.

Supplementary materials

Supplementary materials related to this article can be found online at https://doi.org/10.5853/jos.2021.01571.

Disclosure

The authors have no financial conflicts of interest.

References

- Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020;382:727-733.
- WHO Director-General's opening remarks at the media briefing on COVID19: 11 March 2020. WHO. https://www.who. int/director-general/speeches/detail/who-director-general-sopening-remarks-at-the-media-briefing-on-covid-19---11march-2020. 2020. Accessed October 30, 2021.
- 3. Mafham MM, Spata E, Goldacre R, Gair D, Curnow P, Bray M, et al. COVID-19 pandemic and admission rates for and management of acute coronary syndromes in England. *Lancet* 2020;396:381-389.
- 4. Schwarz V, Mahfoud F, Lauder L, Reith W, Behnke S, Smola S, et al. Decline of emergency admissions for cardiovascular and cerebrovascular events after the outbreak of COVID-19.

Clin Res Cardiol 2020;109:1500-1506.

- Butt AA, Kartha AB, Masoodi NA, Azad AM, Asaad NA, Alhomsi MU, et al. Hospital admission rates, length of stay, and in-hospital mortality for common acute care conditions in COVID-19 vs. pre-COVID-19 era. *Public Health* 2020;189:6-11.
- Kuitunen I, Ponkilainen VT, Launonen AP, Reito A, Hevonkorpi TP, Paloneva J, et al. The effect of national lockdown due to COVID-19 on emergency department visits. *Scand J Trauma Resusc Emerg Med* 2020;28:114.
- Oxley TJ, Mocco J, Majidi S, Kellner CP, Shoirah H, Singh IP, et al. Large-vessel stroke as a presenting feature of COVID-19 in the young. *N Engl J Med* 2020;382:e60.
- 8. Akhtar N, Al Jerdi S, Mahfoud Z, Imam Y, Kamran S, Saqqur M, et al. Impact of COVID-19 pandemic on stroke admissions in Qatar. *BMJ Neurol Open* 2021;3:e000084.
- Mehrpour M, Shuaib A, Farahani M, Hatamabadi HR, Fatehi Z, Ghaffari M, et al. Coronavirus disease 2019 and stroke in Iran: a case series and effects on stroke admissions. *Int J Stroke* 2020 Jun 26 [Epub]. https://doi.org/10.1177/1747493020937397.
- 10. Aguiar de Sousa D, Sandset EC, Elkind MSV. The curious case of the missing strokes during the COVID-19 pandemic. *Stroke* 2020;51:1921-1923.
- Padmanabhan N, Natarajan I, Gunston R, Raseta M, Roffe C. Impact of COVID-19 on stroke admissions, treatments, and outcomes at a comprehensive stroke centre in the United Kingdom. *Neurol Sci* 2021;42:15-20.
- Uchino K, Kolikonda MK, Brown D, Kovi S, Collins D, Khawaja Z, et al. Decline in stroke presentations during COVID-19 surge. *Stroke* 2020;51:2544-2547.
- Perry R, Banaras A, Werring DJ, Simister R. What has caused the fall in stroke admissions during the COVID-19 pandemic? *J Neurol* 2020;267:3457-3458.
- Rudilosso S, Laredo C, Vera V, Vargas M, Renú A, Llull L, et al. Acute stroke care is at risk in the era of COVID-19: experience at a comprehensive stroke center in Barcelona. *Stroke* 2020;51:1991-1995.
- D'Anna L, Sheikh A, Bathula R, Elmamoun S, Oppong A, Singh R, et al. Decreasing referrals to transient ischaemic attack clinics during the COVID-19 outbreak: results from a multicentre cross-sectional survey. *BMJ Open* 2020;10:e041514.
- Butt JH, Fosbøl EL, Østergaard L, Yafasova A, Andersson C, Schou M, et al. Effect of COVID-19 on first-time acute stroke and transient ischemic attack admission rates and prognosis in Denmark: a nationwide cohort study. *Circulation* 2020; 142:1227-1229.
- 17. Kansagra AP, Goyal MS, Hamilton S, Albers GW. Collateral effect of COVID-19 on stroke evaluation in the United States.

N Engl J Med 2020;383:400-401.

- Bres Bullrich M, Fridman S, Mandzia JL, Mai LM, Khaw A, Vargas Gonzalez JC, et al. COVID-19: stroke admissions, emergency department visits, and prevention clinic referrals. *Can J Neurol Sci* 2020;47:693–696.
- Kim YD, Nam HS, Sohn SI, Park H, Hong JH, Kim GS, et al. Care process of recanalization therapy for acute stroke during the COVID-19 outbreak in South Korea. *J Clin Neurol* 2021;17:63– 69.
- 20. Pasarikovski CR, da Costa L. The impact of the COVID-19 pandemic on stroke volume. *Can J Neurol Sci* 2020;47:847-848.
- Diegoli H, Magalhães PS, Martins SC, Moro CH, França PH, Safanelli J, et al. Decrease in hospital admissions for transient ischemic attack, mild, and moderate stroke during the COVID-19 era. *Stroke* 2020;51:2315-2321.
- Schlachetzki F, Wilfling S, Hubert ND, Wagner A, Haberl RL, Linker RA, et al. Decline and recurrence of stroke consultations during the COVID-19 pandemic lockdown parallels population activity levels. *Cerebrovasc Dis* 2021;50:317-325.
- 23. Kato A, Minami Y, Katsura A, Muramatsu Y, Sato T, Kakizaki R, et al. Physical exertion as a trigger of acute coronary syndrome caused by plaque erosion. *J Thromb Thrombolysis* 2020;49:377-385.
- 24. Grau AJ, Urbanek C, Palm F. Common infections and the risk of stroke. *Nat Rev Neurol* 2010;6:681-694.
- Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. *BMJ* 2021;372:n71.
- 26. Wells GA, Shea B, O'Connell D, Peterson J, Welch V, Losos M, et al. The Newcastle Ottawa Scale (NOS) for assessing the quality of non-randomised studies in meta-analyses. Ottawa Hospital Research Institute. http://www.ohri.ca/programs/ clinical_epidemiology/oxford.asp. 2021. Accessed October 30, 2021.
- McGrath S, Zhao X, Steele R, Thombs BD, Benedetti A; DEPRESsion Screening Data (DEPRESSD) Collaboration. Estimating the sample mean and standard deviation from commonly reported quantiles in meta-analysis. *Stat Methods Med Res* 2020 Jan 30 [Epub]. https://doi.org/10.1177/0962280219889080.
- Balestrino M, Coccia A, Boffa AS, Furgani A, Bermano F, Finocchi C, et al. Request of hospital care dropped for TIA but remained stable for stroke during COVID-19 pandemic at a large Italian university hospital. *Intern Emerg Med* 2021;16:735-739.
- 29. Balucani C, Carhuapoma JR, Canner JK, Faigle R, Johnson B, Aycock A, et al. Exploring the collateral damage of the COVID-19 pandemic on stroke care: a statewide analysis.

Stroke 2021;52:1822-1825.

