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Background. The ongoing outbreak of severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2), as the latest threat to global health, causes overwhelming effects 
for the public healthcare systems worldwide. Of note, in addition to the respiratory 

complications, some patients with coronavirus disease 2019 (COVID-19) also develop 

serious cardiovascular injuries. Vasoactive peptides play an important role in a wide 
range of physiological and pathological conditions. 

Aim. With the urgent need for exploring the specific therapeutic targets and biomarkers 
for the emerging COVID-19, the general aim of this review is to discuss the potentials of 
the vasoactive peptides including Angiotensin II (Ang II), vasoactive intestinal peptide 
(VIP), endothelin-1 (ET-1), calcitonin gene-related peptide (CGRP), natriuretic peptides, 
substance P (SP) and bradykinin (BK) as therapeutic targets and/or prognostic indicators 
for the COVID-19 pandemic. 

Conclusion. Based on various observations some authors conclude that the assessment 
of vasoactive peptides shall be considered a routine part of COVID-19 patient moni- 
toring, and they can serve as potential therapeutic targets for the disease management. 
© 2021 Published by Elsevier Inc. on behalf of Instituto Mexicano del Seguro Social 
(IMSS). 
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Introduction 

The coronavirus disease 2019 or COVID-19, is a novel
infectious disease that was first identified as pneumonia
of unknown cause in Wuhan city in December 2019 ( 1 ).
Following the rapid spreading of the virus worldwide, the
World Health Organization (WHO) on 30 

th January 2020
declared that COVID-19 as the sixth public health emer-
gency of international concern ( 2 ). At the end of March
2021, the COVID-19 is affecting 219 countries and territo-
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ries worldwide, leading to more than 127 million infected
cases have been detected as well as killed approximately
2.8 million patients ( 3 ). The coronavirus was officially re-
named severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) by the International Committee on Taxon-
omy of Viruses according to phylogenetic analysis ( 4 ). 

The clinical features range from an asymptomatic state
to severe acute respiratory failure and multi-organ dys-
function. The common clinical symptoms are fever, dry
cough, anosmia, sore throat, shortness of breath, fatigue,
headache, and myalgia ( 5 ). Furthermore, multi-organ dys-
functions such as cardiovascular complications, renal fail-
ure, gastrointestinal symptoms, hematological symptoms,
neurological manifestations, in some patients with COVID-
19 have been reported ( 6 ). 
 behalf of Instituto Mexicano del Seguro Social (IMSS). 
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Entrance into host cells is considered the first stage
in viral infection. Zhou and colleagues demonstrated that
angiotensin-converting enzyme 2 (ACE2) expressed on the
cell surface provides the gate to entry for SARS-CoV-2
into host cells and for this type of coronavirus, there is
no need for another receptors, such as aminopeptidase N
(APN) and dipeptidyl peptidase 4 (DPP4), which serve as
the entry receptors for other human coronaviruses, namely
HCoV-229E and MERS-CoV ( 7 ). Thus, ACE2 plays a
decisive role as a functional receptor for viral spikes of
SARS-CoV-2 ( 8 ). The SARS-CoV-2 spike (S) glycopro-
tein plays a critical role in binding to the receptor, mem-
brane fusion, and internalization ( 9 ). In brief, during vi-
ral infection, the receptor-binding domain (RBD) of the s
glycoprotein binds to the region located in the peptidase
domain of ACE2. Membrane fusion of the virus and the
host cell activate and eventually viral RNA is released into
the cytoplasm, leading create infection ( 10 ). It has been
shown that the ACE2 protein express in varying degrees
in almost all human organs and tissues, including respira-
tory mucosa, lung, stomach, small intestine, colon, skin,
lymph nodes, thymus, bone marrow, spleen, liver, kidney,
bladder urothelial cells, and nervous system ( 11 ). On the
other hand, cell-free and macrophage-phagocytosed viruses
may be conveyed to other tissues and lead to infection in
ACE2-expressing cells at local sites via blood circulation
( 10 ). 

Currently, despite the identification of available targets
for treatment, there is still no definitive treatment for in-
fected patients. The COVID19 treatment mostly is based
on patients’ symptoms and there are no specific antiviral
agents suggested for SARS-CoV-2 ( 12 ). There are some
targets to inhibit viral prevalence, for example, SARS-
CoV-2 replication can be targeted by antivirals (Remde-
sivir), macrolide antibiotics such as azithromycin, and the
anti-malarial hydroxychloroquine. Furthermore, hydroxy-
chloroquine can help stabilize iron in hemoglobin ( 13 ). 

