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Celiac disease (CeD) is a common autoimmune disorder caused by an abnormal

immune response to dietary gluten proteins. The disease has high heritability. HLA

is the major susceptibility factor, and the HLA effect is mediated via presentation of

deamidated gluten peptides by disease-associated HLA-DQ variants to CD4+ T cells. In

addition to gluten-specific CD4+ T cells the patients have antibodies to transglutaminase

2 (autoantigen) and deamidated gluten peptides. These disease-specific antibodies

recognize defined epitopes and they display common usage of specific heavy and light

chains across patients. Interactions between T cells and B cells are likely central in the

pathogenesis, but how the repertoires of naïve T and B cells relate to the pathogenic

effector cells is unexplored. To this end, we applied machine learning classification

models to naïve B cell receptor (BCR) repertoires from CeD patients and healthy controls.

Strikingly, we obtained a promising classification performance with an F1 score of

85%. Clusters of heavy and light chain sequences were inferred and used as features

for the model, and signatures associated with the disease were then characterized.

These signatures included amino acid (AA) 3-mers with distinct bio-physiochemical

characteristics and enriched V and J genes. We found that CeD-associated clusters can

be identified and that common motifs can be characterized from naïve BCR repertoires.

The results may indicate a genetic influence by BCR encoding genes in CeD. Analysis

of naïve BCRs as presented here may become an important part of assessing the risk

of individuals to develop CeD. Our model demonstrates the potential of using BCR

repertoires and in particular, naïve BCR repertoires, as disease susceptibility markers.

Keywords: celiac disease, BCR repertoire, immune response, machine learning, naïve B-cells

1. INTRODUCTION

The adaptive immune system includes an extremely large repertoire of diverse lymphocyte
receptors that can bind to any antigen it encounters (1). The high diversity of B cell receptors
(BCRs) and antibody repertoires constrains our ability to measure and analyze them (2). Hence,
what can be learned from deep immunoglobulin sequencing is highly dependent upon the sample
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preparation and statistical analysis utilized (3, 4). BCRs have
recently been investigated by several innovative approaches,
including artificial intelligence (AI) techniques. AI is leveraged
to start deciphering how information is encoded in adaptive
immune receptor repertoires. In particular, there is increasing
interest in applying the pattern recognition capacity of machine
learning (ML) to decoding the adaptive immune receptor
encoded information and using it for classification and prediction
in a wide variety of applications (5). It includes predicting
the presence of diseases, immunity status post-vaccination or
infection, and designing antibody-based therapeutics (6–10).

Upon stimulation of the adaptive immune system with
antigen, the antigen-specific T- and B-cells are recruited from
the repertoire of naïve T and B cells (11, 12). Thus, the
composition of the naïve T- and B-cell repertoires influences
the response to the antigen. Recent work has demonstrated that
an individual’s naïve T- and B-cell repertoires are shaped by
genetically-determined biases (13–15). Thus, to analyze how the
composition of naïve T- and B-cell repertoires is genetically
influenced in immune disorders is of interest.

CeD is particularly interesting due to its high heritability and
prevalence (16). Currently the only available treatment for the
disorder affecting about 1% of the general population is a life-
long gluten-free diet. Prevention of disease development in at
risk individuals is an important goal. A recent report indicated
that introduction of gluten from age 4 months is associated with
reduced CeD prevalence, suggesting that disease prevention by
dietary intervention may be achievable (17).

CeD is an autoimmune disorder that develops as a
consequence of an inappropriate immune response to dietary
gluten proteins (18). Typically, CeD patients consuming gluten
have serum antibodies (IgA, IgG, IgM) to the autoantigen
transglutaminase 2 (TG2) (19, 20) and to deamidated gluten
peptides (DGP) (21–23). Serology detecting such antibodies plays
an important role in the diagnostic work-up of the disease.
CeD is a polygenic disorder. Genome wide association studies
have implicated 43 predisposing loci that collectively explain
some 50% of the genetic variance in CeD (24). HLA is by
far the chief genetic determinant. HLA-DQA1 and HLA-DQB1
genes that encode the HLA-DQ2.5, HLA-DQ2.2, and HLA-DQ8
allotypes are responsible for this HLA effect (25). Indeed, almost
all patients with CeD carry one of these HLA-DQ allotypes. The
HLA-DQ allotypes are also prevalent in the general population.
Thus, HLA is a necessary but not sufficient factor for CeD
development. In the genome wide association studies, no signals
were reported for TCR or BCR encoding loci. Importantly,
however, the coverage for these loci in the genotyping arrays used
was sparse (26), leaving the impact of BCR and TCR encoding
loci on CeD susceptibility unclear.