- Brunetti V, Broccolini A, Caliandro P, Di lorio R, Monforte M, Morosetti R, et al. Effect of the COVID-19 pandemic and the lockdown measures on the local stroke network. *Neurol Sci* 2021;42:1237-1245.
- 31. Desai SM, Guyette FX, Martin-Gill C, Jadhav AP. Collateral damage: impact of a pandemic on stroke emergency services. *J Stroke Cerebrovasc Dis* 2020;29:104988.
- 32. Esenwa C, Parides MK, Labovitz DL. The effect of COVID-19 on stroke hospitalizations in New York City. *J Stroke Cerebrovasc Dis* 2020;29:105114.
- Gdovinová Z, Vitková M, Baráková A, Cvopová A. The impact of the COVID-19 outbreak on acute stroke care in Slovakia: data from across the country. *Eur J Neurol* 2021;28:3263–3266.
- Hasan AT, Das SC, Islam MS, Mansur M, Shawon MS, Hassan R, et al. Impact of COVID-19 on hospital admission of acute stroke patients in Bangladesh. *PLoS One* 2021;16:e0240385.
- 35. de Havenon A, Ney J, Callaghan B, Delic A, Hohmann S, Shippey E, et al. A rapid decrease in stroke, acute coronary syndrome, and corresponding interventions at 65 United States hospitals following emergence of COVID-19. *medRxiv* 2020 May 11. https://doi.org/10.1101/2020.05.07.20083386.
- Kim TJ, Kim BJ, Gwak DS, Lee JS, Kim JY, Lee KJ, et al. Modification of acute stroke pathway in Korea after the coronavirus disease 2019 outbreak. *Front Neurol* 2020;11:597785.
- Kristoffersen ES, Jahr SH, Thommessen B, Rønning OM. Effect of COVID-19 pandemic on stroke admission rates in a Norwegian population. *Acta Neurol Scand* 2020;142:632-636.
- Kwan J, Brown M, Bentley P, Brown Z, D'Anna L, Hall C, et al. Impact of COVID-19 pandemic on a regional stroke thrombectomy service in the United Kingdom. *Cerebrovasc Dis* 2021;50:178-184.
- Ramírez-Moreno JM, Portilla-Cuenca JC, Hariramani-Ramchandani R, Rebollo B, Bermejo Casado I, Macías-Sedas P, et al. Slump in hospital admissions for stroke, a fact of an uncertain nature that requires explanation. *Brain Sci* 2021;11:92.
- Nogueira RG, Qureshi MM, Abdalkader M, Martins SO, Yamagami H, Qiu Z, et al. Global impact of COVID-19 on stroke care and IV thrombolysis. *Neurology* 2021;96:e2824-e2838.
- Ortega-Gutierrez S, Farooqui M, Zha A, Czap A, Sebaugh J, Desai S, et al. Decline in mild stroke presentations and intravenous thrombolysis during the COVID-19 pandemic: the Society of Vascular and Interventional Neurology Multicenter Collaboration. *Clin Neurol Neurosurg* 2021;201:106436.
- 42. Pandey AS, Daou BJ, Tsai JP, Zaidi SF, Salahuddin H, Gemmete JJ, et al. Letter: COVID-19 pandemic: the Bystander effect on stroke care in Michigan. *Neurosurgery* 2020;87:E397-E399.
- 43. Richter D, Eyding J, Weber R, Bartig D, Grau A, Hacke W, et

al. Analysis of nationwide stroke patient care in times of COVID-19 pandemic in Germany. *Stroke* 2021;52:716-721.

- 44. Rinkel LA, Prick JC, Slot RE, Sombroek NM, Burggraaff J, Groot AE, et al. Impact of the COVID-19 outbreak on acute stroke care. *J Neurol* 2021;268:403-408.
- Sacco S, Ricci S, Ornello R, Eusebi P, Petraglia L, Toni D, et al. Reduced admissions for cerebrovascular events during COVID-19 outbreak in Italy. *Stroke* 2020;51:3746-3750.
- Sharma M, Lioutas VA, Madsen T, Clark J, O'Sullivan J, Elkind MS, et al. Decline in stroke alerts and hospitalisations during the COVID-19 pandemic. *Stroke Vasc Neurol* 2020;5:403-405.
- Słowik A, Nowak R, Popiela T. Significant fall in stroke admissions in the Malopolska Voivodeship of Poland during the COVID-19 pandemic. *Neurol Neurochir Pol* 2020;54:471-472.
- Tavanaei R, Yazdani KO, Akhlaghpasand M, Zali A, Oraee-Yazdani S. Changed pattern of hospital admission in stroke during COVID-19 pandemic period in Iran: a retrospective study. *Neurol Sci* 2021;42:445-453.
- Mag Uidhir F, Bathula R, Sivagnanaratnam A, Abdul-Saheb M, Devine J, Cohen DL. Impact of COVID-19 on stroke caseload in a major hyperacute stroke unit. *J Stroke Cerebrovasc Dis* 2020;29:105383.
- 50. Uphaus T, Gröschel S, Hayani E, Hahn M, Steffen F, Gröschel K. Stroke care within the COVID-19 pandemic-increasing awareness of transient and mild stroke symptoms needed. *Front Neurol* 2020;11:581394.
- Wang J, Chaudhry SA, Tahsili-Fahadan P, Altaweel LR, Bashir S, Bahiru Z, et al. The impact of COVID-19 on acute ischemic stroke admissions: analysis from a community-based tertiary care center. J Stroke Cerebrovasc Dis 2020;29:105344.
- 52. Wu Y, Chen F, Wang Z, Feng W, Liu Y, Wang Y, et al. Reductions in hospital admissions and delays in acute stroke care during the pandemic of COVID-19. *Front Neurol* 2020;11:584734.
- Zhang LL, Guo YJ, Lin YP, Hu RZ, Yu JP, Yang J, et al. Stroke care in the first affiliated hospital of Chengdu Medical College during the COVID-19 outbreak. *Eur Neurol* 2020;83:630-635.
- Aboul Nour H, Affan M, Mohamed G, Mohamud A, Schultz L, Latack K, et al. Impact of the COVID-19 pandemic on acute stroke care, time metrics, outcomes, and racial disparities in a Southeast Michigan Health System. *J Stroke Cerebrovasc Dis* 2021;30:105746.
- 55. D'Anna L, Brown M, Oishi S, Ellis N, Brown Z, Bentley P, et al. Impact of national lockdown on the hyperacute stroke care and rapid transient ischaemic attack outpatient service in a comprehensive tertiary stroke centre during the COVID-19 pandemic. *Front Neurol* 2021;12:627493.