Peptides are involved in most tissues for cell-to-cell
communication. Several peptides, such as vasoactive pep-
tides, have significant direct effects on vascular smooth
muscle, blood flow, and thus blood pressure. These en-
dogenous agents help the body’s homeostatic mechanisms
by regulating vascular compliance and vascular resistance.
Vasoactive peptides, in addition to influencing vascular
smooth muscle, act as neurotransmitters in the central
nervous system (CNS) and systemic and local hormones.
These compounds have G protein-coupled receptors
(GPCR) and exert their physiological effects through these
cell surface receptors ( 14 ). 

The association of various vasoactive agents, such as
Ang II, VIP, ET-1, CGRP, natriuretic peptides such as
atrial natriuretic peptide (ANP), and brain natriuretic pep-
tide (BNP), SP, and BK with COVID-19 pathophysiology
will be probed in this article. 

Vasoactive Peptides in COVID-19 
Angiotensin II 

Angiotensin II (Ang II) is a potent octapeptide, which acts
as the main effector of the renin-angiotensin system (RAS).
It plays a crucial role in homeostasis, control of blood
pressure, and cardiac and vascular function ( 15 ). 

In the classic RAS, the protease renin converts the
substrate angiotensinogen to the decapeptide Ang I, and
then,ACE removes two additional amino acids at the car-
boxyl terminus of Ang I to form Ang II ( Figure 1 ) ( 10 ). 

Nowadays two types of Ang II receptors have been rec-
ognized: AT1 and AT2. The AT1 receptor is the mediator
of most of the established cardiovascular functions of Ang
II such as vasoconstriction, increasing cardiac contractility,
the secretion of aldosterone, and antidiuretic hormone with
subsequent renal tubular sodium reabsorption, as well as
inflammation, fibrosis, oxidative stress, and vascular and
cardiac hypertrophy. But there is less data about the func-
tion of AT2. Nevertheless, there is some evidence which
shows that stimulation of AT2 receptors exerts opposing
and counterbalancing effects compared with AT1 recep-
tors on the cardiovascular system, including, vasodilating
effect, antihypertrophic effect, antifibrotic effect, and natri-
uretic effect ( 16 ). 

So far, manipulation of the renin-angiotensin cascade
has been considered as one of the major therapeutic strate-
gies for patients with cardiovascular diseases and various
clinical studies have evaluated the effect of angiotensin
receptor blockers (ARBs) and ACE inhibitors (ACEIs) in
different cardiovascular events such as refractory hyperten-
sion, heart failure, post-myocardial infarction status, and
coronary artery disease. They are also used for patients
with diabetes and renal insufficiency ( 17 ). 

Another essential, regulatory enzyme in the renin-
angiotensin pathway is ACE2 which is an ACE homolog.
ACE2 has a zinc-binding site, which is homologous to
one of the active domains of ACE. Generally, ACE2 and
ACE have 40% similar identity, however, captopril or other
‘classic’ ACE inhibitors cannot inhibit the ACE2 enzyme.
It is reported that ACE2 hydrolyze the his-leu bond of
Ang I to produce Ang-(1-9). Then, Ang-(1-9) will be hy-
drolyzed by ACE but ACE2 does not hydrolyze Ang-(1-9)
to Ang II. The other action of ACE2 is that it hydrolyzes
Ang II to Ang-(1-7) at a high pace. Indeed, ACE2 de-
creases the accumulation of ANG II when it is needed but
it does not do this action on Ang I ( Figure 1 ) ( 10 ). The ex-
pression of the ACE2 receptor was found in many organs
including the oral cavity, gastrointestinal tract, and lungs.
The point is that the ACE2 membrane receptor functions as
a binding site and the port of entry for SARS-CoV-2 viri-
ons on the lung cells. It was postulated that following the
virus binding, ACE2 downregulation occurs, which in turn
leads to a local raise in Ang II, and therefore, promoting
RAS induction ( 18 ). The elevated level of the vasocon-
strictor Ang II increases the production of thrombin and
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Figure 1. The renin-angiotensin system and action mechanisms of their inhibitor. ACE, angiotensin-converting enzyme; ACEi, ACE inhibitor; ARBs, 
angiotensin receptor blockers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

contributes to the impairment of fibrinolysis. Currently, it
is strongly believed that in severe COVID-19, the increased
Ang II is directly correlated with viral load and lung injury
( 19 ). 

Animal experiments have shown that intravenous infu-
sions of ACEIs and ARBs will raise the number of ACE2
receptors in the cardiopulmonary system ( 20 ). Then it is
not surprising if patients who are consumers of ARBs and
ACEIs become at an increased risk of diseases like SARS-
COV-2 infection, as they have more binding sites for an-
choring spike proteins on the exterior surfaces of coron-
avirus. However, there is no compelling clinical evidence
to support such a notion about ACEIs or ARBs. Moreover,
there are no data to support the notion that ACEI or ARB
administration facilitates vulnerability to SARS-COV-2 in-
fection or aggravates the severity of the disease, whereas
it is recommended that hypertensive patients using ACEIs
and/or ARBs should continue these medications during the
coronavirus disease 2019 pandemic ( 21 ). Besides, in a re-
cent study, it has been indicated that using ACEIs and
ARBs through attenuating Ang II can induce the levels
of Ang 1–7 as well as improve inflammation, fibrosis, and
lung injury ( 22 ). To provide greater insights into the contri-
bution of ACEIs and ARBs to this pandemic, future basic,
clinical, and epidemiological investigations should further
examine the links between the SARS-COV-2 and the RAS
and how this might be affected by RAS inhibitors. 