Here, we investigated whether naïve BCR repertoires are
particular to patients with CeD. We applied an ML approach
to analyze a data set of CeD and healthy subjects, and found
that these clinical groups can be well-classified. We further
characterized motifs that could be used as biomarkers for CeD,
and demonstrated that CeD patients, in contrast to healthy
controls, develop clusters of BCRs with distinct properties.
This study may have clinical implications for identification

of individuals at risk for CeD, and provide insight into
immunological processes involved in the onset of CeD and
autoimmunity in general.

2. MATERIALS AND METHODS

2.1. Data
The repertoires composing the dataset were collected from
blood samples of one hundred Norwegian human donors, 52
individuals with CeD and 48 healthy controls. Heavy and light
BCR chains were sequenced from sorted naïve B cells. CeD was
diagnosed according to standard guidelines (27). The research
is covered by the approval of the Regional Ethical Committee
(projects REK 2010/2720 and REK 2011/2472, project leader
Knut E. A. Lundin). Naïve B cells were sorted on a FACSAria flow
cytometer (BD) by including cells with CD19+, CD27-, IgD+,
IgA-, and IgG-. cDNA libraries of heavy and light chains were
constructed using a 5′ RACE with unique molecular identifiers
(UMIs) protocol. De-identified sequence data was sent to Gur
Yaari’s lab for analysis. More details about the experimental
protocol can be found in (28).

2.2. Preliminary Processing of Data
Raw reads were submitted to a preliminary processing pipeline as
previously described (28). pRESTO (29) was applied to produce
high-fidelity repertoires. Sequences were then aligned to V, D,
and J alleles using IgBLAST (30). This was followed by additional
exclusion criteria: (a) Sequences whose CDR3 length is not
a multiple of three (i.e., cannot be translated into AAs). (b)
Sequences with isotypes other than IgM/IgD. (c) Samples with
low sequencing depth after filtration (< 2, 000 reads). For each
individual, new alleles followed by a personalized genotype were
inferred using TIgGER (31, 32), following the pipeline described
in (33). After all filtrations, the datasets included 92 samples: 48
individuals with CeD and 44 healthy controls.

2.3. Repertoire Representation
Three types of repertoire representations were constructed, and
were then used as features to train an ML model. This included:
(1) sequence annotation-based features, (2) physicochemical
properties of AA snippets, and (3) sequence similarity clusters.

2.3.1. Sequence Annotation-Based Features
There are common useful sequence annotation types that can
be attributed using a sequence alignment process (34). These
annotations were used to represent repertoires by a single matrix
that includes the annotation frequency measurements, such as
gene usage, the occurrence of combinatorial joining of genes
as well as properties derived from the sequence composition.
Supplementary Table 1 lists examples of the extracted sequence
annotation features.

2.3.2. Physicochemical Properties
It is reasonable to assume that in specific regions that are
important for binding affinity, molecular characteristics are
conserved. To identify these regions, we formed a representation
of BCR sequences that describes the basic properties of AAs
of the third complementarity determining region (CDR3). We
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focused on CDR3 because it provides themost important variable
sequence for antibody specificity (35). To regulate the variable
lengths of CDR3s, each CDR3 sequence was broken down into
overlapping subsequences of equal length (i.e., AA k-mers). The
properties of these AAs were calculated using five Atchley factors,
as described in (7), using Change-O (36). Each of the five factors
roughly corresponds to several general biological characteristics:
polarity, propensity for secondary structure, molecular size,
codon diversity, and electrostatic charge.

