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Abstract

Background: Protein-protein interactions (PPIs) are critical to every aspect of biological
processes. Expansion of all PPIs from a set of given queries often results in a complex PPI network
lacking spatiotemporal consideration. Moreover, the reliability of available PPI resources, which
consist of low- and high-throughput data, for network construction remains a significant challenge.
Even though a number of software tools are available to facilitate PPI network analysis, an
integrated tool is crucial to alleviate the burden on querying across multiple web servers and
software tools.

Results: We have constructed an integrated web service, POINeT, to simplify the process of PPI
searching, analysis, and visualization. POINeT merges PPI and tissue-specific expression data from
multiple resources. The tissue-specific PPIs and the numbers of research papers supporting the PPIs
can be filtered with user-adjustable threshold values and are dynamically updated in the viewer. The
network constructed in POINeT can be readily analyzed with, for example, the built-in centrality
calculation module and an integrated network viewer. Nodes in global networks can also be ranked
and filtered using various network analysis formulas, i.e., centralities. To prioritize the sub-
network, we developed a ranking filtered method (S3) to uncover potential novel mediators in the
midbody network. Several examples are provided to illustrate the functionality of POINeT. The
network constructed from four schizophrenia risk markers suggests that EXOC4 might be a novel
marker for this disease. Finally, a liver-specific PPI network has been filtered with adult and fetal
liver expression profiles.
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Conclusion: The functionalities provided by POINeT are highly improved compared to previous
version of POINT. POINeT enables the identification and ranking of potential novel genes involved
in a sub-network. Combining with tissue-specific gene expression profiles, PPIs specific to selected
tissues can be revealed. The straightforward interface of POINeT makes PPI search and analysis just
a few clicks away. The modular design permits further functional enhancement without hampering
the simplicity. POINeT is available at http://poinet.bioinformatics.tw/.

Background
Protein-protein interactions (PPIs) are critical for vir-
tually every biological process. Diverse experimental
techniques for detecting PPIs have been developed and
have improved dramatically in the last decade, i.e., yeast
two hybrid (Y2H), affinity chromatography, co-immu-
noprecipitation (Co-IP), and fluorescence resonance
energy transfer (FRET) [1,2]. Advances in chip techni-
ques also enabled the applicability of protein chips in
detecting PPIs under diverse conditions in a high-
throughput manner [1]. High-throughput screenings of
PPI have also been carried out for various organisms,
including yeast [2], worm [3], fruit fly [4], and human
[5]. The large amount of data accumulated from various
sources has posed a grand challenge in data reliability
and the searching, analysis and filtering for PPI.

In order to facilitate PPI searching, a number of systems
provide batch input and output functionality, such as
Genes2Networks [6], Ulysses [7], T1DBase [8], and the
Arabidopsis Interactions Viewer [9]. Genes2Networks
provides a dynamic linkable three-color web-based net-
work map, with a statistical analysis report that identifies
significant intermediate nodes used to connect the query
lists. In Ulysses, users can project model organism gene
properties onto homologous human genes to perform
interolog analysis. T1DBase provides various aspects of
information regarding type 1 diabetes and includes an
interaction network viewer. In addition to the type 1
diabetes PPI network, this viewer can also be used to
construct other networks of interest. The Arabidopsis
Interactions Viewer mainly focuses on the Arabidopsis
PPI information and is designed for an interactome of
Arabidopsis predicted from interacting orthologs in yeast,
worm, fruit fly, and human. Using these services and
packages, networks in different species or conditions can
be searched, downloaded and visualized.

The above described services can easily perform searches
and construct networks from user-supplied queries.
However, the analyses of these networks require other
software packages, which may have incompatible input
formats and complex interfaces. There are several net-
work analysis tools for PPI network evaluation, such as
Pajek [10], CentiBiN [11], and NetworkAnalyzer [12].
These tools support the calculation of node centralities,

such as degree centrality, closeness centrality, between-
ness centrality, and cluster coefficient, to name a few.
The analysis of node centrality characteristics in a
network serves as an efficient means to understand the
relative roles and features of each node. Various studies
have suggested that proteins with larger numbers of
interactions (hubs) are more critical [13-16], although
the interpretations of this phenomenon differ [17,18].
Missing/losing these hub proteins is likely to result in
death or developmental defects in the organisms. Using
the topological features in biological networks, nodes
playing different roles can be ranked and selected.