- Dębiec A, Bilik M, Piasecki P, Stępień A, Staszewski J. Effect of COVID-19 pandemic on stroke admissions and quality of stroke interventional treatment in Masovian Voivodeship. *Neurol Neurochir Pol* 2021;55:223-226.
- 57. Douiri A, Muruet W, Bhalla A, James M, Paley L, Stanley K, et al. Stroke care in the United Kingdom during the COVID-19 pandemic. *Stroke* 2021;52:2125-2133.
- Jansen R, Lee JI, Turowski B, Kaschner M, Caspers J, Bernhard M, et al. Consequences of COVID-19 pandemic lockdown on emergency and stroke care in a German tertiary stroke center. *Neurol Res Pract* 2021;3:21.
- Libruder C, Ram A, Hershkovitz Y, Tanne D, Bornstein NM, Leker RR, et al. Reduction in acute stroke admissions during the COVID-19 pandemic: data from a National Stroke Registry. *Neuroepidemiology* 2021;55:354–360.
- Mariet AS, Giroud M, Benzenine E, Cottenet J, Roussot A, Aho-Glélé LS, et al. Hospitalizations for stroke in France during the COVID-19 pandemic before, during, and after the national lockdown. *Stroke* 2021;52:1362–1369.
- 61. Melaika K, Sveikata L, Wiśniewski A, Jaxybayeva A, Ekkert A, Jatužis D, et al. Changes in prehospital stroke care and stroke mimic patterns during the COVID-19 lockdown. *Int J Environ Res Public Health* 2021;18:2150.
- 62. Raymaekers V, Demeestere J, Bellante F, De Blauwe S, De Raedt S, Dusart A, et al. The impact of COVID-19 on acute stroke care in Belgium. *Acta Neurol Belg* 2021;121:1251-1258.
- Wallace AN, Asif KS, Sahlein DH, Warach SJ, Malisch T, LaFranchise EF, et al. Patient characteristics and outcomes associated with decline in stroke volumes during the early COVID-19 pandemic. *J Stroke Cerebrovasc Dis* 2021;30:105569.
- 64. Katsanos AH, Palaiodimou L, Zand R, Yaghi S, Kamel H, Navi BB, et al. The impact of SARS-CoV-2 on stroke epidemiology and care: a meta-analysis. *Ann Neurol* 2021;89:380-388.
- 65. Nannoni S, de Groot R, Bell S, Markus HS. Stroke in COVID-19: a systematic review and meta-analysis. *Int J Stroke* 2021;16: 137-149.
- 66. Clerkin KJ, Fried JA, Raikhelkar J, Sayer G, Griffin JM, Masoumi A, et al. COVID-19 and cardiovascular disease. *Circulation* 2020;141:1648-1655.
- Lodigiani C, Iapichino G, Carenzo L, Cecconi M, Ferrazzi P, Sebastian T, et al. Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy. *Thromb Res* 2020;191:9-14.
- 68. Matschke J, Lütgehetmann M, Hagel C, Sperhake JP, Schröder AS, Edler C, et al. Neuropathology of patients with

COVID-19 in Germany: a post-mortem case series. *Lancet Neurol* 2020;19:919-929.

- Wichmann D, Sperhake JP, Lütgehetmann M, Steurer S, Edler C, Heinemann A, et al. Autopsy findings and venous thromboembolism in patients with COVID-19: a prospective cohort study. *Ann Intern Med* 2020;173:268–277.
- Teo KC, Leung WC, Wong YK, Liu RK, Chan AH, Choi OM, et al. Delays in stroke onset to hospital arrival time during COVID-19. *Stroke* 2020;51:2228-2231.
- Meyer D, Meyer BC, Rapp KS, Modir R, Agrawal K, Hailey L, et al. A stroke care model at an academic, comprehensive stroke center during the 2020 COVID-19 pandemic. *J Stroke Cerebrovasc Dis* 2020;29:104927.
- Singh S, Fong HK, Desai R, Zwinderman AH. Impact of COVID-19 on acute coronary syndrome-related hospitalizations: a pooled analysis. *Int J Cardiol Heart Vasc* 2021;32:100718.
- Blecker S, Jones SA, Petrilli CM, Admon AJ, Weerahandi H, Francois F, et al. Hospitalizations for chronic disease and acute conditions in the time of COVID-19. *JAMA Intern Med* 2021;181:269-271.
- 74. Blake I. Nearly half of heart patients find it harder to get medical treatment in lockdown. British Heart Foundation. https://www.bhf.org.uk/what-we-do/news-from-the-bhf/ news-archive/2020/june/half-heart-patients-harder-getmedical-treatment-lockdown. 2020. Accessed October 30, 2021.
- Nguyen TN, Haussen DC, Qureshi MM, Yamagami H, Fujinaka T, Mansour OY, et al. Decline in subarachnoid haemorrhage volumes associated with the first wave of the COVID-19 pandemic. *Stroke Vasc Neurol* 2021 Mar 26 [Epub]. https:// doi.org/10.1136/svn-2020-000695.
- 76. Tsigkas G, Koufou EE, Katsanos K, Patrinos P, Moulias A, Miliordos I, et al. Potential relationship between lifestyle changes and incidence of hospital admissions for acute coronary syndrome during the COVID-19 lockdown. *Front Cardiovasc Med* 2021;8:604374.
- 77. Versaci F, Gaspardone A, Danesi A, Ferranti F, Mancone M, Mariano E, et al. Interplay between COVID-19, pollution, and weather features on changes in the incidence of acute coronary syndromes in early 2020. *Int J Cardiol* 2021;329:251-259.
- Qian Z, Kang H, Tang K, Jiang C, Wu Z, Li Y, et al. Assessment of risk of aneurysmal rupture in patients with normotensives, controlled hypertension, and uncontrolled hypertension. J Stroke Cerebrovasc Dis 2016;25:1746–1752.

Supplementary Table 1. Search strategy

Search number	Search description	No. of results
Full literature search on PubMed for COVID-19 an	d stroke	
1	Stroke OR cerebrovascular accident	378,999
2	COVID-19 OR Coronavirus Diseases 2019	160,172
3	Covid-19 OR Coronavirus Disease 2019 AND Stroke OR Cerebrovascular accident	2,179
Full literature search on EMBASE for COVID-19 an	d stroke	
1	Stroke.mp	543,619
2	Limit 1 to yr="2020 - 2021"	57,592
3	Covid-19.mp.	157,189
4	Limit 3 to (human and English language and yr="2020 - 2021")	143,572
5	2 and 4	2,674

COVID-19, coronavirus disease 2019.