2.3.3. Sequence Similarity Clusters
Functional V(D)J sequences from each subject were assigned
into clusters based on the following criteria: (a) Having the
same CDR3 length, V and J gene segment assignments. (b) The
Hamming distance between the AAs of each pair of CDR3s does
not exceed 0.15 (i.e., maximal dissimilarity between any two
CDR3 sequences in a cluster never exceeds 15%). We applied this
clustering approach using three distance thresholds:T = 0.15, T =
0.25, and T = 0.6 under the complete-linkage condition. To avoid
irrelevance or biases, clusters with fewer than N independent
members (per threshold: T = 0.15, N = 7; T = 0.25, N = 10; T =
0.6, N = 20) were removed. The consensus sequence of a cluster
is defined by a hypothetical center sequence that minimizes the
sum of distances to all sequences in the cluster.

2.4. Machine Learning Process and
Feature Selection
For a given prediction task, there may be features that do
not correlate well with the response variable. To identify the
features that optimize the prediction performance, we used a
feature selection step. Ranking and selection were applied by
the Random Forest (RF) algorithm. The RF algorithm consisted
of one hundred decision trees and the result was an average
of 10-fold cross-validation (over the training set that comprises
80% of the samples). Having derived a subset of the 1,000 most
important features, we used the Logistic Regression-Recursive
Feature Elimination algorithm (LR-RFE) (37, 38) to select the
strongest 300 predictor features. This number was determined
by using the RFE cross-validation (RFECV) algorithm. RFECV
is also a function of the sklearn python library (37). This function
performs cross-validated selection of the optimal number of
features, by removing 0 to N features using recursive feature
elimination, then selecting the best subset based on the cross-
validation F1-score of the model. To assess model performance,
we performed 20% samples holdout cross-validation, where the
model is trained on the remaining 80% of data and then is
scored based on the holdout samples after selection of the
best stratification features (Figure 1). This provides an unbiased
evaluation and avoids the possibility of over-fitting. The model
initially normalizes the training set using Z-score, and uses the
training parameters to scale the holdout data. We applied this
approach to repertoires, which were represented by sequence
annotation features and clusters features. From the training
subset, clusters were selected by having a minimum of 70%
members from a particular group, celiac, or healthy. The model
was performed for each of the heavy and light chain datasets
separately and for a combination of both.

2.5. Sequence-Based Classification
To classify antibody repertoires to their associated clinical
condition based on the CDR3 AA sequences, a multiple instance
learning (MIL) method with LR prediction function was used
as described in (7). This method uses the biophysiochemaical
properties (Atchley factors) of AA k-mers as the model’s features.

2.6. Feature Ranking
For further analysis, we needed to infer the relative importance of
the different features for classification. Ranking features was done
by subsampling in combination with selection algorithms. Here
we ranked the features based on the recursive feature elimination
(RFE) results with 1 K subsampling sets. The idea was to apply
a feature selection algorithm to different subsets of data and with
different subsets of features. After repeating the process a number
of times, the selection results can be aggregated, for example
by checking how many times a feature ended up being selected
as important when it was in an inspected feature subset. If the
results are consistent across the subsets, it is relatively safe to trust
the stability of the method on this particular data and therefore
straightforward to interpret the data in terms of ranking (the
more a feature is selected, the greater its importance).

2.7. Association Between Features and
Clinical Conditions
To reveal which features (predictors) are associated with the
decision of a positive (CeD) or negative (healthy controls)
classification, we looked at the summary of LR weights over all
subsamples. As described, LR is chosen as the final classification
scheme of our model. Intuitive understanding of the “influence”
of a given parameter in an LR classification model, may be
obtained from the magnitude and the direction of its coefficient.
The weighted sum in logistic function indicates the classification
probability by the following formula:

log
P(y = 1)

P(y = 0)
= w0 + w1x1 + ...+ wnxn

Where the term in the log() function is the probability of an event
(CeD in this case) divided by probability of no event (controls),
and wi is the weight for the feature value xi. Thus, in our case,
a positive coefficient value means that this feature increased
the probability of a CeD categorization, and a negative value
indicates that this feature increased the probability of the control
categorization. A highly ranked feature with a positive weight
summary value was considered as a CeD-associated feature.