These web services and software tools are valuable to the
processing of PPI networks. However, one has to
comprehend several systems/tools to fully exploit the
knowledge hidden in the biological networks. Therefore,
an integrated web service is provided in this study for
searching, analyzing, and observing a PPI network. The
PPIs can also be filtered with expression profiles of
various tissues and NCI60 cell lines. Integrated systems
with a simplified workflow for handling PPI networks
will facilitate the utilization of PPI networks. In this
manuscript, we discuss three case studies on the "putative
risk gene identification", "hub prioritization for the
midbody interactome", and "filtering PPI with tissue-
specific expression profiles". Researchers can use POINeT
to address various questions by combining PPI networks,
tissue expression profiles and sub-network analysis
functions in one website. We have previously established
an ortholog-based protein interactome database, POINT
http://point.bioinformatics.tw/[19,20], by using the con-
cept of interologs [21,22], whereby conserved PPIs in
various species can be mapped to human PPIs. Here, we
have extended the PPI search function in POINT to a new
and updated PPI network web service, POINeT http://
poinet.bioinformatics.tw/. A comparison between the
functions of POINeT and POINT is listed in Table 1.

Implementation
We have adopted several network analysis measurements
from the literature [23], such as closeness, degree,
eccentricity, radiality and centroid centralities, and
implemented several tools to automatically prioritize
PPIs and nodes in a biological network in POINeT.
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Figure 1 illustrates the overall system architecture of
POINeT. These tools are described in the following sections.

Protein-protein interaction Data Resources
PPIs included in POINeT were merged from various
sources, including DIP [24], MINT [25], BIND [26],
HPRD [27], MIPS [28], CYGD [29], BioGRID [30] and
NCBI interaction ftp://ftp.ncbi.nlm.nih.gov/gene/Gen-
eRIF/interactions.gz. Since different PPI databases use
different ID systems, these disparate IDs have been
mapped to the NCBI Gene IDs. Therefore, PPIs with
different designations from various sources may map to
the same interactions. The components of POINeT are
combined systematically to meet the needs of the users.
For each PPI, additional information was provided,
including PubMed IDs, links to the literature reporting
this PPI, and Gene Ontology (GO) annotations [31].

Users may input a set of proteins using their correspond-
ing Gene Symbols, Gene IDs or UniProt accession
numbers to query the PPI data. Table 2 lists the numbers
of PPIs collected from various data sources by POINeT.
Interologs can be incorporated into the query result to
enrich the potential PPIs in the output networks.

Protein-protein interaction Query Flow
The workflow for querying, filtering and downloading
PPIs is depicted in Figure 2A. Briefly, the user inputs the
query terms (genes or proteins), which will be recorded
as attr-Query, into POINeT to search for all available
PPIs, referred to as ppi-AllPPI. If a query has no available
PPI, POINeT stores it as attr-noInteractionQuery. If
certain filtering criteria are set in the query page, such
as 'Number of iterations' or 'Number of literature
references', the number of PPIs included in ppi-AllPPI
will change accordingly. Subsequently, the nodes
involved in ppi-AllPPI will be in the attr-Interactor
table and the degrees of these nodes will be calculated.
Since the proteins outside of the query protein set could
serve as a mediator in PPI network, such as a regulator or
an adapter protein, nodes with a degree >= 2 are defined
as mediator and recorded in the attr-Mediator table. The
mediators are nodes (query and/or non-query) connect-
ing any two query proteins. This will form another
network, which removes all nodes with a degree = 1 and
is denoted as ppi-Degree2. This network can reduce the
complexity of network visualization and illustrate how
queries are connected through these mediators. These
mediators may be an important member of the sub-
network around the query proteins. If a query node
interacts with itself and forms a homodimer, this node
will be recorded in the attr-HomoDimer table. Further-
more, if two interactors of one interaction were both
present in the attr-Query table, this interaction will be
documented in ppi-QQPPI. Interactors in the ppi-
QQPPI network will be recorded in the attr-QQ table.
Figure 2B illustrates various components in a PPI
network. Interologs in different species can be inferred
systematically using the NCBI HomoloGene database.
These interologs' PPI will be recorded in the ppi-
InterologsPPI table. Using the gene2go mapping table
provided by NCBI, whether two interactors of one PPI
share the same GO annotation will be noted, resulting in
the ppi-GOPPI network. Finally, if interactors of ppi-
QQPPI are present in the attr-Hub table, these inter-
actors will be placed in the attr-QH table, which denotes
that a node exhibits both a query and a hub in the
network. POINeT will merge ppi-QQPPI, ppi-GOPPI,
and ppi-InterologsPPI into ppi-FilteredPPI. This network
contains PPIs with relatively reliable and certain biolo-
gical significances. This network, which is smaller than
ppi-AllPPI, can be visualized and analyzed with ease and