Supplementary Table 2. Characteristics of the included studies

A	24	1		D : 10			D. D. NIOC						TIAD		CLAD
Author Akhtar et al. ⁸	Year 2021	Location Qatar	Sep 2019– Feb 2020	Mar–May 2020	Male PreP 73.4%	Male P 73.3%	G G	286	IS P 225	HS PreP 56	HS P 54	TIA PreP 78	35	SM PreP 262	SM P 102
Balestrino et al. ²⁸	2020	Italy	Mar 8–May 2, 2019	Mar 8–May 2, 2020	NA	NA	G	99	79	17	20	49	24	NA	NA
Balucani et al. ²⁹	2021	USA	Mar 1–Sep 30, 2019	Mar 1–Sep 30, 2020	NA	NA	G	6,144	4,921	773	697	869	712	NA	NA
Brunetti et al.30	2021	Italy	Mar 11–May 4, 2019	Mar 11–May 4, 2020	47.4%	51.4%	G	148	135	NA	NA	8	7	NA	NA
Desai et al. ³¹	2020	USA	Mar 2017/2018/2019	Mar 2020	NA	NA	G	161	96			15	6	NA	NA
Esenwa et al. ³²	2020	USA	Jan 1–Feb 25, 2020	Feb 26-Apr 18, 2020	48%	53%	F	270	153	42	24	NA	NA	NA	NA
Gdovinová et al. ³³	2020	Slovakia	Jan and Feb, 2020	Mar–Apr, 2020	NA	NA	G	1,683	1,332	NA	NA	271	189	NA	NA
Hasan et al. ³⁴	2021	Bangladesh	Jan 1–Mar 25, 2020	Mar 26–Jun 30, 2020	NA	NA	F	153	116	381	285	NA	NA	NA	NA
de Havenon et al. ³⁵	2020	USA	Feb–Mar 2018 and 2019	Feb-Mar 2020	NA	NA	F	9,662	9,194	1,721	1,636	NA	NA	NA	NA
Kim et al.36	2020	South Korea	Sep 2019– Feb 17, 2020	Feb 2020–May 2020	59.3%	60.8%	F	710	315	44	42	65	36	NA	NA
Kristoffersen et al. ³⁷	2021	Norway	Jan 3–Mar 12, 2020	Mar 13–Apr 30, 2020	55%	51%	F	143	76	29	10	46	19	NA	NA
Kwan et al. ³⁸	2020	UK	Jan 1–Mar 2, 2020	Mar 3–Apr 30, 2020	58%	64%	F	177	142	NA	NA	NA	NA	NA	NA
Nogueira et al.40	2021	Global	Nov, 2019–Feb, 2020	Mar-June 2020	NA	NA	G	NA	NA	NA	NA	NA	NA	NA	NA
Ortega-Gutierrez et al. ⁴¹	2020	USA	Mar 1–May 31, 2019	Mar 1–May 31, 2020	53.5%	53%	G	1,319	933	NA	NA	NA	NA	NA	NA
Pandev et al.42	2020	USA	Mar 2019	Mar 2020	NA	NA	F	632	518	90	55	NA	NA	NA	NA
Ramírez-Moreno et al. ³⁹	2021	Spain	Mar 15–May 10, 2019	Mar 15–May 10. 2020	45%	52%	G	155	124	22	20	28	18	NA	NA
Richter et al.43	2020	Germany	Jan 16–Mar 15, 2020	Mar 16–May 15, 2020	51.7%	51.8%	F	37,748	31,165	4,518	3,803	16,883	1,3015	NA	NA
Rinkel et al.44	2020	Netherlands	Oct 21–Dec 8, 2019	Mar 16–May 3, 2020	47%	59%	F	194	180	42	20	54	32	115	77
Sacco et al 45	2020	Italy	Mar 2019	Mar 2020	53 4%	53%	G	2 399	1 810	400	322	322	196	531	345
Sharma et al.46	2020	USA	Dec 31, 2018– Apr 19, 2019	Dec 31, 2019– Apr 19, 2020	NA	NA	G	391	274	NA	NA	19	7	NA	NA
Słowik et al.47	2020	Poland	Jan 1–Mar 4, 2020	Mar 4–May 31, 2020	NA	NA	F	1,126	993	NA	NA	NA	NA	NA	NA
Tavanaei et al.48	2021	Iran	Mar 1 2019–Jun 1 2019	Mar 1 2020– Jun 1 2020	58.4%	52.6%	G	190	95	20	11	NA	NA	NA	NA
Mag Uidhir et al. ⁴⁹	2020	United Kingdom	Jan–Jun 2019	Jan–Jun 2020	NA	NA	G	822	662	NA	NA	59	41	275	206
Uphaus et al. ⁵⁰	2020	Germany	Jan 1 2019–Feb 2020	Mar–Apr 2020	54.3%	46.6%	G	138	110	12	7	44	29	NA	NA
Wang et al. ⁵¹	2020	USA	Dec 1. 2019–Mar 11, 2020	Mar 12, 2020– Jun 30, 2020	51.9%	53.3%	F	NA	NA	NA	NA	NA	NA	NA	NA
Wu et al. ⁵²	2020	China	Jan 24–Apr 29, 2019	Jan 24–Apr 29, 2020	67.2%	66.7%	G	1,984	1,132	290	90	NA	NA	80	59
Zhang et al.53	2020	China	Nov 2019–Mar 2020	Apr 2020–Jul 2020	NA	NA	F	337	167	70	90	NA	NA	NA	NA
Aboul Nour et al. ⁵⁴	2021	USA	Mar 20–May 20, 2019	Mar 20–May 20, 2020	51%	55%	G	144	83	23	17	NA	NA	96	21
D'Anna et al.55	2021	United Kingdom	Mar 23–June 30, 2019	Mar 23–June 30, 2020	48.8%	56%	F	283	235	48	41	49	18	132	55
Dębiec et al. ⁵⁶	2021	Poland	Mar 1–Apr 30, 2019	Mar 1–Apr 30, 2020	46%	53%	F	170	153	18	11	45	20	NA	NA
Douiri et al. ⁵⁷	2021	United Kingdom	Mar 23–Apr 30, 2019	Mar 23–Apr 30, 2020	51.6%	52%	G	6,864	5,975	1,000	917	NA	NA	NA	NA
Jansen et al.58	2021	Germany	Mar 16–Apr 12 2019	Mar 16–Apr 12 2020	45.7%	47.6%	F	53	47	6	6	11	10	NA	NA
Libruder et al. ⁵⁹	2021	Israel	Jan 1–Mar 7, 2020	Mar 8–Apr 30, 2020	54.9%	56.2%	G	948	550	169	72	352	169	NA	NA
Mariet et al.60	2021	France	Apr, 2019	Apr, 2020	NA	NA	G	1,451	1,308	368	286	543	455	NA	NA
Melaika et al. ⁶¹	2021	Lithuania	Dec 1, 2019– Mar 15, 2020	Mar 16–June 16, 2020	40.1%	39.8%	F	246	151	31	11	27	6	164	83
Raymaekers et al. ⁶²	2021	Belgium	Dec, 2019 till Feb, 2020	Mar–May 2020	NA	NA	F	NA	NA	NA	NA	NA	NA	NA	NA
Wallace et al.63	2021	USA	Jan 1–Feb 29, 2020	Mar 20–Apr 25, 2020	48.9%	48%	G	1,912	877	292	152	239	85	NA	NA

PreP, pre-pandemic; P, pandemic; RoB, risk of bias; NOS, Newcastle-Ottawa Quality Assessment Scale; IS, ischemic stroke; HS, hemorrhagic stroke; TIA, transient ischemic attack; SM, stroke mimics; G, good; NA, not available; F, fair. *Months are provided in their 3-letter abbreviated form.

