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Abstract
We report the results of statistical genetic analyses of data from the Collaborative Study on the
Genetics of Alcoholism prepared for the Genetic Analysis Workshop 14 to detect and characterize
maternally inherited mitochondrial genetic effects on variation in latent class psychiatric/behavioral
variables employed in the diagnosis of alcoholism. Using published extensions to variance
decomposition methods for statistical genetic analysis of continuous and discrete traits we: 1)
estimated the proportion of the variance in each trait due to the effects of mitochondrial DNA
(mtDNA), 2) tested for pleiotropy, both mitochondrial genetic and residual additive genetic,
between trait pairs, and 3) evaluated whether the simultaneous estimation of mitochondrial genetic
effects on these traits improves our ability to detect and localize quantitative trait loci (QTL) in the
nuclear genome. After correction for multiple testing, we find significant (p < 0.009) mitochondrial
genetic contributions to the variance for two latent class variables. Although we do detect
significant residual additive genetic correlations between the two traits, there is no evidence of a
residual mitochondrial genetic correlation between them. Evidence for autosomal QTL for these
traits is improved when linkage screens are conditioned on significant mitochondrial genetic effects.
We conclude that mitochondrial genes may contribute to variation in some latent class psychiatric/
behavioral variables associated with alcoholism.

Background
A number of studies have report associations between
mtDNA variation and chronic alcoholism. However, the
deletions, insertions, modifications, and other rearrange-
ments described in these studies represent damage done
to mtDNA in the liver, white blood cells, and elsewhere as
a consequence of oxidative stress associated with chronic
ethanol consumption [1,2]. Only a small number of stud-
ies have detected associations between mtDNA polymor-

phisms and psychiatric disorders and syndromes that
overlap those of chronic alcoholism [3,4]. These observa-
tions, plus the possibility that heritable mtDNA muta-
tions could influence susceptibility to alcohol-induced
oxidative stress damage, motivate our current study in
which we analyze data from the Collaborative Study of
the Genetics of Alcoholism (COGA) [5] to detect and
characterize mitochondrial genetic effects on variation in
latent class psychiatric/behavioral variables.
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Methods
Data
The COGA dataset for the Genetic Analysis Workshop 14
includes 1,614 individuals, 788 females and 826 males,
aged 17–91 years (mean = 40.09 ± 15.2 years), in 143
pedigrees of varying size and complexity. Families were
recruited into COGA on the basis of a positive diagnosis
of alcoholism (DSM-III-R (later, DSM-IV) and Feighner
criteria) for a focal proband and 2 first degree relatives.

We analyzed data on the 14 latent class variables assessed
in 1,181 to 1,388 of the COGA family members. The
majority of these latent class variables were measured by
COGA researchers on either a dichotomous (no = 1 and
yes = 2; recoded as no = 0 and yes = 1 in our analyses) or
ordinal scale (0, 1, 2, ..., n). These variables include: per-
sistent desire to stop drinking (DESIRE), morning drink-
ing (MORNING), craving for a drink (CRAVING), binge
drinking (BINGE), narrowing of drinking repertoire
(NARROW), gave up other activities to drink (GAVE UP),
experience three or more blackouts (BLACKOUT), experi-
enced withdrawal symptoms (WITHDRAWAL), experi-
ence physical health problems as a result of drinking
(HEALTH), and experienced emotional/psychological
problems as a result of drinking (PSYCHOL). By combin-
ing the 2 non-zero categories for the ordinal scale variable,
spent so much time drinking there was little time for any-
thing else (SPENT), we converted it to a dichotomous
trait. We also analyzed the 2 continuous scale traits: max-
imum number of drinks in a 24 hour period (MAX
DRINK) and the number of cigarette packs per day for one
year (CIGPKYRS). In linkage analyses reported here we
used genotype data at 315 microsatellite marker loci dis-
tributed across the 23 chromosomes in 1,376 individuals.

Variance decomposition

Pedigree, phenotype, and genotype data were managed
using PEDSYS [6] routines. We used a maximum likeli-
hood based variance decomposition approach and exten-
sions to this approach, implemented in SOLAR [7], to
conduct all statistical genetic analyses. For basic statistical
genetic analyses of continuously distributed traits, this
approach models the phenotypic covariance as the sum of
the additive genetic and random environmental covari-
ances. We simultaneously estimated for each trait its
mean, the mean effects of age and sex, a residual heritabil-

ity (i.e., h2 = ), and residual environmental stand-

ard deviation. We extended this basic approach to discrete
traits using a multivariate normal threshold model in
which the discrete trait is assumed to be determined by a
threshold process acting on an underlying, continuous
liability distribution [8]. To detect and estimate the effects
of a maternally inherited mitochondrial effect on these

traits, we employed the approach in Czerwinski et al. [9]
in which the within-pedigree covariance matrix is modi-
fied by introducing an additional variance component,