Table 1: Comparison between POINT and POINeT features

Features POINT POINeT

Human interologs Yes Yes
Experimental PPI No Yes
Experimental PPIs from other species No Yes
Interologs prediction for other species No Yes
Network Construction No Yes
Network Viewer No Yes
Network Topology Analysis No Yes
Hub Prioritization and Ranking No Yes
Tissue-specific expression profile filtering No Yes
Network export and download No Yes

The improvements of POINeT over POINT are listed and compared.

Figure 1
The overall system architecture of POINeT. POINeT
is able to provide efficient PPI network related services in
one query through the integration of data from various
sources.
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extended with other selected features. These described
tables can be downloaded in multiple formats.

Protein-protein interaction filtering component
Interaction Filtering Using Biological Characteristics
POINeT provides three types of PPIs, including PPIs
among queries (Query-Query PPI), PPI in which inter-
actors share the same GO terms (GO PPI), and interologs'
PPI. Moreover, various literature references, i.e. [32], have
shown that proteins sharing the same GO terms are more
likely to interact with each other. POINeT has the option to
match PPIs sharing the same GO terms. Using the ortholog
information available for various species, PPI networks can
be mapped to different model organisms. For every species
available in POINeT, the interolog PPIs can be inferred
from the experimental PPIs in other species. For example,
predicted human PPIs can be inferred from the experi-
mental PPIs of mouse, worm, fly, yeast, and even
Arabidopsis (though the number of predicted PPIs from
the latter is much smaller than those of the other model
organisms). In short, POINeT provides functions to filter
experimental PPIs and to infer interolog PPIs. Through
these different settings, PPIs among proteins with similar
biological functions can be filtered and revealed, permit-
ting an in depth analysis of unsorted PPIs.

Interaction Filtering Using Tissue-Specific Expression Profiles
SymAtlas [33] has included tissue-specific expressions of
79 tissue types from human and mouse. The expression
profiles of NCI60 cell lines from SymAtlas are also
incorporated. SymAtlas used human and mouse U133A
microarray fromAffymetrix, alongwith custom-made chips,
GNF1H (for human) and GNF1M (for mouse). Each probe
on the microarray can be mapped to corresponding genes
with conversion tables provided by Affymetrix and the
Genome Institute of the Norvatis Research Foundation
(GNF).With the information available, the expression levels
of interactors (genes) in PPI networks can be presented in an
integrative way based on user-selected tissues or cell lines. In
addition to tissue-specific genes, tissue-specific PPIs can also
be filtered and inferred with these expression profiles.

Protein filtering component
Protein Filtering Using Centralities
The analysis of node centrality characteristics in a network
serves as an efficient means to understand the relative roles
and features of each node. Several centrality measurements
are available in POINeT, including degree centrality,
closeness centrality, eccentricity, radiality, and centroid
values. The meanings and detailed description of these
centralities is available in textbook [34]. Degree centrality is

Table 2: Protein-protein interaction data sources incorporated in POINeT

Data
Source

Version or
Download Date

Number of
Interactions Included

References References Details

BioGRID 2.0.37 202,244 Stark et al. (2006) Stark, C., Breitkreutz, B.J., Reguly, T., et al. (2006) BioGRID: a
general repository for interaction datasets, Nucleic Acids Res, 34,
D535–539.