Vasoactive Intestinal Peptide 

Vasoactive intestinal peptide (VIP), is a 28 amino acid pep-
tide, which has a broad spectrum of physiological actions,
including potent bronchodilatory and vasodilatory actions,
enhancing blood circulation to the heart and lung, potent
anti-inflammatory actions, modulation of airway epithelial
secretions, inhibitory effects on vascular smooth muscle
cell proliferation, cell growth and survival regulation ( 23 ).
This large range of VIP effects is mainly mediated through
two forms of 7 transmembrane G protein-coupled recep-
tors: vasoactive intestinal receptor 1 and 2, which are also
known as VPAC1 and VPAC2. The expression of these
receptors can be widely found in the heart, blood vessels,
lung, kidney, gastrointestinal tract, CNS, and other tissues
( 23 ). 

There are some analogs of VIP which have long
half-lives and are accessible for research use. For in-
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stant stearyl-Nle-VIP is 100 times more potent than the
original peptide. These drugs have been shown as novel
therapeutic options for a vast variety of diseases such as
gastrointestinal, pulmonary, cardiovascular, and nervous
system diseases including Alzheimer’s and Parkinson’s
disease ( 24 , 25 ). 

The other example of VIP analogs is Aviptadil, which is
a fully synthetic form of the 28 amino-acid VIP. It has been
shown that using Aviptadil in pulmonary hypertension can
cause modest and short-lived pulmonary vasodilation with-
out affecting systemic blood pressure. Furthermore, VIP
can be effective in other pulmonary disorders, for instance,
it can be a modulator of lung inflammations ( 26 ) or many
types of lung injury such as COPD ( 27 ). Reports show that
VIP also has beneficial effects in sepsis-related acute res-
piratory distress syndrome (ARDS) and Sarcoid cases ( 28 ) .

In an important recent investigation, it was found that
patients with critical COVID-19 have elevated VIP plasma
levels, compared with healthy subjects or asymptomatic
patients, and the higher levels are correlated with further
survival rate in those patients ( 29 ). Besides, the unique
ability of VIP in the modulation of inflammation and apop-
tosis in Alveolar Type II cells (the target cells of the
SARS-CoV-2) has been identified in numerous scientific
studies ( 30 ). Based on another recent study, VIP is able to
inhibit the SARS-CoV-2 virus gene replication in human
lung epithelial cells, induce cytoprotective effects, promote
monocyte production, and increase transmission of viral
resistance from monocytes to neighboring lung cells ( 31 ).
Currently, two available commercial dosage forms of syn-
thetic VIP (Aviptadil in intravenous and inhaled formula-
tion) are under two clinical trials for COVID-19 patients
with respiratory failure (clinicaltrials.gov: NCT04311697
and NCT04360096). 

Considering all the above-mentioned advantages, be-
sides the exceptional safety profile of VIP and the afford-
able manufacturing of its synthetic forms, VIP could have
the potential as a preventive measure and even therapeutic
agent for patients with COVID-19 infection. 

Endothelin 

The endothelin (ET) isoforms comprise four structurally
different 21 amino acid peptides including ET-1, ET-2, ET-
3, ET-4). Mature ET-1 is considered as an endothelium-
derived constricting factor, which is produced from pre-
pro-ET-1 following the activities of a family of endothelin
converting enzymes and other enzymes such as chymases,
and endopeptidases ( 32 ). The current thinking is that the
major source of ET-1 is vascular endothelial cells of vari-
ous types of vessels, ranging from conduit and resistance
arteries to large veins, and venules. Nevertheless, other cell
types, such as epithelial cells in the lungs, colon, kidney,
and colon; peripheral immune cells, as well as neurons and
glial cells in the CNS produce ET-1 to some extent ( 33 ).
ET-1 elicits its function through two isoforms of G-protein
coupled receptors, ET A 

and ET B, with equal affinity. To
date, it is generally accepted that ET-1 is among the most
potent vasopressors known in the entire human cardiovas-
cular system, and capable to produce great forceful pressor
effects on a wide range of vessels ( 32 , 34 ). 