, and its structuring matrix M. M specifies the mito-

chondrial relationships in the pedigree that share a mater-
nal line of descent [9]; thus matrix element mij = 1 if

individuals i,j are members of the same maternal lineage
and mij = 0 otherwise [10,11]. Aspects of mitochondrial

inheritance such as heteroplasmy, threshold effects, phe-
notypic heterogeneity, and mtDNA/nuclear DNA interac-
tions were not specifically modeled [11].

Bivariate variance decomposition
We tested for possible mitochondrial genetic pleiotropy
between any pairs of traits for which we detected a signif-
icant mitochondrial genetic component using a bivariate
extension to the univariate variance components
approach. This extension allows for the simultaneous esti-
mation of all parameters estimated in the univariate anal-
yses, plus the estimation of a residual additive genetic
correlation, a mitochondrial genetic correlation, and a
random environmental correlation between pairs of traits.
For bivariate analyses of continuous and discrete trait
pairings, we employed the method introduced by Wil-
liams et al. [12] to allow the liability of the discrete trait to
be correlated with the quantitative trait.

Adjustment for multiple tests
We used genetic correlations between all 78 latent trait
pairs in a modified Bonferroni correction procedure to
control for false-positive detection of mitochondrial
genetic components to the variance in these 14 traits. To
obtain an adjusted p-value consonant with α = 0.05, we
divided 0.05 by 1 + (N - 1)(1 - |ρG|), where N is the
number of phenotypes, and |ρG| is the mean of the abso-
lute value of the genetic correlations.

Linkage
We conducted a series of multipoint, whole genome link-
age screens for each latent class variable exhibiting a sig-
nificant (corrected p < 0.009) mitochondrial effect to
detect evidence for quantitative trait loci (QTL) in nuclear
chromosomal regions (only marker-specific linkage anal-
yses were conducted with X-chromosome markers). Sec-
ond, we performed locus-specific linkage analyses at the
multipoint peaks providing the best evidence for a QTL
for each trait to obtain an estimate of the improvement in
the LOD score conditional on the mitochondrial genetic
component.

Likelihood ratio tests
Significance of all parameters was determined by likeli-
hood ratio tests in which the likelihood of a more general
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model in which all parameters are estimated was com-
pared to a nested restricted model in which some param-
eter values are constrained. The test statistic, twice the
difference in the log likelihoods of the two models, was
asymptotically distributed approximately as a χ2 variate
with degrees of freedom equal to the difference in the
numbers of estimated parameters in the models. How-
ever, when a parameter value was constrained to the
boundary of the parameter space (e.g., h2 = 0), the test sta-
tistic was distributed as a 1/2:1/2 mixture of χ2 and a point
mass of zero [13]. To control for the overall false-positive
rate given the finite marker locus density in the COGA
microsatellite genome linkage map, we estimated
genome-wide p-values by means of a method suggested by
Feingold et al. [14]

Results
Table 1 provides maximum likelihood estimates (MLEs)
for components of the variance from a restricted model in
which the proportion of the residual phenotypic variance
due to the mitochondrial genetic component is con-
strained to zero (left side) and the more general model in
which the effect of mitochondrial genetic component is
estimated. A nominally significant mitochondrial genetic
component (p(h2

mt = 0) ≤ 0.05) is detected for three traits:
DESIRE, CIGPKYRS, and CRAVING but, after correction
for multiple testing, only the CIGPKYRS and CRAVING
remain significant (p < 0.009; 78 pair-wise genetic correla-
tions |mean ρG| = 0.64). The mitochondrial genetic com-
ponent accounts for 14% and 19% of the residual
phenotypic variance and 77% and 65% of the additive
genetic variance in these two traits, respectively.

Bivariate genetic analysis of the two traits identified above
yielded the following correlation estimates when no mito-
chondrial genetic component was included in the model:
ρG = 0.06 ± 0.17, ρE = 0.24 ± 0.07, and ρP = 0.06. When a
mitochondrial genetic component was included in the
bivariate model for the traits, we detected a significant
residual additive genetic correlation (ρG = 1.00 ± 0.11),
but the estimated mitochondrial genetic correlation
between these two traits (ρM= -0.36 ± 0.34) was not signif-
icantly different from zero (p > 0.05). The MLE for the
residual additive genetic correlation between these two
latent class variables was indicative of complete, or nearly
complete, pleiotropy. Given the standard errors around
the estimate, 60% to 100% of the residual additive genetic
variance in each of these traits was due to the effects of
genes that also influence the other trait. The residual cor-
relation due to the shared effects of unmeasured environ-
mental factors (i.e., due to the effects of covariates not
included in the models, measurement errors, and/or non-
additive genetic components) was significantly different
from zero (ρE = 0.20 ± 0.05, p < 0.05).