2.8. Cluster Set Enrichment Analysis
(CSEA)
CSEA is used to identify motifs enriched in ranked cluster
lists, where ordering is based on a measure of clusters-features
importance. CSEA identifies whether members of a cluster set S
tend to occur toward the top or bottom of a ranked list L, in which
case the cluster set is defined by the V-gene/J-gene/CDR3-length
class [i.e., clusters sharing the same V-gene category are defined
to be in set S]. This analysis is a derivative of a published analysis
called GSEA (39). CSEA steps:
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FIGURE 1 | Workflow scheme.Experimental and computational analysis included the following steps: collection of blood samples from individuals with CeD and

healthy controls, sequencing of naïve B cell repertoires, and analyzing the repertoires. Repertoire analysis consisted of V(D)J sequence annotation, creation of

repertoire representations by antibody clustering, identifying clinical-predictable features using ML methods, and characterizing disease biomarker motifs.

1. Divide the N clusters to sets according to attribute D (in our
case V-gene/J-gene/CDR3-length group).

2. Order the N clusters by their importance values, from the
maximum to the minimum (the ordered list is denoted
by L). Where the rank of the i-th cluster is denoted
by ri.

3. Compute the Enrichment Score (ES): start with ES = 0;
walk down the ranked list L, from the top rank (i = 1) to
the bottom rank (i = N), increasing ES by |ri|/6j∈S|rj| if
the i-th cluster belongs to the cluster set S, and decreasing
ES by 1/(N − |S|) otherwise, where |S| is the number of
clusters in the set S. That is, CSEA tests a null hypothesis
that rankings of the clusters in a cluster set are randomly
distributed over the rankings of all clusters, according to a
cluster importance measure using Kolmogorov-Smirnov-like
statistic (40).

4. Take the absolute value of the maximum deviation from zero
of the ES values among the N clusters as the test statistic for
the cluster set S.

5. Permute the labels of attribute D and repeat steps (1)–(4).
Repeat until all (or a large number of) permutations are
considered.

6. Statistical significance for the association of S and D is
obtained by comparing the observed value of the test statistic
from (2.8) and its permutation distribution from (2.8).

The P-value is computed for each cluster set by determining
the empirical null distribution of enrichment scores with a
permutation test procedure involving 1K data permutations. A
gene set’s significance is adjusted for multiple testing by first
normalizing the ES to account for the size of each cluster set,
yielding a normalized enrichment score (NES). The proportion
of false positives is controlled by calculating the false discovery
rate (FDR) corresponding to each NES. The FDR is the estimated
probability that a set with a given NES represents a false positive
finding; it is computed by comparing the tails of the observed
and null distributions for the NES. A cluster set was defined
as significantly enriched if the false discovery rate (FDR) value
was <0.05.
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2.9. K-mer Enrichment Analysis
Significantly enriched k-mer motifs within the selected features
were examined by counting occurrences of k-mer in sequence
set that associated with the CeD group and in another sequence
set corresponding control group. After the sets were defined,
the sequences of both sets were broken down into overlapping
subsequences (e.g., AA k-mers of length 3), and for each k-mer
its frequency in the two sets was calculated. The ratio between the
prevalences was used to calculate the fold change between the two
sets. Fold change is a measure describing how much a quantity
changes between an original and a subsequent measurement. In
our case it is defined as the ratio between kmer expression in set
A (CeD) and set B (CeD-free), then the fold change of A with
respect to B is B/A. Then, for each k-mer we tested whether that
k-mer appears significantly more times in the case or control sets,
using the exact Fisher test. We controlled the FDR for multiple
testing by the Benjamini-Hochberg procedure and demanded
that this value is < 0.05 (41).

2.10. Conjoint Triad Descriptors
Conjoint triad (CT) descriptors were proposed in (42). In this
approach, each AA sequence is represented by a vector space
consisting of descriptors of AAs. To describe the properties of
sequence and reduce dimensions, the 20 AA were grouped into
seven classes according to their dipoles and volumes of the
side chains.

3. RESULTS

A graphic illustration of our overall approach is presented in
Figure 1. We used two types of pre-processed BCR repertoire
datasets of heavy and light chains, from individuals with CeD and
healthy controls. First, feature engineering methods were used to
gain different representations of the datasets and to select features
that were further used to classify each repertoire to its associated
clinical condition. This was followed by statistical methods for
the interpretation of the model parameters.