IntACT 2008/2/11 121,560 Hermjakob et al. (2004) Hermjakob, H., Montecchi-Palazzi, L., Lewington, C., et al.
(2004) IntAct: an open source molecular interaction database,
Nucleic Acids Res, 32, D452–455.

HPRD version 7 37,107 Peri, S. et al. (2003) Peri, S. et al. (2003) Development of human protein reference
database as an initial platform for approaching systems biology in
humans. Genome Research. 13:2363–2371.

MPact 2005/12/22 12,955 Ulrich G. et al. (2006) Güldener U, Münsterkötter M, Oesterheld M, Pagel P, Ruepp A,
Mewes HW, Stümpflen V(2006). MPact: the MIPS protein
interaction resource on yeast. Nucl. Acids Res. 2006 34:
D436–D441

DIP 2008/1/14 50,048 Xenarios et al. (2000) Xenarios, I., Rice, D.W., Salwinski, L., et al. (2000) DIP: the
database of interacting proteins, Nucleic Acids Res, 28, 289–291.

MINT 4.0 99,773 Zanzoni et al. (2002) Zanzoni, A., Montecchi-Palazzi, L., Quondam, M., et al. (2002)
MINT: a Molecular INTeraction database, FEBS Lett, 513,
135–140.

CYGD 2007/1/25 33,984 Guldener et al. (2005) Guldener, U., Munsterkotter, M., Kastenmuller, G., et al. (2005)
CYGD: the Comprehensive Yeast Genome Database, Nucleic
Acids Res, 33, D364–368.

BIND 2006/5/25 41,603 Bader et al. (2003) Bader, G.D., Betel, D. and Hogue, C.W. (2003) BIND: the
Biomolecular Interaction Network Database, Nucleic Acids Res,
31, 248–250.

MIPS 2007/1/1 1,363 Mewes et al. (2004) Mewes, H.W., Amid, C., Arnold, R., et al. (2004) MIPS: analysis
and annotation of proteins from whole genomes, Nucleic Acids
Res, 32, D41–44.

The numbers of PPIs from various data sources as collected by POINeT. The total number of PPIs is not the sum of all PPIs from various sources since
there are numerous redundant entries.
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the number of edges associated with a node, normalized to a
quantity from0 to 1 by dividing by themaximumassociated
edge number in the sub-network. High-degree nodes in a
protein interaction network tend to correspond to proteins
that are essential and may be a good predictor of their
biological importance [13]. Closeness centrality (CC) can
identify nodes closer to other nodes in the biological
network [35]. In our implementation, larger values indicate
that the paths between the given nodes to all other nodes are
shorter. Eccentricity is the longest distance required for a
given node to reach the entire network. In graph theory, the
set of vertices with the minimum eccentricity is denoted as
the center of a graph. Radiality centrality (RC) is similar to
closeness centrality. The path lengths from one node to all
other nodes are subtracted by the maximum shortest path
length of the network, then summed and averaged, and the
absolute value taken [36]. Compared to nodes with smaller
radiality, nodes with larger values are closer to all other
nodes. Centroid values identify optimal positions (nodes
with positive values) in a network. Before the calculation of
centrality values, POINeT will identify sub-networks
included in the ppi-AllPPI. An individual sub-network can
be selected for centrality analysis. Some centralities by
definition can only be evaluated on connected graphs, such
as CC, RC, andCentroid. The results of these calculations can
all be downloaded directly from the web page. These
centrality values can also be applied to prioritize nodes in the
network.

Protein Filtering Using Sub-Network Specificity Scores
Biological networks are likely comprised of several sub-
networks or functional modules contributing to various
diverse biological processes [37]. A node may have
negligible impact on the global network or global
properties, yet is influential on a sub-network with
specific functionality. Therefore, it is desirable to devise a
measurement to reflect the sub-network specificity of
nodes. Moreover, it has been shown that data fusion
using rank combinations can improve the specificity of
the ranking results [38].