Supplementary Table 3. Characteristics of included studies based on stroke severity, IVT, and EVT

Author	Year	All strokes PreP	All strokes P	NIHSS <5 PreP	NIHSS <5 P	NIHSS 5–15 PreP	NIHSS 5–15 P	NIHSS >15 PreP	NIHSS >15 P	IVT PreP	IVT P	EVT PreP	evt P	NIHSS PreP (mean±SD or median [IQR])	NIHSS P (mean±SD or median [IQR])
Akhtar et al. ⁸	2021	682	416	531	273	75	71	75	71	NA	NA	NA	NA	NA	NA
Balestrino et al.28	2020	165	123	NA	NA	NA	NA	NA	NA	195	143	NA	NA	NA	NA
Balucani et al. ²⁹	2021	7,786	6,330	NA	NA	NA	NA	NA	NA	805	617	228	224	NA	NA
Brunetti et al. ³⁰	2021	156	142	NA	NA	NA	NA	NA	NA	NA	NA	5,191	4,533	NA	NA
Desai et al. ³¹	2020	176	102	636	412	210	139	275	233	NA	NA	NA	NA	NA	NA
Esenwa et al. ³²	2020	312	177	98	24	77	49	14	20	25	18	16	14	NA	NA
Gdovinová et al. ³³	2020	1,954	1,521	NA	NA	NA	NA	NA	NA	393	276	172	109	14.5 <u>+</u> 9	16.9 <u>+</u> 13.9
Hasan et al. ³⁴	2021	534	401	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
de Havenon et al.35	2020	11,383	10,830	NA	NA	NA	NA	NA	NA	266	304	319	406	NA	NA
Kim et al. ³⁶	2020	820	393	570	256	112	59	138	78	NA	NA	NA	NA	6.1 <u>+</u> 6.2	6.6 <u>+</u> 6
Kristoffersen et al.37	2021	218	105	NA	NA	NA	NA	NA	NA	35	17	13	13	4.2 <u>+</u> 6.1	5.9 <u>+</u> 8.6
Kwan et al. ³⁸	2020	196	168	NA	NA	NA	NA	NA	NA			19	16	NA	NA
Nogueira et al.40	2021	91,373	80,894	NA	NA	NA	NA	NA	NA	13,334	11,570	NA	NA	NA	NA
Ortega-Gutierrez et al.41	2020	1,319	933	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	10.4 <u>+</u> 12.5	11.3±12.2
Pandey et al.42	2020	722	573	NA	NA	NA	NA	NA	NA	70	66	80	49	NA	NA
Ramírez-Moreno et al. ³⁹	2021	205	162	NA	NA	NA	NA	NA	NA	19	21	26	29	6.4 <u>+</u> 1.4	7.1 <u>±</u> 1.6
Richter et al.43	2020	59,149	47,983	NA	NA	NA	NA	NA	NA	6,186	5,170	2,888	2,514	NA	NA
Rinkel et al.44	2020	405	309	NA	NA	NA	NA	NA	NA	59	50	23	20	NA	NA
Sacco et al.45	2020	3,652	2,673	NA	NA	NA	NA	NA	NA	531	345	NA	NA	NA	NA
Sharma et al.46	2020	410	281	NA	NA	NA	NA	NA	NA	20	30	43	49	8.2 <u>+</u> 2.5	9.7 <u>±</u> 1
Słowik et al.47	2020	1,126	993	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Tavanaei et al. ⁴⁸	2021	210	106	NA	NA	NA	NA	NA	NA	NA	NA	33	28	5.1 <u>+</u> 4.3	9.1 <u>+</u> 4.8
Mag Uidhir et al.49	2020	1,156	909	NA	NA	NA	NA	NA	NA	122	112	NA	NA	NA	NA
Uphaus et al. ⁵⁰	2020	194	146	89	85	25	27	33	24	37	19	27	29	NA	NA
Wang et al. ⁵¹	2020	320	255	NA	NA	NA	NA	NA	NA	36	14	NA	NA	8.1±10.3	6.3 <u>±</u> 5.4
Wu et al. ⁵²	2020	2,354	1,281	1,075	468	886	501	324	192	1,199	791	250	185	8.4 <u>+</u> 7.8	9.4 <u>+</u> 7.7
Zhang et al.53	2020	407	257	NA	NA	NA	NA	NA	NA	36	17	NA	NA	NA	NA
Aboul Nour et al.54	2021	263	121	NA	NA	NA	NA	NA	NA	17	13	16	14	2 (1–6)	5 (1–9)
D'Anna et al.55	2021	512	349	NA	NA	NA	NA	NA	NA	46	27	11	13	4 (0–29)	7 (0–30)
Dębiec et al.56	2021	233	184	NA	NA	NA	NA	NA	NA	68	54	39	34	11.9 <u>+</u> 8	10.2 <u>+</u> 7
Douiri et al.57	2021	7,902	6,923	3,157	2,930	2,230	2,394	1,028	1,158	918	836	121	121	5 (2–10)	5 (2–12)
Jansen et al.58	2021	70	63	NA	NA	NA	NA	NA	NA	17	15	21	8	4 (1–11)	4 (1.8–10)
Libruder et al.59	2021	1,469	791	389	234	160	99	80	42	121	79	97	59	4.0 (2–9)	4.0 (2–8)
Mariet et al.60	2021	2,362	2,049	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Melaika et al.61	2021	468	251	NA	NA	NA	NA	NA	NA	33	17	24	16	8 (4–16)	7 (4–14)
Raymaekers et al.62	2021	1,023	860	NA	NA	NA	NA	NA	NA	207	177	166	145	NA	NA
Wallace et al.63	2021	2,692	1,225	1,473	632	NA	NA	308	168	339	145	174	91	3 (1–9)	4 (1–10)

PreP, pre-pandemic; P, pandemic; NIHSS, National Institutes of Health Stroke Scale; IVT, intravenous thrombolysis; EVT, endovascular thrombectomy; SD, standard deviation; IQR, interquartile range; NA, not available.

Supplementary Table 4. MOOSE statement: reporting checklist for authors, editors, and reviewers of meta-analyses of observational studies

Supprementary rate 4. MOOSE statement, reporting checklist for authors, eutors, and reviewers of meta-analy	SES OF OUSERVA	
Reporting criteria	Reported	Reported on page
Reporting of background		
Problem definition	Yes	5
Hypothesis statement	Yes	6
Description of study outcome(s)	Yes	6
Type of exposure or intervention used	Yes	6
Type of study design used	Yes	6
Study population	Yes	6
Reporting of search strategy		
Qualifications of searchers (e.g., librarians and investigators)	Yes	6
Search strategy, including time period included in the synthesis and keywords	Yes	6
Effort to include all available studies, including contact with authors	No	
Databases and registries searched	Yes	6
Search software used, name and version, including special features used (e.g., explosion)	No	
Use of hand searching (e.g., reference lists of obtained articles)	No	
List of citations located and those excluded, including justification	Yes	6
Method for addressing articles published in languages other than English	No	
Method of handling abstracts and unpublished studies	No	
Description of any contact with authors	No	
Reporting of methods		
Description of relevance or appropriateness of studies assembled for assessing the hypothesis to be tested	Yes	7
Rationale for the selection and coding of data (e.g., sound clinical principles or convenience)	Yes	6-7
Documentation of how data were classified and coded (e.g., multiple raters, blinding, and interrater reliability)	Yes	7
Assessment of confounding (e.g., comparability of cases and controls in studies where appropriate)	Yes	7
Assessment of study quality, including blinding of quality assessors; stratification or regression on possible predictors of study results YES 5	Yes	7
Assessment of heterogeneity	Yes	8
Description of statistical methods (e.g., complete description of fixed or random effects models, justification of whether the chosen models account for predictors of study results, dose-response models, or cumulative meta-analysis) in sufficient detail to be replicated	Yes	8
Provision of appropriate tables and graphics	Yes	
Reporting of results		
Table giving descriptive information for each study included	Yes	Supplementary Table 2
Results of sensitivity testing (e.g., subgroup analysis)	Yes	Supplementary Figures 2-11
Indication of statistical uncertainty of findings	Yes	8
Reporting of discussion		
Quantitative assessment of bias (e.g., publication bias)	Yes	11
Justification for exclusion (e.g., exclusion of non-English-language citations)	No	
Assessment of quality of included studies	Yes	11
Reporting of conclusions		
Consideration of alternative explanations for observed results	No	
Generalization of the conclusions (i.e., appropriate for the data presented and within the domain of the literature review)	Yes	15
Guidelines for future research	No	
Disclosure of funding source	Yes	15

MOOSE, Meta-analysis Of Observational Studies in Epidemiology.