To identify features in B-cell repertoires that are uniquely
associated with CeD, we investigated which features discriminate
the CeD repertoires from the healthy repertoires, using a
classification model. Since the number of antibody sequences in
an immune repertoire is extremely large, comparison between
repertoires requires defining a smaller number of common
representative features to describe each repertoire. For this,
we used domain knowledge of the raw data to create features
that are fit and valuable for ML modeling. To make the
classification model easier to interpret and capture complex
relationships, we defined sets of common representative features
to describe a repertoire.

For the first repertoire representation set, we calculated the
frequency of specific repertoire annotations, such as gene, allele,
V-J gene combinations, and isotype usage. For the second
representation set, we extracted snippets from each CDR3
and represented them by calculating the biophysicochemical
properties (Atchley descriptors) of their AA sequences. Since we
and others have previously reported successful immunological
status classifications using IgH clusters (43, 44), for the third

set, we grouped the antibody sequences by V-J-CDR3 similarity
(see section 2). This essentially means that the value of each
feature in the repertoire representation is the frequency of subject
repertoire sequences attributed to the specific feature.

3.1. LR-Clustering Approach Predicts the
CeD Patients Based on the Naïve Antibody
Repertoire
Having derived a set of repertoire representations, we next used
ML models to evaluate whether these features hold relevant
information to classify individuals to CeD or to healthy based on
their antibody repertoires. It is likely that most of the repertoire
features are not associated with autoimmune diseases, and thus a
process of feature selection is critical for the classification task. To
select relevant features, we based our approach on the Random
Forest (RF) algorithm and other feature-reduction algorithms,
such as recursive feature elimination (RFE) and cluster selection
(see section 2). To determine the optimal number of features,
we performed an RFE with a tuning of the number of features
to select using cross-validation (RFE-CV, see section 2). Logistic
regression (LR) was then applied to generate the prediction on
the feature-reduced dataset. We left out 20% of the samples as a
test set, and trained on the remaining samples. To ensure model
robustness, the process of sampling and training was repeated 1
K times. An illustration of the model is shown in Figure 1.

Compared with the other repertoire representations described
above, the one with CDR3 cluster features yielded a higher
classification performance than those with the simple sequence
annotation or Atchley factors (Supplementary Table 2). This
suggests that the described repertoire annotations, including
usage of specific V, D, and J genes, alleles, CDR3 lengths,
biophysicochemical factors, and isotype usage, do not hold
sufficient information to differentiate between the CeD and
healthy groups. However, the cluster representation holds
relevant information to the classification task, and the LR model
with ridge (L2) regularization obtained the best classification
results. Therefore, our next steps only considered the repertoire
representation that is based on CDR3 sequence similarity
(clusters) with LR classifier.

Next, we sought to explore the performance of repertoire
classification based on the light chain dataset as well. Clusters of
heavy chain (HC) and light chain (LC) sequences were inferred
and used as features for the model described above. This model
was applied with each dataset separately (HC, and LC sets)
and with their combination (HC_LC set), using repeated cross-
validation. After all filtrations, the datasets included 92 samples:
48 individuals with CeD and 44 healthy subjects. Figure 2

summarizes the average and standard deviation scores gained
by the classifier on each type of dataset. The best classification
was achieved using the combined HC_LC datasets, where the
held-out samples had an F1-score of 85%. Classification based on
the HC and LC sets separately produced a lower performance,
with F1-scores of 76 and 69%, respectively. To estimate the
probability of correctly classifying by chance, we performed a
control analysis. In the control analysis, the labels of the training
data were permuted but those on the holdouts were not. The
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FIGURE 2 | Classification performance of the ML model using heavy and light chain variable region repertoires. Bar graphs show the average F1 score ± standard

deviation (black line) across a 1,000 iterations. Light blue bar indicates the result using the heavy chain (HC) dataset, turquoise bar for the light chain dataset, green

bar for the integrated heavy and light chain (HC_LC) dataset, and gray bar for control analysis using the HC_LC dataset with random labels.

classification under these conditions seemed random, with a
∼50% prediction rate.

We next wanted to validate our method using an independent
dataset. As there are no public datasets containing AIRR-seq
data of naïve B cells from individuals with CeD available, the
largest high quality independent dataset we could obtain is
a public AIRR-seq dataset from naïve B cell of five pairs of
healthy identical twins, taken from (45). Only heavy chains were
sequenced in this dataset. We applied our ML-based approach
to this dataset, resulting in 7 out of the 10 individuals classified
as “healthy.” One pair of twins and another individual were
classified as individuals with CeD, which is in line with the
mean classification performance of 0.76 observed using our
own dataset when taking into account only the heavy chain
information (see left panel, purple bar in Figure 2).