Thus, two scores were proposed and merged in this work.
One score is the ratio between the sub-network degree
and the global degree of a given node:

S
DCi

N

DCi
Totali

ratio =

where i is the designated node, DCi
N is the degree of

node i in sub-network N, and DCi
Total is the degree of

Figure 2
The analysis results and downloadable items
provided by POINeT. In downloadable items, (A) attr-
Query has the record of the input query of genes. The table
ppi-AllPPI contains all the PPIs resulting from the query. The
nodes involved in ppi-AllPPI will be identified and recorded in
the attr-Interactor table. The nodes with degree >= 2 are
defined as mediators and recorded in the attr-Hub table. The
nodes of the attr-Hub table form a network, which is
denoted as ppi-Degree2. If two interactors of one
interaction were both present in the attr-Query table, this
interaction will be documented in ppi-QQPPI. Interactors in
the ppi-QQPPI network will be recorded in the attr-QQ
table. POINeT will merge ppi-QQPPI, ppi-GOPPI, and ppi-
InterologsPPI into the ppi-FilteredPPI. This network contains
PPIs with higher reliabilities and certain biological
significances. (B) A simple PPI network is provided to
illustrate the components of the network. Query nodes are
marked with red circles; mediators (nodes connecting more
than two nodes) other than query nodes are marked with
blue circles. QQPPI are shown in black lines. GOPPI are
shown in red lines. InterologousPPI are shown in green lines.
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node i in the global network. The Si
ratio score refers to the

proportion of interactions contributed to the sub-net-
work by node i. A larger score implies that the node has
higher preference over the given sub-network.

The other score is based on the statistics of node degree
distributions in randomly sampled sub-networks. A
bootstrap method has been used to sample the degree
of node i in 1000 random sub-networks with the same
size as the designated one. The Z-score for the degree of
node i is calculated as follows:

z
DCi

N

i =
−m

s

where μ is the mean of the node i degree distribution in
random sub-networks, and s is the standard deviation of
the random degree distribution. The Z-score provides a
statistical evaluation on the significance of the degree of
node i, namely whether the degree of node i is likely to
have resulted from the random sampling of sub-net-
works.

These two scores are highly correlated since they are
based on the same concept – the differential distribution
of node degrees in sub-networks and the global network.
If most of the interactions of a node are contributed to a
given sub-network, we assume that this node is
significant to this sub-network and not to the other
sub-networks or the global network. That is, the node is
"specific" to the designated sub-network. However, there
are minor disagreements on the local ranks given by
these two scores. To make the most out of the two scores,
a data fusion model has been applied to merge the two
scores [38]:

S
R Si

ratio R zi
i3

2
=

( )+ ( )

where R Si
ratio( ) is the rank of node i by the Si

ratio score,
and R(zi) is the rank of node i by the z score. S3 refers to
the "Sub-network Specificity Score," which is the rank
with the combination of the two proposed scores.

Output component
The query results of POINeT can be downloaded in
multiple formats, including Excel, sif (simple interaction
format), and txt formats. Using the exported sif format,
ppi-AllPPI, ppi-Degree2, ppi-FilteredPPI and all attri-
butes can be downloaded. Tissue-specific expression
profiles can also be exported into individual attribute
files. The query results in sif format can be easily
integrated with tissue-specific expression profiles, and
visualized in CytoScape [39]. Also, plain text files can be

downloaded as well. However, Excel and txt formats do
not support the export of tissue-specific expression
profiles.

Network viewer
POINeT provides a straightforward viewer with sufficient
functionalities. No additional software installations are
required. Networks and tissue-specific expression pro-
files can be visualized directly in the browser. The viewer
supports zooming and panning of the networks. The
concept of layers in geographic information system
(GIS) [40] was adopted. Different output results were
defined as different layers. Through the selection of
different layers, ppi-QQPPI, ppi-GOPPI and ppi-Inter-
ologsPPI can be displayed individually or as a merged
network, ppi-FilteredPPI. The labels on each layer can
also be turned on/off, as can the labeling of selected
nodes. Finally, nodes can be selected to display the
associated interactions, PubMed IDs, and Gene Ontol-
ogy annotations, and provide the links to external
databases. Also, tissue-specific expression values are
treated as attributes of the nodes in the network. Using
the concept of layers adopted from GIS, different tissue
expressions can be selected and displayed for the same
nodes to facilitate the analysis and comparison of these
expression profiles. The network viewer provided by
POINeT permits users to observe gene expression levels
of the same PPI network in different tissue types.