Elevated circulating ET-1 levels have been detected in
older ages, the male sex, and select ethnicities as well
as in various pathological conditions such as hyperten-
sion, atherosclerosis, cerebrovascular diseases, and diabetes
( 35 ). Overall, it has been identified that older age, the
male gender, and race/ethnicity could be considered im-
portant risk factors associated with COVID-19 mortality
( 36 ). On the other hand, since the COVID-19 pandemic
started, a wealth of studies has indicated that the infected
patients with pre-existing endothelial dysfunction, such as
respiratory system diseases, hypertension, coronary heart
disease, and diabetes, develop a higher rate of adverse
outcomes ( 37 ). Besides, many reports have demonstrated
the increased rate of vascular and thrombotic events (e.g.,
deep vein thrombosis, pulmonary embolism, and ischaemic
stroke) in severe cases of COVID-19 ( 38 , 39 ). Therefore,
regarding these associations between ET-1 with demo-
graphic features and a range of endothelial dysfunctions,
it seems that increased circulating ET-1 levels might serve
as a valuable biomarker and prognostic tool to identify in-
dividuals with the greatest risks for developing a serious
illness from COVID-19 ( 37 ). 

The crosstalk between the ET system and RAS has been
shown through various investigations. It has been observed
that the vasoconstrictive activity of Ang II could be sup-
pressed by ET-receptor antagonists ( 40 ). On the other hand,
as previously pointed out, the dysregulation of ACE2 plays
a crucial role in the increased level of Ang II, which is
strongly correlated with lung injury in SARS-CoV-2 pa-
tients. Nevertheless, Ang II activates the key transcriptional
factor of ET-1, activator protein-1 (AP-1), resulting in the
overexpression of ET-1, which may have a pivotal role in
lung injury ( 41 ). 

The redox-sensitive transcriptional factor, NF-kB is con-
sidered as another modulator of the ET-1 expression. Be-
cause of the severe inflammatory condition among COVID-
19 cases, the role of NF-kB is highly regarded, and the
efficacy of dexamethasone, the potent suppressor of NF-
kB activity in the management of COVID-19 patients has
been largely demonstrated. Besides, the effect of dexam-
ethasone on the downregulation of ET receptors and ET-1
gene expression has been supported by a wealth of studies
( 42 ). Taken together, it seems that ET-1 has the potential
to be considered as an important pathological factor, which
can be therapeutically targeted in COVID-19. 
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Calcitonin Gene-related Peptide 

Calcitonin gene-related peptide (CGRP) was initially iden-
tified in a paper by Amara SG, et al. in 1982 ( 43 ). It
was soon realized that CGRP acts as a potent vasodila-
tor, angiogenic, and immune-modulating peptide, which is
primarily localized to the peripheral and central sensory
nervous system ( 44 ). Because of its hypothesized function
as a mediator of trigeminovascular pain transmission and
vasodilator part of neurogenic inflammation, CGRP is a
therapeutic goal in migraine. In 2018, CGRP antagonists,
fremanezumab, and galcanezumab, were approved by the
US Food and Drug Administration (FDA) for the preven-
tion of migraines ( 45 ). 

It has been shown that CGRP is correlated with perivas-
cular neurons densely dispersed in myocardial and coro-
nary arteries, which can lead to cardioprotective effects in
conditions such as cardiovascular failure. It is widely be-
lieved that CGRP has crucial roles in anti-inflammatory
and anti-apoptotic actions, as well as tissue repair, and the
synthesis of the peptide is induced following an inflamma-
tory response against tissue damage ( 44 , 46 ). Additionally,
CGRP has been shown to exert potent pro-angiogenic, va-
sodilator, bronchoprotection, anti-inflammatory actions on
lung tissue. These have made CGRP a promising target
for manipulation in covid-19 patients ( 47 ). 

Just recently, in a study by Ochoa-Callejero L, et al.,
it has been reported that the serum level of CGRP is re-
markably reduced in COVID-19 positive individuals, com-
paring to healthy subjects, independently of the severity
state of the disease, age, sex, or comorbidities ( 47 ). The
lower levels of the vasoactive peptide may involve in vaso-
constriction, the damaged epithelial repair, and impaired
angiogenesis observed in lung pathology associated with
COVID-19. They also found that the expression of the re-
ceptor activity modifying protein 1 (RAMP1), a subunit
of CGRP receptor, is largely higher in COVID-19 lung
samples, which may indicate a compensatory mechanism
against the reduction of circulating levels of CGRP. 

Surprisingly, there have been those who believe that
over-release of CGRP may lead to the reported excessive
reactivity of the vascular system in acute lung injury. In a
research investigating the impact of CGRP on acid-induced
lung injury, it has been indicated that CGRP gene-disrupted
mouse has substantially attenuated acid-induced trauma,
edema, and respiratory failure relative to healthy controls
( 48 ). Moreover, in studies on ovine models of burn and
smoke inhalation, it has been indicated that CGRP inhi-
bition by disrupting the endogenous CGRP pathway may
have a therapeutic role in respiratory malfunction ( 49 ). 