Supplementary Figure 1. Funnel plot for the meta-analysis of the percent changes in the number of all-type strokes.

		TIA	TIA	Absolute			%
Author	Year	pre-pandemic	pandemic	change		ES (95% CI)	Weight
Asia							
Akhtar et al.	2021	78	35	-43	i 🗕	55.1 (44.1, 65.7)	4.89
Kim et al.	2020	65	36	-29	-	44.6 (33.2, 56.7)	4.78
Libruder et al.	2021	352	169	-183		52.0 (46.8, 57.2)	5.38
Subtotal (I ² = .%, P= .)*						51.5 (47.1, 56.0)	15.05
Europe							
Balestrino et al.	2020	49	24	-25		51.0 (37.5, 64.4)	4.58
Brunetti et al.	2021	8	7	-1	─	12.5 (2.2, 47.1)	2.50
Dębiec et al.	2021	45	20	-25		55.6 (41.2, 69.1)	4.51
D'Anna et al.	2021	49	18	-31	↓	63.3 (49.3, 75.3)	4.58
Gdovinová et al.	2020	271	189	-82	• !	30.3 (25.1, 36.0)	5.33
Jansen et al.	2021	11	10	-1	•	9.1 (1.6, 37.7)	2.92
Kristoffersen et al.	2021	46	19	-27	!	58.7 (44.3, 71.7)	4.53
Mariet et al.	2021	543	455	-88		16.2 (13.3, 19.5)	5.43
Melaika et al.	2021	27	6	-21	¦ 🗕	77.8 (59.2, 89.4)	4.02
Ramírez-Moreno et al.	2021	28	18	-10		35.7 (20.7, 54.2)	4.06
Richter et al.	2020	16883	13015	-3868	● ↓	22.9 (22.3, 23.6)	5.53
Rinnkel et al.	2020	54	32	-22		40.7 (28.7, 54.0)	4.65
Sacco et al.	2020	322	196	-126	•	39.1 (34.0, 44.6)	5.36
Uidhir et al.	2020	59	41	-18	•	30.5 (20.3, 43.1)	4.72
Uphaus et al.	2020	44	29	-15		34.1 (21.9, 48.9)	4.49
Subtotal (I ² =93.3%, P=0).0)				•	38.3 (30.9, 45.9)	67.23
Northern America							
Balucani et al.	2021	869	712	-157		18.1 (15.7, 20.8)	5.47
Desai et al.	2020	15	6	-9	÷••-	60.0 (35.7, 80.2)	3.32
Sharma et al.	2020	19	7	-12	→	63.2 (41.0, 80.9)	3.62
Wallace et al.	2021	239	85	-154	I 🔶	64.4 (58.2, 70.2)	5.31
Subtotal (I ² =98.5%, P=0	0.0)					49.9 (17.5, 82.3)	17.72
Heterogeneity between	groups:	<i>P=</i> 0.013			i i		
Overall (l ² =96.4%, P=0.	0)				*	41.9 (34.8, 49.3)	100.00
					┞╷┆╷╴		
					0 30 60		

Supplementary Figure 2. Percent change in the number of transient ischemic attacks. TIA, transient ischemic attack; ES, effect size; CI, confidence interval. *This statistics could not be computed due to small number of studies ($n \le 3$).

Author	Year	Stroke mimics pre-pandemic	Stroke mimics pandemic	Absolute change		ES (95% CI)	% Weight
Asia							
Akhtar et al.	2021	262	102	-160	-	61.1 (55.0, 66.8)	12.79
Wu et al.	2020	80	59	-21	-	26.2 (17.9, 36.8)	11.96
Subtotal (I ² = .%, I	P= .)*					52.8 (47.5, 58.1)	24.75
Europe							
D'Anna et al.	2021	132	55	-77	-	58.3 (49.8, 66.4)	12.42
Melaika et al.	2021	164	83	-81	-	49.4 (41.8, 57.0)	12.56
Rinnkel et al.	2020	115	77	-38		33.0 (25.1, 42.1)	12.31
Sacco et al.	2020	531	345	-186		35.0 (31.1, 39.2)	13.00
Uidhir et al.	2020	275	206	-69		25.1 (20.3, 30.5)	12.81
Subtotal (I2=92.79	%, <i>P</i> =0.0))			•	39.7 (29.2, 50.7)	63.10
Northern America							
Aboul Nour et al.	2021	96	21	-75	-	• 78.1 (68.9, 85.2)	12.15
Heterogeneity bet	ween gro	oups: <i>P</i> =0.000					
Overall (I ² =95.9%	, <i>P</i> =0.0)					45.6 (33.5, 58.0)	100.00
					0 30 60		

Supplementary Figure 3. Percent change in the number of stroke mimics. ES, effect size; CI, confidence interval. *This statistics could not be computed due to small number of studies ($n \le 3$).

		NIHSS<5	NIHSS<5	Absolute			%
Author	Year	pre-pandemic	pandemic	change		ES (95% CI)	Weight
Asia							
Akhtar et al.	2021	531	273	-258		48.6 (44.4, 52.8)	11.16
Kim et al.	2020	570	256	-314		55.1 (51.0, 59.1)	11.16
Libruder et al.	2021	389	234	-155	•	39.8 (35.1, 44.8)	11.14
Tavanaei et al.	2021	98	24	-74	-	75.5 (66.1, 83.0)	10.92
Wu et al.	2020	1075	468	-607		56.5 (53.5, 59.4)	11.18
Subtotal (I2=93.2%, P=0.	.0)				•	54.4 (46.6, 62.1)	55.55
Europe							
Brunetti et al.	2021	89	85	-4	•	4.5 (1.8, 11.0)	10.89
Douiri et al.	2021	3157	2930	-227		7.2 (6.3, 8.1)	11.20
Subtotal (I ² = .%, P= .)*						6.9 (6.0, 7.8)	22.09
Northern America							
Ortega-Gutierrez et al.	2020	636	412	-224		35.2 (31.6, 39.0)	11.17
Wallace et al.	2021	1473	632	-841		57.1 (54.6, 59.6)	11.19
Subtotal (I ² = .%, P= .)*					1	50.4 (48.3, 52.6)	22.36
Heterogeneity between g	roups: P	=0.000					
Overall (I2=99.7%, P=0.0))					40.2 (21.7, 60.2)	100.00
					0 30 60		

Supplementary Figure 4. Percent change in the number of mild strokes (National Institutes of Health Stroke Scale [NIHSS] <5). ES, effect size; CI, confidence interval. *This statistics could not be computed due to small number of studies ($n \le 3$).