Discussion
Putative Risk Gene Identification
PPI network analysis is an emerging field for the
identification of, for example, disease related genes. By
analyzing the gene expression and combining with the
integration of omic data sets from different species to
construct the PPI network, Migual et al., identified
potential genes associated with higher risk of breast
cancer [41]. A genes network of disorders linked by
known disorder-gene associations led to discover a single
graph-theoretic framework in disease gene associations,
indicating the common genetic origin of many diseases
[42]. These reports suggest that one application of
biological networks is the identification of novel marker
genes for diseases and the study of interactions among
these marker genes. In the case of schizophrenia, a
population-based analysis has revealed four genes,
DAAO (DAO), DAOA, DTNBP1 and NRG1 [43], to be
associated with the schizophrenia. Certainly it would be
interesting to discover any associations among these
genes in terms of biological networks and their potential
involvement in specific biological pathways.

Using these four genes as queries, there are interesting
links between DTNBP1 and NRG1 (Figure 3A). DTNBP1
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and NRG1 are both involved in fully connected cliques.
Two nodes lie between DTNBP1 and NRG1; these are
DLG4 and EXOC4. The interactions among DTNBP1,
DLG4 and EXOC4 are present in various brain tissues,
such as prefrontal cortex and temporal lobe, which are
known to be related to schizophrenia etiology (Figure 3B
and 3C). Most of the interactions in this sub-network are
missing in other un-related tissues, such as adipocyte
(Figure 3D). DLG4 is known to be involved in nicotine
dependence [44]. There is no known association
between DLG4 and schizophrenia in the literature;
notwithstanding this, because there are constant

controversial debates on the genetic factors contributing
to schizophrenia, DLG4 is greatly deserving of further
investigation. Similarly, EXOC4 is known to be involved
in the exocyst complex, which is critical for the release of
neurotransmitters [45]; at present its functional involve-
ment in schizophrenia is unknown. The roles of DLG4
and EXOC4 in schizophrenia remain to be explored, and
the two genes might serve as putative risk markers with
potential for further studies.

Hub Prioritization for the Midbody Interactome
Recently, various proteomes focusing on specific spatio-
temporal conditions have been elucidated, such as the
midbody [46]. For these proteome results, it would be
interesting to devise the interactions among the protein
components, further extending the proteome into the
interactome. The midbody is an important organelle
formed in the later stage of cytokinesis, and is required
for the separation of two daughter cells after cell
division. The midbody interactome [46] has been listed
as an example on the POINeT website. Based on a
literature review, we have extended this set to 190
midbody-related proteins. The first question we asked
was whether the limited numbers of midbody proteins,
identified in the recent proteomic screen, participate
individually in the process of cytokinesis or whether
groups of the midbody proteins interact with each other
and form a network. The second was how to fill in the
missing gaps in the constructed midbody PPI network
and identify novel targets participating in the process of
cytokinesis. Using POINeT can answer, at least in part,
these two questions, i.e. identify the PPI network of the
midbody. Besides PPI and network analysis, ranking/
prioritization of nodes in networks may also contribute
to the identification of novel components of the mid-
body proteome.

The mediators in the midbody interactome have been
ranked using two measurements: the hub degree and the
sub-network specificity score (S3). In order to evaluate
these two scores, the top 30 proteins ranked by these two
scores were listed and analyzed for their ability to enrich
midbody-related proteins (Table 3). Figure 4 illustrates
the results. Four types of proteins were considered to be
putative midbody proteins [46], including actin-related,
cytokinesis-related, membrane-associated, and Rho pro-
teins. The top 30 mediators ranked by S3 contain only
13% unknown proteins, with 87% putative midbody
proteins, whereas the top 30 mediators ranked by degree
centrality contain 63% unknown proteins, with only
37% putative midbody proteins. Figure 4 illustrates that
the sub-network specificity score can effectively enrich
the proportion of proteins highly related to the
designated sub-network. The involvements of the S3