The SARS-CoV2 is currently suspected of triggering
a form of cytokine tempest, including fever, thrombocy-
topenia, lymphopenia, coagulopathy, macrophage activa-
tion, ARDS, and multi-organ inadequate septic shock ( 50 ).
Early studies indicate that the rise in interleukin-6 (IL-6)
 

may lead to augment the invasiveness of COVID-19 and
some proposed that it could be used as a marker for the
intensity evaluation ( 51 ). Also, the IL-6 blockade has been
proved to be effective as a therapy for hyperinflammatory
reactions in patients with COVID-19 and further studies
are underway ( 52 ). CGRP also knows to have stimulatory
effects on the production of proinflammatory cytokines,
such as IL-6 ( 53 ). Collectively, these may strengthen the
rationale of repurposing the CGRP receptor antagonist to
treat COVID-19 patients. However, concerning the car-
diopulmonary protective effects of CGRP, as mentioned
before, there are still some doubts related to the safety
of CGRP inhibitors in COVID-19. Much more studies are
needed to optimize the therapeutic approach targeting the
CGRP pathway against COVID-19 infection. 

Natriuretic Peptides 

Natriuretic peptides are a group of circulating peptide hor-
mones, which serve as key regulators of cardio-renal home-
ostasis and multiple metabolic processes ( 54 ). Until now,
there have been eight natriuretic peptides including ANP,
BNP, C-type natriuretic peptide (CNP), Dendroaspis na-
triuretic peptide (DNP), urodilatin, uroguanylin, osteocrin,
and musculin. These peptides are primarily released by
the heart and are well known as cardiac hormones. Na-
triuretic peptide receptor (NRP) family containing NPR-A
(guanylate cyclase-A), NPR-B (guanylate cyclase-B), and
NPR-C (clearance receptor) is the mediator of the main bi-
ological actions of the peptides (for instance vasodilation,
natriuresis, and metabolic regulation) in their target tissues
( 54 ). Consistently, their plasma levels are frequently used
as diagnostic and prognostic biomarkers in patients with
cardiovascular disease such as heart failure and pulmonary
embolism. Besides, the therapeutic potential of the syn-
thetic derivatives of natriuretic peptides has been shown in
several cardiovascular disorders, particularly in heart fail-
ure ( 55 ). On the other hand, the lung-protective effects
of these peptides have been suggested through accumu-
lating experimental and clinical studies. For example, so
far, numerous studies have implicated the beneficial effects
of ANP on inhibiting the increased endothelial permeabil-
ity and secretion of inflammatory mediators induced by
several insults, such as thrombin, LPS, TNF α, and oxida-
tive stress ( 56 ). Further, the therapeutic role of ANP in
a clinical study conducted by Mitaka C, et al. has been
demonstrated in ARDS in patients with acute lung injury
( 57 ). Emerging evidence indicates that pulmonary vascular
endothelial injury plays a pivotal role in the COVID-19
pathogenesis ( 58 ). 

In addition to cardiovascular disorders, the presence of
deficiencies of the natriuretic peptide levels is also evi-
dent in obese and elderly subjects. As previously pointed
out, comorbidities of cardiovascular disease, old age, and
metabolic disorders are associated with poor clinical out-
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comes and higher mortality in COVID-19-infected patients.
It is postulated that dysregulation of the natriuretic peptide
system may also contribute to COVID-19 patients. 

Taken together, pharmacological strategies augmenting
natriuretic peptide signaling may be effective in prevent-
ing the progression of the infection to severe respiratory
disease and the need for ventilator therapy. Moreover, rein-
forcement of the natriuretic peptide system in COVID-19
patients could result in several other beneficial outcomes,
including cardioprotection, preventing coagulopathy, na-
triuresis, and subsequent attenuating lung edema and the
risk of renal injury. In support of this notion, nine ongoing
clinical trials are exploring the effect of inhaled nitric
oxide, as a stimulus of cGMP production through soluble
guanyl cyclase, on COVID-19-infected patients (clinical
trials.gov: NCT04383002, NCT04338828, NCT04358588,
NCT04305457, NCT04305457, NCT04337918,
NCT04306393, NCT04421508, NCT04398290) ( 56 ). 

Currently, there are two therapeutic approaches targeting
the natriuretic peptide pathway in patients with COVID-
19. Firstly, using Sacubitril, as an oral endopeptidase in-
hibitor, which is able to increase the circulatory levels of
neprilysin-degraded peptides, such as ANP and BNP ( 59 ).
The second choice is the synthetic derives of the peptides,
including Carperitide (ANP) and Nesiritide (BNP) for in-
travenous infusion ( 60 ). 