These results indicate that there is a correlation between
naïve B cell CDR3 sequence similarity clusters and CeD, and
that this correlation is preserved in the repertoire representation
used here. This led us to further investigate how the predictive
sequences of CDR-H3, CDR-L3, and their adjacent genes vary
across repertoires sampled from different clinical conditions.

3.2. Characterizing the Key Stratification
Features
The next step was to apply strategies for identifying components
over-represented and scanning motifs, to extract patterns
and knowledge from the key features that contribute to the
classification performance. First, we gathered and ranked the
features selected by the RFE algorithm over the 1 K iterations
(Figure 3A). Of the 188 clusters that were selected in more than
40% of the iterations, 63% included genes from the IGHV3 and
IGHV1 families (Figure 3B). IGHV1-69 and J4 were the highest
used genes (Figures 3B,C), the frequencies of these genes in the
overall repertoires are approximately 7 and 52%, respectively.
The length distribution of CDR3 sequences, however, did not
differ from a normal distribution (Figure 3D).

To evaluate the significance of these cluster composition
results, we used cluster set enrichment analysis (CSEA) as

described in section 2. In this case, the cluster set correlated with
the V-gene/J-gene/CDR3-length class, i.e., clusters sharing the
same V-gene category. CSEA tests a null hypothesis in which
rankings of the clusters in a set are randomly distributed over
the rankings of all clusters. We observed that the IGHV1-18
and IGHJ3 cluster sets were significantly upregulated (FDR<

0.05), and the IGKJ3 set was also upregulated with FDR< 0.08
(Figure 3E).

We next sought sequence motifs that are enriched in clusters
associated with CeD or healthy controls and explored their
properties. For this, we used k-mer enrichment analysis (see
section 2) to compare the case set of sequences (100 top
clusters associated with the CeD cohort) to the control set
of sequences (100 top clusters associated with the healthy
controls). To avoid biases caused by unbalanced sets, an equal
distribution of sequence lengths from each set was sampled,
without replacement. Here, cluster clinical association was
determined by the LR coefficients, and clusters were represented
by their CDR3 consensus sequence, as described in section 2.
To provide the optimal k-mer, we examined different lengths
and types of k-mer representations (K ∈ {2, 3, 4, 5}, type ∈

{"nucleic", "AA", "AA properties"}). The k-mer representation
that showed significant results was provided by conjoint AA-
triad (CT) properties descriptors, in which residue-specific
physicochemical interaction effects were taken into account.
Figure 3F shows a highly significant result for one of the CT
types, by a blue data point appearing at the top left of the volcano
plot, meaning that we identified an AA-triad that is depleted
in clusters associated with CeD vs. healthy controls. This CT
type is composed of three AAs that belong to the same class
{Y,M,T,S}. The dipoles and volumes of these AAs’ side chains are
characterized by 1.0 < Dipole < 2.0 (Debye) and Volume >

50(Angström3), respectively.
Another motif that we have scanned is a biophysicochemical

feature in the CDR3 sequences of the selected clusters, taking
into account the relative position of each CDR3 snippet. For
this task, we applied an MIL method as presented by (7),
to detect different 3-mer AA subsequences that share similar
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FIGURE 3 | Characterization of key features used by our ML model. (A) Aggregation of feature selection outcomes. The Y-axis indicates the frequency of feature

selection across 1 K subsamples, and the X-axis represents the feature rank index. (B) V gene usage within the features selected in more than 40% of subsamples.

(C) J gene usage within the features selected in more than 40% of subsamples. (D) CDR3 length distribution within the features selected in more than 40% of

subsamples. (E) Enrichment cluster set results. Top normalized enrichment score (NES) outcomes of three cluster set analyses (V-gene, J-gene, and CDR3-length).