Figure 3
Connections between the schizophrenia risk genes
DTNBP1 and NRG1. (A) DLG4 and EXOC4 are
positioned on the path between DTNBP1 and NRG1.
Without DLG4 and EXOC4, the links between DTNBP1 and
NRG1 would be broken. The gene expression patterns of
the nodes in the temporal lobe are labeled with differential
levels of grey, where darker shades denote higher expression
levels. This figure is generated using CytoScape. The same
network in two brain tissues, (B) Prefrontal Cortex and (C)
Temporal Lobe, reveal the presences of interactions among
DTNBP1, DLG4 and EXOC4. (D) Whereas in adipocyte
(which is not related to brain and schizophrenia), most of the
interactions are missing.
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top-ranked genes in the midbody proteome have also
been, at least in part, confirmed experimentally (manu-
script in preparation). These results suggest that S3 could
be employed to refine the midbody proteome, identify
novel midbody proteins and rank these proteins, which
may be complement to proteomics studies.

Filtering PPI with Tissue-Specific Expression Profiles
To demonstrate the PPI filtering capability of POINeT, a
PPI network specific to liver has been constructed from
173 highly abundant proteins in mass proteomic data of
liver [47,48]. Two gene expression profiles from the
SymAtlas database were selected: liver and fetal liver.
Figure 5 illustrates the results of the tissue-specific gene
expression profile filtering. PPIs are shown in the figures

when the gene expression levels of the two interacting
proteins exceed the specified thresholds.

The threshold selection is dependent on the questions to
be addressed. The networks filtered with liver and fetal
liver gene expression profiles are largely similar, since
two tissues represent the same tissue in different
developmental stages. However, some minor differences
can be noted. For example, with a higher threshold value
of 16,384, it can be noted that interactions between
HBA1 (hemoglobin alpha 1) and HBG2 (hemoglobin
gamma 2) are less abundant in liver but prominent in
fetal liver. It should be noted that this expression
threshold is selected to reveal the differences in
abundances of genes in adult/fetal livers. Users may set
this threshold based on the questions to be addressed.

Table 3: Top30 mediators with prioritized sorting excluding midbody queries

Ranks by
Hub Degree

Gene
Symbol

Hub
Degree

Total
Degree

Annotation Ranks by
S3 Score

Gene
Symbol

Hub
Degree

Total
Degree

Annotation

1 GRB2 36 407 1 HTR3A 2 2 membrane
2 YWHAZ 27 391 2 KIAA0133 2 2 membrane
3 IKBKE 24 328 3 PPP1R14B 2 2
4 TRAF6 24 369 4 DOCK7 2 3 Rho
5 HLA-B 20 273 membrane 5 GEFT 2 3 Rho
6 MAP3K3 18 173 6 LCT 2 3 membrane
7 ACTB 17 187 7 OPHN1 2 3 Rho
8 YWHAG 16 309 8 PLEKHG2 2 3 Rho
9 RIPK3 15 88 9 MYT1 2 3
10 IKBKG 15 155 cytokinesis 10 PLEKHM2 2 3 membrane
11 MCC 14 217 11 TOR1AIP1 2 3 membrane
12 EGFR 14 261 membrane 12 MALL 2 3 membrane
13 MYC 13 322 13 ARPC5 5 9 actin
14 TP53 12 315 cytokinesis 14 FLOT2 3 6 membrane
15 CASP3 11 139 15 ESPL1 2 4 cytokinesis
16 EIF1B 11 153 16 ASPM 2 4 cytokinesis
17 CDH1 10 80 membrane 17 CASC3 2 4 membrane
18 PRKCA* 10 181 Rho 18 CD163 2 4 membrane
19 VHL 10 208 membrane 19 MCF2L 2 4 Rho
20 SRC 10 217 cytokinesis 20 DIS3L2 2 4
21 ACTA1 9 103 actin 21 KTN1 3 7 cytokinesis
22 DISC1 9 113 22 ARPC4 5 13 actin
23 EPB41 9 128 23 SRGAP1 2 5 Rho
24 TNFRSF1A 9 128 24 RPRM 2 5 membrane
25 CFTR 9 135 membrane 25 SEC24D 2 5
26 PRKAB1 9 153 26 NRAP 2 5 actin
27 FYN 9 161 cytokinesis 27 PLP1 2 5 membrane
28 SMAD3 9 193 28 SEPT11 2 5 cytokinesis
29 GH1 8 76 29 ABCC2 2 5 membrane
30 EIF6 8 101 30 ACP6 3 9 membrane