Under physiological conditions, BNP, and the N-
terminal fragment of its precursor (NT-proBNP), are se-
creted by stressed cardiomyocytes in the heart ventricles
following increased ventricular blood volume. Accordingly,
their raised levels are considered as important indicators of
the failing heart ( 61 ). 

Likewise, COVID-19 is often demonstrated with higher
levels of BNP or NT-proBNP. Therefore, the diagnostic
value of the peptide in predicting the prognosis in pa-
tients infected with COVID-19 has been suggested in sev-
eral studies ( 62 ). Recently, Sorrentino S, et al. in a meta-
analysis of 13 observational studies and a total of 2248
patients indicated that there is a robust positive relation-
ship between the increased NT-proBNP level assessed on
the admission of COVID-19 patients and the severity of the
disease ( 63 ). Besides, in a large retrospective study con-
ducted on Chinese COVID-19 patients, it was suggested
that a combination of the two cardiac injury biomarkers,
high-sensitivity cardiac troponin I and NT-proBNP, would
be more valuable than the individual biomarkers alone in
determining the prognosis of COVID-19 patients and the
in-hospital mortality ( 64 ). 

Substance P 

Substance P (SP) is a neuropeptide consisting of 11 amino
acid residues and belongs to the tachykinin neuropeptide
family ( 65 ). The biological effects of SP are mediated by
its receptor, neurokinin type 1 receptor (NK-1R) which
consisting of seven transmembrane domain GPCR. NK-
1R is expressed in the CNS and peripheral nervous sys-
tems (PNS) as well as endothelial cells, epithelial, lym-
phatics, leukocytes, smooth muscle cells, and fibroblasts
( 66 ). Although in the nervous system, SP acts as a neu-
rotransmitter/neuromodulator in pain perception, regarding
the wide distribution of SP and its receptor, SP through in-
teraction with NK1R is participated in regulating different
mechanisms such as inflammatory and immune response,
hematopoiesis, vasodilation, chemotaxis, cell survival, and
proliferation as well as play roles in the respiratory, gas-
trointestinal, urogenital, cardiovascular systems and tumors
( 65 , 67 ). 

Furthermore, SP is involved in the pathological process
of respiratory diseases such as asthma and chronic obstruc-
tive pulmonary diseases (COPD). Activation of NK-1R in-
duces constriction of airway smooth muscle, leading to
reduction of airway diameter and degranulation of mast
cell in lung tissue ( 68 ). Likewise, it has been indicated
SP is contributed to multiple viral infection pathogenesis
through pro-viral actions ( 69 ). SP is elevated in lympho-
cytes in the lung in response to viral infection and anti-SP
antibodies reduced inflammatory responses to pulmonary
viral infection including decreased infiltration of inflamma-
tory cells as well as decrease pro-inflammatory cytokines
expression level ( 70 , 71 ). On the other hand, it has been
indicated that viruses could lead to induction of SP and
neurogenic inflammation, especially in the lungs with the
respiratory challenge ( 72 , 73 ). Since SP induces the degran-
ulation of mast cells and neutrophils, it appears application
of NK-1R antagonists may inhibit recruitment of immune
cells such as neutrophils and respiratory burst activity, and
finally attenuate inflammation in COVID-19 patients ( 74 ).

SP highly expressed in the nucleus tractus solitarius
and the area postrema and both activation stimulate the
vomiting reflex ( 67 ). NK-1R antagonists, aprepitant and
fosaprepitant, block SP binding to its receptor and con-
sequently inhibit vomiting centrally in the chemoreceptor
trigger zone which is used for managing chemotherapy-
induced nausea and vomiting (CINV) and postoperative
nausea and vomiting (PONV) ( 75 ). Therefore, it seems
inhibition of activation of NK-1R maybe is effective for
COVID-19-induced nausea and vomiting. 

SP promotes viral pathogenesis through increase inflam-
matory processes in involved sites in inflammation in in-
fected patients with SARS-CoV-2 including the respira-
tory system, digestive system, and skin ( 74 ). SP and the
complement peptides C3a and C5a in a similar manner
stimulate mast cells by different pathways. Furthermore,
there is a synergism between C5a and SP to activation
and recruitment of neutrophils to the infection site ( 74 ).
SP independent of the NK-1R can bind to mast cell recep-
tor called Mrgprb2, leads to facilitation recruitment and
migration of immune cells via Mrgprb2. Furthermore, ac-
tivation of mast cell by SP cause to the release of mul-
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tiple pro-inflammatory cytokines and chemokines. There-
fore, SP-mediated inflammatory responses can be indepen-
dent of NK-1R ( 76 ). Moreover, COVID-19 patients exhibit
coagulation abnormalities and blood clots in the small ves-
sels of the various tissues which are causes of strokes and
heart attacks. SP increases monocyte tissue factor expres-
sion, the main initiator of the coagulation cascade, and
promotes platelet clot formation ( 77 , 78 ). Overall, these ac-
tivated pathways may play an important role in the recruit-
ment of neutrophils and inflammatory responses in covid-
19 patients. In accordance with the above-mentioned, SP
can participate in COVID-19 symptomology. Therefore, in-
hibition of substance P can be a target in COVID-19 pa-
tients and it seems the use of inhibitors to SP, NK-1R, or
the downstream pathways may offer supportive treatment
and attenuate inflammatory response in COVID-19 patients
( 74 ). 