Colors indicate whether the FDR for multiple hypotheses is lower than 0.05, with blue for TRUE and red for FALSE. (F) Conjoint AA-triad (CT) motif is depleted in

CeD-associated features. The left panel graphically displays the division of AAs to seven groups and an example representation of the possible AA-conjoint triads (as

described in section 2). The right panel is a volcano plot showing the k-mer enrichment analysis with CT representation of selected clusters. The statistical significance

of the difference in kmer expression plotted by the log10 q-value (FDR adjusted p-value, where q<0.05 is considered significant; horizontal line). The x-axis indicates

the magnitude of the change, plotting the fold-change ratios in a log-2 scale (log2FC). The blue color indicates a point-of-interest that represents the depleted k-mer.

Non-significant k-mers are shown as gray points. (G) The classifier weights for the three residue positions, provided by the MIL method (7). Columns represent the

categories of five biophysicochemical factors. Positive weight values are shown as facing up bars, and negative weight values are shown as facing down bars. The

length of the bar corresponds to the weight’s magnitude, and the color corresponds to the position in the snippet.

biophysicochemical properties in the CeD associated clusters.
We have chosen this method because previous studies have
reported a disease-specific biophysicochemical motif in the

CDR3 of BCR or TCR chains of different types of diseases
(46). Furthermore, this method searches for complex motifs,
which may shed light on the properties of biological binding
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regions, and provides dimensionality reduction by extracting
fewer features that hold most of the information included in
the initial set. Here, the 3-mers were instances, the consensus
sequences of the most highly ranked 300 clusters were bags, and
the bag label was the cluster associated clinical status (150 CeD
associated clusters and 150 control associated clusters). First,
each consensus was divided into all the contiguous 3-mers it
contains, and for each 3-mer the properties of AA residues were
calculated according to five Atchley factors and its position. This
model accurately classified the validation data set into associated
clinical groups with 71.6% accuracy. Hence, we assume that a
recurring motif can be discerned for clusters associated with
CeD vs. control. To reveal the pattern that associated with
CeD categorization, we investigated the optimal model weights
that push the classification toward a CeD categorization. Here,
the probability for a CeD categorization increased for 3-mers
with hydrophobic residues at the first position and hydrophilic
residues at the last two positions. We also identified a preference
for 3-mers with a large relative abundance of residues with
large-sized alpha-helical segments and a positive charge. Thus,
a cluster was classified as CeD-associated if it contained CDR3
sequences with 3-mers comprising AA residues with distinct
bio-physicochemical motifs.

4. DISCUSSION

In this study, we tested the ability of the naïve BCR repertoire to
inform us about CeD status. We tested many repertoire features
such as sequence annotation-based features and sequence
similarity-based features (clusters), to develop an ML-based
model to distinguish CeD patients from healthy controls. The
“traditional” repertoire annotations, including usage of specific
V, D, and J genes, alleles, CDR3 lengths, D sequence lengths,
and isotype usage, did not remarkably differ between the CeD
and healthy groups. Strikingly, however, we found that clusters
with characterized common motifs can classify CeD from
healthy individuals, with an F1-score of 85% for classification
by naïve BCR repertoires of combined IgH and IgL sequences.
Disease associated patterns were discovered and include several
interesting findings. First, we observed several genes that are
enriched in the prediction clusters (e.g., VH1.18 and JH3,
see Figure 3E). Second, clusters that are CeD-associated are
enriched for 3-mers comprising residues that share similar
bio-physicochemical properties at key positions. These residues
exhibit a propensity to participate in alpha-helical segments
that are positively charged, hydrophilic, and relatively large (see
Figure 3G).

Several underlying reasons could be responsible for the
differences in naïve BCR repertories that allowed stratification
of CeD patients from controls. The first one is that structural
features of the naïve BCRs affect selection and survival of naïve
B cells, which influences the risk for CeD development. The
second is that the BCRs of naïve B cells somehow connect to
the effector (i.e., antigen experienced) B cells that are involved
in the development of CeD. A third possibility could be that
there were impurities in the sequenced repertoires, meaning that

not only naïve cells were sequenced. And finally, there could be
confounding factors during cell processing or library generation
that have created artifacts. It will be important to verify our
results in future studies.