Our univariate multipoint linkage screens detected no sig-
nificant evidence for a QTL influencing these two latent
class variables on any of the autosomes. The best evidence
for an autosomal QTL for each of these three traits is pre-
sented in Table 2. Subsequent maximization of these link-
age models at the locations of their multipoint LOD
peaks, conditional on the mitochondrial genetic compo-
nent, raised statistical support for each QTL. None
achieved genome-wide significance at the α = 0.05 level
(LOD = 2.77).

Table 1: Proportions of the residual phenotypic variance in latent class variables

Trait Restricted (h2
mt = 0) Unrestricted (h2

mt ≠ 0)

h2 e2 c2a e2 h2 h2
mt c2 p(h2

mt = 0)

MAX DRINK 0.16 0.84 0.21 0.85 0.12 0.03 0.21 0.10
SMOKER 0.43 0.57 n/a 0.75 0.10 0.14 n/a 0.15
DESIRE 0.47 0.53 n/a 0.55 0.35 0.10 n/a 0.05
MORNING 0.18 0.82 n/a 0.84 0.12 0.04 n/a 0.29
CIGPKYRS 0.17 0.83 0.21 0.82 0.04 0.14 0.21 0.002
CRAVING 0.29 0.71 n/a 0.71 0.10 0.19 n/a 0.004
BINGE 0.06 0.94 n/a 0.96 0.00 0.03 n/a 0.28
SPENT 0.07 0.93 0.01 0.94 0.05 0.01 0.01 0.31
NARROW 0.34 0.66 n/a 0.68 0.26 0.06 n/a 0.23
GAVE UP 0.26 0.74 n/a 0.82 0.07 0.11 n/a 0.07
BLACKOUTS 0.38 0.62 n/a 0.62 0.36 0.02 n/a 0.38
WITHDRAW
AL

0.20 0.80 n/a 0.84 0.11 0.05 n/a 0.28

HEALTH 0.26 0.74 n/a 0.76 0.23 0.01 n/a 1.00
PSYCHO 0.36 0.64 n/a 0.64 0.34 0.01 n/a 0.42

aProportion of total phenotypic variance due to covariates (c2), additive genetic effects (h2), mitochondrial genetic effects (h2
mt), and random 

environmental factors (e2).
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Discussion
The magnitude of the mitochondrial genetic effect on the
phenotypic variance of the two latent class traits is likely
small. However, mitochondrial genetic effects do account
for a substantive proportion of the additive genetic vari-
ance in each trait and this proportion may be of biologi-
cal, as well as statistical, significance.

Possible confounding of mitochondrial genetic and non-
mitochondrial maternal effects (both genetic and envi-
ronmental) is a valid concern; the range of pedigree size
and complexity in the COGA families may mitigate this
concern. We also believe the following observations pro-
vide circumstantial evidence that such confounding has
not occurred. 1) Addition of the mitochondrial genetic
component results in diminution of the residual additive
genetic, rather than the environmental, component of the
variance. 2) Re-analyses of these data incorporating the
following surrogates for maternal effects as covariates, do
not eliminate the mitochondrial genetic effect: maternal
age at birth and household effects (unpublished data).

Our analyses of these data cannot identify the genes, gene
products that may be involved, or the mechanisms by
which they operate. However, the lack of a significant
mitochondrial genetic correlation between the two traits
tentatively suggests that multiple mtDNA variants, either
in the same gene or in different genes, are responsible for
the mitochondrial effects.

Lastly, our analyses offer tentative support for inclusion of
significant mitochondrial genetic components in variance
components models used in linkage screens. In each case,
the LOD scores for non-significant multipoint peaks
increased, although not quite to the level of genome-wide
significance given the finite marker density of the linkage
map and the mean recombination frequency in the COGA
pedigrees.

Conclusion
We detect evidence of mitochondrial genetic variation in
two latent class phenotypes associated with susceptibility
to alcoholism in data from the COGA families. To our
knowledge, this is the first report of such an effect on any
alcoholism-related traits.
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ism

MLE: Maximum likelihood estimate
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QTL: Quantitative trait locus
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