			NIHSS				
		NIHSS 5-15	5–15	Absolute			%
Author	Year	pre-pandemic	pandemic	change		ES (95% CI)	Weight
Asia							
Asia	0001	75	71	4		5 2 /0 1 10 0	10.00
Akritar et al.	2021	75	71	-4		5.5 (2.1, 12.9)	12.30
Kim et al.	2020	112	59	-53		47.3 (38.3, 56.5)	12.56
Libruder et al.	2021	160	99	-61	-	38.1 (31.0, 45.8)	12.68
Tavanaei et al.	2021	77	49	-28		36.4 (26.5, 47.5)	12.40
Wu et al.	2020	886	501	-385		43.5 (40.2, 46.7)	12.90
Subtotal (I2=93.9%, P=0.0	D)					32.9 (20.6, 46.5)	62.92
Europe							
Brunetti et al.	2021	25	27	2		8.0 (2.2, 25.0)	11.41
Douiri et al.	2021	2230	2394	164		7.4 (6.3, 8.5)	12.93
Subtotal (I ² = .%, P= .)*						6.6 (5.5, 7.7)	24.34
					T ()		
Northern America							
Ortega-Gutierrez et al.	2020	210	139	-71	-	33.8 (27.8, 40.4)	12.74
•						,	
Heterogeneity between gr	oups: P=	=0.000					
Overall (12=98.9%, P=0.0)						25.6 (11.0, 43.8)	100.00
						(,	
					1 T 0 30 f	1 60	

Supplementary Figure 5. Percent change in the number of moderate strokes (National Institutes of Health Stroke Scale [NIHSS] 5–15). ES, effect size; CI, confidence interval. *This statistics could not be computed due to small number of studies ($n \le 3$).

		NIHSS>15	NIHSS>15	Absolute	1		%
Author	Year	pre-pandemic	pandemic	change		ES (95% CI)	Weight
Acia							
	0001	75	74			5 0 (0 4 40 0)	44.45
Akhtar et al.	2021	75	/1	-4	•	5.3 (2.1, 12.9)	11.15
Kim et al.	2020	138	78	-60	¦ [▲]	43.5 (35.5, 51.8)	11.55
Libruder et al.	2021	80	42	-38		47.5 (36.9, 58.3)	11.20
Tavanaei et al.	2021	14	20	6		- 42.9 (21.4, 67.4)	8.45
Wu et al.	2020	324	192	-132	-	40.7 (35.5, 46.2)	11.84
Subtotal (I2=93.2%, P=0.	0)					33.8 (18.7, 50.8)	54.19
Europe							
Brunetti et al.	2021	33	24	-9		27.3 (15.1, 44.2)	10.18
Douiri et al.	2021	1029	1158	129		12.5 (10.7, 14.7)	11.99
Subtotal (I ² = .%, P= .)*						12.4 (10.4, 14.5)	22.18
Northern America							
Ortega-Gutierrez et al.	2020	275	233	-42		15.3 (11.5, 20.0)	11.80
Wallace et al.	2021	308	168	-140	-	45.5 (40.0, 51.0)	11.83
Subtotal (I ² = .%, P= .)*						30.1 (26.4, 33.9)	23.63
(, , ,					T T		
Heterogeneity between g	roups: P=	=0.000					
Overall (I ² =97.1%. P=0.0)					29.1 (17.4, 42.4)	100.00
	,						
					0 30 60)	

Supplementary Figure 6. Percent change in the number of severe strokes (National Institutes of Health Stroke Scale [NIHSS] >15). ES, effect size; CI, confidence interval. *This statistics could not be computed due to small number of studies ($n \le 3$).

			NIHSS<5		NIHSS<5			Odds ratio	%
Author	Year	Count	pandemic	Count pre	e-pandemic			(95% CI)	Weight
Wu et al.	2020	1161	468	2285	1075	+		0.76 (0.66, 0.88)	17.13
Kim et al.	2020	393	256	820	570			0.82 (0.63, 1.06)	12.44
Ortega-Gutierrez et al.	2020	784	412	1121	636			0.84 (0.70, 1.01)	15.42
Akhtar et al.	2021	415	273	681	531	- • -i		0.54 (0.41, 0.71)	11.81
Tavanaei et al.	2021	93	24	189	98	•		0.32 (0.19, 0.56)	5.14
Libruder et al.	2021	375	234	629	389			1.02 (0.79, 1.33)	12.12
Douiri et al.	2021	6482	2930	6416	3157			0.85 (0.79, 0.91)	19.75
Brunetti et al.	2021	136	85	147	89	+ +		1.09 (0.67, 1.75)	6.19
Overall, DL (I ² =73.5%, P=0	.000)							0.78 (0.67, 0.90)	100.00
						· · ·			
					.25	1	4		
					Pa	andemic PrePa	andemic		

Supplementary Figure 7. Probability of having a mild stroke (National Institutes of Health Stroke Scale [NIHSS] <5). CI, confidence interval.

			NIHSS 5-15	١	NIHSS 5-15				Odds ratio	%
Author	Year	Count	pandemic	Count pre	e-pandemic				(95% CI)	Weight
Wu et al.	2020	1161	501	2285	886				1.20 (1.04, 1.38)	22.81
Kim et al.	2020	393	59	820	112	-			1.12 (0.79, 1.57)	7.13
Ortega-Gutierrez et al.	2020	784	139	1121	210	_	- ∎		0.93 (0.74, 1.18)	12.56
Akhtar et al.	2021	415	71	681	75		- i	-	1.67 (1.17, 2.37)	6.82
Tavanaei et al.	2021	93	49	189	77		-		1.62 (0.98, 2.67)	3.64
Libruder et al.	2021	375	99	629	160	-	- •		1.05 (0.79, 1.41)	9.21
Douiri et al.	2021	6482	2394	6416	2230		-		1.10 (1.02, 1.18)	35.25
Brunetti et al.	2021	136	27	147	25				1.21 (0.66, 2.21)	2.58
Overall, DL (I ² =34.2%, P=0	.155)						\diamond		1.15 (1.04, 1.27)	100.00
						1	-			
						.5	1	2		
					Pre	ePandem	ic Pand	emic		

Supplementary Figure 8. Probability of having a moderate stroke (National Institutes of Health Stroke Scale [NIHSS] 5–15). Cl, confidence interval.

Author	Year	Count	NIHSS>15 pandemic	Count pre	NIHSS>15 -pandemic		Odds ratio (95% CI)	% Weight
Wu et al.	2020	1161	192	2285	324	÷	1.20 (0.99, 1.46)	17.92
Kim et al.	2020	393	78	820	138		1.22 (0.90, 1.67)	12.45
Ortega-Gutierrez et al.	2020	784	233	1121	275	- <u>+</u> -	1.30 (1.06, 1.60)	17.36
Akhtar et al.	2021	415	71	681	75	⊢	1.67 (1.17, 2.37)	10.83
Tavanaei et al.	2021	93	20	189	14	· · · · · ·	3.42 (1.64, 7.15)	3.68
Libruder et al.	2021	375	42	629	80		0.87 (0.58, 1.29)	9.31
Douiri et al.	2021	6482	1158	6416	1029		1.14 (1.04, 1.25)	23.13
Brunetti et al.	2021	136	24	147	33		0.74 (0.41, 1.33)	5.33
Overall, DL (l ² =61.3%, P=0	0.012)						1.23 (1.05, 1.43)	100.00
					I .125 PreP	1 andemic Pandemic	1 B	

Supplementary Figure 9. Probability of having a severe stroke (National Institutes of Health Stroke Scale [NIHSS] >15). CI, confidence interval.