Anti-TG2 and anti-DGP antibodies are hallmarks of CeD,
and both these antibodies across patients have stereotyped
patterns of heavy and light chain usage. For anti-TG2 some
of the most common combinations are IGHV5-51:IGKV1-5,
IGHV3-48:IGLV5-45, IGHV4-34:IGKV1-39-pI, and GHV1-69-
p:IGKV1-17-p (20, 47, 48). The different heavy/light chain
combinations recognize distinct conformational epitopes of TG2.
For anti-DGP the most common combinations are IGHV3-
23:IGLV4-69, IGHV3-15:IGKV4-1, and IGKV3-74:IGKV4-1 (22,
23, 49). No signals related to these V genes were in our analysis
among the identified classifiers that distinguished CeD from
healthy subjects. In follow-up studies it will be interesting to
investigate whether the patterns we detected in the CDR3s
of CeD repertoires by ML are related to the antigen-specific
antibodies that carry these gene combinations. Overall, anti-
TG2 and anti-DGP antibodies have few somatic mutations,
meaning the antibodies recognize their antigen in germline or
near germline configuration (20, 22). Thus, conceivably, having
the “correct” V(D)J combinations in the naïve repertoire can be
expected to play a role in development of the disease. The naïve
CDR3 repertoire has a big element of stochastically introduced
variation, which may not relate to genetics. Still, there are genetic
elements within the J- and D-gene encoded sequences, and
the recombination efficiency between the V, D, and J genes
is certainly genetically influenced. To try and identify such
explicit genetic patterns differentiating between CeD patients and
controls, we included in one of the initial ML models genotype
and haplotype inferences from the BCR repertoire data that were
extracted by TIgGER (32) and RAbHIT (50). However, these
features did not increase the success of the model. Nevertheless,
more complex patterns might be hidden in the regulatory regions
of the BCR encoding loci (26). In the future, these regions
may be sequenced directly using tailored long-read sequencing
approaches (51).

We explored a niche of BCR repertoire analysis that has
received little to no attention in the scientific community.
Although attempts to consolidate and make sense of the high-
dimensional immunogenomic features that predict conditions
of BCR repertoire is not a new concept, the vast majority
of work of the currently available ML methods for immune
receptor sequencing data have focused on the individual immune
receptors in a repertoire, with the aim of, for example, predicting
the antigen or antigen portion (epitope) to which these sequences
bind, or to classify tumor tissue from normal tissue based on a
single input sequence (52–55). In this work, the hypothesis is that
there are shared BCR sequence patterns across individuals with
a shared immune state. This principal had been used previously
by us and others, for example by (43), who discriminated the
BCR repertoires of individuals with current or past Hepatitis
C virus (HCV) infection with 90% accuracy, by grouping it
into clusters of BCRs. (56) distinguished between the T cell
repertoires of mice immunized with or without ovalbumin with
80% accuracy, by decomposing the TCRβ CDR3 sequences into
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overlapping AA k-mers. Several groups used ML with a feature-
engineering approach based on biophysicochemical parameters
of sequences, such as representing AA k-mers according to their
Atchley biophysicochemical properties (7, 54, 57, 58). These
results have motivated us to apply an LR-clustering approach to
classify antibody repertoires and examinemotifs based on k-mers
and physicochemical properties.

This work is a first step toward understanding the effect of
naïve B cells on CeD development. We chose to focus on naïve
B cells, as they represent the baseline repertoire of an individual
and are not affected by different pathogens encountered by
different individuals during their lifetimes. Relying on the naïve
repertoire may also enable detection of predisposition or the
disease at an earlier time point than relying on activated/memory
B cells. Moreover, the ability to predict the disease by the naïve
repertoire may lead to important mechanistic insights. In depth
exploration of non-naïve repertoires remains a valuable followup
study. The observations in this research can be further examined
to be based on CeD-associated BCRs, like autoantibodies to
TG2 and antibodies to DGP. It would also be interesting to
explore the effect of IgH and IgL combination on naïve B cell
populations in CeD patients. This could be examined by single-
cell sequencing datasets.

Further studies of the unique autoimmune condition may
provide a better understanding of the pathophysiological
mechanisms involved in the pathogenesis of CeD, and possibly
of other autoimmune diseases, paving the way to innovative
treatment strategies. If measures to prevent CeD become a reality,
the ability to identify individuals who are at risk for developing
CeD will be particularly important. Analysis of naïve BCRs as
presented here may become a part of this risk assessment.
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