The enzyme neutral endopeptidase or neprilysin (NEP)
is a member of zink-metalloendopeptidase which is widely
expressed in the kidney, lung, and other tissues such as the
breast, prostate, stomach, and CNS. Regarding NEP exert
protective roles against pulmonary inflammation and fibro-
sis, it is proposed NEP activity augmentation potentially
have may attenuate COVID-19 pathology ( 79 , 80 ). In this
context, it has been shown that NEP possesses catalytic
activity rather than ACE2 in cleavage of the vasoconstric-
tor peptides Ang I and AngII into vasodilator peptide Ang
1–7 ( 81 ). NEP is also involved in the inhibition of re-
cruitment of more neutrophils into the site of injury via its
catabolic action on the gastrin-releasing peptide (GRP) dur-
ing pulmonary inflammation ( 79 ). However, on the other
hand, NEP is a key enzyme in the degradation of natri-
uretic peptides, bradykinin (BK), SP, and adrenomedullin
(ADM), and apelin that account for the prevention of organ
injury ( 80 ). 

Bradykinin 

The kallikrein-kinin system (KKS) is involved in blood
pressure regulation, inflammatory responses, pain, coagu-
lation, and cell proliferation. The kinin peptides through
release vasodilators including prostaglandin E2, and PGI2,
nitric oxide (NO), and endothelial-derived hyperpolarizing
factor (EDHF) induce increase vascular permeability and
arteriolar dilation in the vascular bed such as skeletal mus-
cle, liver, kidney, heart, intestine. Furthermore, kinins cause
veins contraction by vasoconstrictors such as PGF2 α. The
kinin peptides effect is mediated through specific two dis-
tinct G-protein coupled receptors termed bradykinin recep-
tors B1 and B2 ( 82 ). 

The KKS comprises serine proteases called plasma
kallikrein and tissue kallikrein, which cleavage spe-
cific substrates kininogens to produce kinins, principally
bradykinin (BK) and Lys-bradykinin (Lys-BK or kallidin)
( 83 ). The nonapeptide BK is formed via activation of
plasma kallikrein on high molecular weight kininogen
(HMWK), while tissue kallikrein cleaves low-molecular-
weight kininogen (LMWK) to decapeptide Lys-BK ( 84 ).
BK and Lys-BK bind with the B2 receptor on the en-
dothelial cells. BK and Lys-BK by kininase I or kininase
II (also known as AEC) can be cleaved again to produce
kinins metabolites, des- Arg BK (DABK) and Lys-des-Arg
BK (Lys-DABK) which are ligands of the B1 receptor on
the endothelial cells ( 84 , 85 ). The B2 receptor is constitu-
tively expressed by most cells including vascular and non-
vascular smooth muscle cells, epithelial and immune cells,
and neural cells. On contrary, the B1 receptor poorly is
expressed in physiological conditions and their expression
is elevated in inflammatory conditions ( 84 ). Both recep-
tors can couple to G αi and G αq families lead to increased
intracellular Ca2 + and consequently release nitric oxide
(NO), arachidonic acid, prostaglandins, and leukotrienes
( 86 ). The principal ligand of B1 is DABK and the princi-
pal ligand of B2 is BK. Degradation of kinins is controlled
through ACE1 that cleaves BK and ACE2 that cleaves Lys-
des-Arg9-BK and des-Arg9-BK ( 87 ). 

B1 stimulation, as an inducible receptor, is involved in
the pro-inflammatory responses and leads to vasoconstric-
tion which contributes to organ injury including acute res-
piratory distress syndrome (ARDS). On the other hand, B2
activation by BK on endothelial cells may lead to capil-
lary permeability and leakage, and in resulting angioedema
( 88 ). Furthermore, The B2 or B1 stimulation differentially
activates endothelial NO synthase (eNOS) or inducible NO
synthase (iNOS), respectively. Under inflammatory condi-
tions, B1 stimulation leads to prolonged activation of iNOS
and high output NO production with deleterious organ ef-
fect, while in normal endothelial cells, the B2 activation
results in eNOS activation and a short burst of NO with
protective organ effects ( 85 ). The B1 receptor expression is
very sensitive to inflammatory factors such as interleukins
and lipopolysaccharide and it could be up-regulated via
cytokines like IL-1 β and TNF α. it has shown that B1 ac-
tivation via the release of chemokine CXCL5 increases
recruitment of neutrophils as well as causes FGF-2 expres-
sion, and upregulated IL-1 β and MCP-1 levels ( 89 ). DABK
is one of the pulmonary inflammatory mediators. ACE2
can deactivate DABK by cleaves the terminal residue of
DABK. Therefore, since ACE2 cleaves DABK, reduction
in activity or expression of ACE2 by virus leads to im-
pairment of the inactivation of DABK. 