Author	Year	All IVT pre-pandemic	All IVT pandemic	Absolute change		ES (95% CI)	% Weight
Asia					i i		
Kim et al.	2020	74	27	-47	¦ 🛨	63.5 (52.1, 73.6)	3.69
Libruder et al.	2021	121	79	-42		34.7 (26.8, 43.5)	3.97
Tavanaei et al.	2021	25	18	-7		28.0 (14.3, 47.6)	2.74
Wu et al.	2020	1199	791	-408		34.0 (31.4, 36.8)	4.44
Subtotal (I ² =88.2%, P=0	0.0)					40.3 (27.8, 53.3)	14.84
Europe					i i		
Brunetti et al.	2021	37	19	–18	i	48.6 (33.4, 64.1)	3.13
Douiri et al.	2021	918	836	-82	♦ !	8.9 (7.3, 11.0)	4.42
Dębiec et al.	2021	68	54	-14	→	20.6 (12.7, 31.6)	3.63
D'Anna et al.	2021	46	27	-19	i	41.3 (28.3, 55.7)	3.33
Gdovinová et al.	2020	393	276	-117	•	29.8 (25.5, 34.5)	4.32
Jansen et al.	2021	17	15	-2	₩ +	11.8 (3.3, 34.3)	2.32
Kristoffersen et al.	2021	36	14	-22	i 🗕	61.1 (44.9, 75.2)	3.11
Melaika et al.	2021	33	17	-16	!	48.5 (32.5, 64.8)	3.02
Ramírez-Moreno et al.	2021	35	17	-18		51.4 (35.6, 67.0)	3.08
Ravmaekers et al.	2021	207	177	-30	🔶 i	14.5 (10.3, 19.9)	4.17
Richter et al.	2020	6190	5173	-1017	•	16.4 (15.5, 17.4)	4.49
Rinnkel et al.	2020	59	50	-9	I 🛻	15.3 (8.2. 26.5)	3.53
Sacco et al.	2020	531	345	-186		35.0 (31.1. 39.2)	4.37
Slowik et al.	2020	195	143	-52	I ●	26.7 (21.0, 33.3)	4.15
Uidhir et al.	2020	122	112	-10	♦ 1	8.2 (4.5, 14.4)	3.97
Uphaus et al.	2020	19	21	2		10.5 (2.9. 31.4)	2.45
Subtotal (I ² =95.0%, P=0	0.0)				•	25.7 (19.7, 32.1)	57.49
Northern America							
Aboul Nour et al	2021	17	13	-4		23 5 (9 6 47 3)	2 32
Balucani et al	2021	805	617	-188		23 4 (20 6 26 4)	4 4 1
Desai et al	2020	10	7	-3		30.0 (10.8, 60.3)	1 76
Havenon et al	2020	266	304	38		14.3 (10.6, 19.0)	4 24
Pandev et al	2020	70	66	_4		57 (22 138)	3.65
Wallace et al	2021	339	145	_194	· · •	57 2 (51 9 62 4)	4 29
Wang et al	2020	20	30	10		50 0 (29 9 70 1)	2 50
Subtotal (I ² =96.9%, P=0).0)	20	00	10		26.9 (12.7, 43.9)	23.18
Global							
Noqueira et al	2021	13334	11570	-1764		13 2 (12 7 13 8)	4 50
Noguella et al.	2021	13334	11570	-1764		13.2 (12.7, 13.0)	4.50
Heterogeneity between	aroune.	P=0 000					
Overall $(l^2-97.4\% P-0)$	9,00p3.1 0)	-0.000			٠	27 2 (22 7 32 0)	100.00
Overall (1 −97.476, F=0.	0)				T	LI.L (LL.I, 02.0)	100.00
				(0 30 60		

Supplementary Figure 10. Percent change in the total number of intravenous thrombolysis (IVT) performed. ES, effect size; CI, confidence interval.

Author	Year	All EVT pre-pandemic	All EVT pandemic	Absolute change		ES (95% CI)	% Weigh
Europe							
Brunetti et al.	2021	27	29	2		7.4 (2.1, 23.4)	3.75
Douiri et al.	2021	121	121	0		0.0 (0.0, 3.1)	4.46
Debiec et al.	2021	39	34	-5	→	12.8 (5.6, 26.7)	4.00
D'Anna et al.	2021	11	13	2		18.2 (5.1, 47.7)	2.91
Gdovinová et al.	2020	172	109	-63	i 👞	36.6 (29.8, 44.0)	4.54
Jansen et al.	2021	21	8	-13		61.9 (40.9, 79.2)	3.54
Kwan et al.	2020	33	28	-5	I → −	15.2 (6.7, 30.9)	3.89
Melaika et al.	2021	24	16	-8		33.3 (18.0, 53.3)	3.65
Ramírez-Moreno et al.	2021	13	13	0	▲	0.0 (0.0. 22.8)	3.09
Ravmaekers et al.	2021	166	145	-21		12.7 (8.4. 18.6)	4.53
Richter et al.	2020	2906	2524	-382		13.1 (12.0, 14.4)	4.71
Rinnkel et al.	2020	23	20	-3	-	13.0 (4.5, 32.1)	3.62
Slowik et al.	2020	40	30	-10	—	25.0 (14.2, 40.2)	4.01
Uphaus et al.	2020	26	29	3		11.5 (4.0. 29.0)	3.72
Subtotal (I^2 =90.9%, P =0	0.0)			•	•	15.6 (9.0, 23.5)	54.42
Northern America							
Aboul Nour et al.	2021	16	14	-2		12.5 (3.5, 36.0)	3.29
Balucani et al.	2021	228	224	-4	• ·	1.8 (0.7. 4.4)	4.58
Desai et al.	2020	19	16	-3	T-	15.8 (5.5. 37.6)	3.45
Havenon et al.	2020	319	406	87		27.3 (22.7. 32.4)	4.62
Pandev et al.	2020	80	49	-31		38.8 (28.8, 49.7)	4.34
Wallace et al.	2021	174	91	-83		47.7 (40.4, 55.1)	4.54
Wang et al.	2020	43	49	6	-	14.0 (6.6. 27.3)	4.06
Subtotal (I^2 =96.7%, P =0	0.0)			•	\diamond	20.7 (6.8, 39.2)	28.88
Asia							
Kim et al.	2020	98	44	-54	۱ 🕳	55.1 (45.2. 64.6)	4.40
Libruder et al.	2021	97	59	-38	¦ ➡	39.2 (30.1, 49.1)	4.40
Tavanaei et al.	2021	16	14	-2		12.5 (3.5, 36.0)	3.29
Wu et al.	2020	250	185	-65		26.0 (21.0, 31.8)	4.59
Subtotal ($I^2 = 90.0\%$, $P = 0$	0.0)	200	100			34.2 (19.4, 50.7)	16.69
Heterogeneity between	groups	: <i>P=</i> 0.102					
Overall (l ² =94.9%, P=0.	.0)				\$	20.0 (13.7, 27.0)	100.00

Supplementary Figure 11. Percent change in the total number of endovascular thrombectomies (EVTs) performed. ES, effect size; CI, confidence interval.