According to the above mentioned, it appears that
SARS-CoV-2 through the decrease of ACE2 activity leads
to an increase of free DABK, enhanced its signaling on
B1 receptor, and subsequent stimulation of B1 receptor
can cause fluid extravasation, recruitment of leukocyte and
neutrophils to the lung, potentiation of the inflammatory
cascade, and as well as the release of pro-inflammatory
mediators ( Figure 2 ) ( 87 , 90 ). It has proposed that may
be dysregulation of KKS participates in COVID19 patho-
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Figure 2. The kallikrein-kinin system (KKS) and proposed effects of SARS-CoV-2 on related pathways. BK, bradykinin; Lys-BK, Lys-bradykinin; DABK, 
des-Arg BK; Lys-DABK, Lys-des-Arg BK; HMWK, high molecular weight kininogen; LMWK, low-molecular-weight kininogen; CPM, carboxypeptidase 
M; CPN, carboxypeptidase N; ACE, angiotensin-converting enzyme. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

genesis via the downregulation of ACE2 function in the
lung and therefore targeting the kallikrein-kinin pathway
in patients with COVID-19 through block B1 and B2 re-
ceptors is an effective strategy signaling to prevent ARDS
( 88 ). Since downregulation of ACE2 expression induced
SARS-CoV infection enhances the half-life of DAB or
DABK which leading to pulmonary edema in COVID-
19 patients, it seems inhibition of B2 signaling by icat-
ibant and lanadelumab exert promising result in infected
patients ( 91 ). Furthermore, inhibition of B1 by LF22-0542
(safotibant), as a B1 antagonist, maybe alleviate a part of
the cytokine storm in COVID-19 infected patients ( 87 ). 

Excess BK can alter electrolytes amount such as potas-
sium and cause hypokalemia, which in turn is associated
with arrhythmia and sudden cardiac death. According to
recent report patients with severe COVID-19 display hy-
pokalemia and resulting in its complications is occurring
in infected patients ( 92 ). Additionally, many COVID-19
symptoms including fatigue, headaches, nausea, myalgia,
diarrhea, vomiting, and anorexia are very similar to a high
level of BK which is associated with increases vascular
permeability such as angioedema ( 88 ). Therefore, SARS-
CoV-2 pathology may be the result of BK storms rather
than cytokine storms. However, the BK storm and cytokine
storms hypotheses are linked because IL-2 has been shown
to be upregulated via BK ( 88 , 93 ). The KKS disruption also
is detected in chronic kidney disease, cardiovascular dis-
ease, and Alzheimer’s disease that these conditions might
enhance the risk of COVID-19 ( 74 ). 

Snake venoms are very poisonous mixtures of a variety
of molecules, such as carbohydrates, nucleosides, amino
acids, peptides, proteins, and lipids. Although snake ven-
oms may be lethal, they are rich biological resources with
antiviral activities. antiviral properties of snake venoms
components have been shown against viruses of measles,
Sendai, dengue, yellow fever virus (YFV), and HIV ( 94 ).
BK-potentiating peptides (BPPs) extracted from snake ven-
oms such as Bothrops venom are natural BK agonists and
ACE inhibitors and show remarkable organ protective ef-
fects by targeting RAS and KKS systems. Surprisingly,
BPP-10 c is reported safe and without cytotoxic effects and
can through ACE inhibition leads to increase BK effects
via the B2 receptor, promotes NO-mediated organ protec-
tive effects, reduces inflammatory response, protects neu-
rons, and also acts as an antihypertensive. ( 85 , 95 ). There-
fore, regarding antiviral effects of BPP-10 c, it is exhibited
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a great value as a natural option to attenuate SARS-CoV-2
related consequences ( 85 ). 

Conclusion 

The COVID-19 pandemic is an emerging rapidly evolving
outbreak, and there is an unprecedented timeline for de-
veloping effective drugs to manage the disease. Currently,
a wide range of experimental and clinical studies inves-
tigating the therapeutic and biomarker potential of the
vasoactive peptides in the management of COVID-19 com-
plications, particularly ARDS and cardiovascular comor-
bidities, which remains to be proven, is ongoing. Changes
in most of these peptides are linked to the presence of
the disease and a more severe prognosis. Therefore, using
vasoactive peptides as indicators or therapeutic targets may
be beneficial to understand the COVID-19 pathogenesis
and to modulate the post-infection immune response to
limit coronavirus-associated complications and mortality. 
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