Putative Midbody Related Proteins 11 (37%) Putative Midbody Related Proteins 26 (87%)
Actin 1 (3%) Actin 3 (10%)
Cytokinesis 4 (13%) Cytokinesis 4 (13%)
Membrane 5 (17%) Membrane 13 (43%)
Rho proteins 1 (3%) Rho proteins 6 (20%)

Unknown Proteins 19 (63%) Unknown Proteins 4 (13%)

The top 30 proteins ranked by hub degree (left) and sub-network specificity score (S3, right) and analyzed for their ability to enrich midbody-related
proteins.
*PRKCA is both a Rho protein and a cytokinesis related protein. It is classified as Rho protein to simplify the ratio calculation.
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Liver is responsible for the synthesis of hemoglobins in
the fetus. In adults, the predominant forms of hemoglo-
bins are composed of 2 beta chains and 2 alpha chains,
whereas the fetal hemoglobins are composed of 2
gamma chains and 2 alpha chains. The fetal hemoglo-
bins are replaced by adult hemoglobins after birth. Also,
interactions between fibronectin 1 (FN1) and the other
three genes, transferrin (TF), albumin (ALB) and
apolipoprotein A-I (APOA1), are less abundant in fetal
liver. This might be because the expression level of
fibronectin 1 in fetal liver is lower than that in adult
liver. Up regulation of fibronectin induces hepatic
haematopoiesis during the second trimester [49]. Expres-
sion level of fibronectin may only become closer to that
of the adult liver after that stage. Thus, tissue-specific
expression profiles combined with PPI networks are able
to capture the subtle differences between different tissues
and the interactions therein.

Conclusion
The modular design of POINeT enables easy extension of
the functionalities, including PPI query flow, PPI filtering,
and protein filtering component. Limitations of the system
exist on less numbers of literature references, incomplete
predicting PPI by interolog in empirical study and over
explanation of PPI interactions in biological research.
However, the processing of PPI networks has allowed
several tools to fully exploit the biological networks and
integrated systems with PPI networks.

POINeT is intended to be a research tool. The three
examples illustrated in the manuscript focus on different

applications. The schizophrenia example illustrates how to
identify connections between a set of seemly unlinked
genes. The interaction between DLG4 and EXOC4 is such
a link missing in the original association studies. The
midbody example suggests that our S3 measurements may
identify new members of a proteome. We have identified
2 proteins as novel members of the midbody proteome by
S3 score and confirmed with experiment (data not shown).
The fetal/adult liver example illustrates the use of tissue
expression profiles in filtering networks. Such application
enables the comparison of networks in different tissues.

In short, the information provided by POINeT in terms
of PPI network construction and analysis tools is not
only capable of shedding light on the intimate interac-
tions of a given dataset, but is also able to prioritize
novel mediators and/or markers that may govern various
targeted biological processes.

Figure 5
PPI network of liver filtered by different tissue
expression profiles. The expression levels of the nodes are
represented by differential levels of grey. Query nodes are
marked with squares. PPIs are filtered with prespecified gene
expression level (16384). The PPI networks filtered by liver
and fetal liver expression profiles are similar, but some subtle
differences can be noted. For example, interactions between
HBA1 and HBG2 are present in the fetal liver but not in the
(adult) liver. This reflects the actual compositional
differences between fetal and adult hemoglobins.

Figure 4
Distributions of putative midbody proteins in the top
30 mediators ranked by the sub-network specificity
score (S3) and the degree centrality. Four types of
proteins are considered as putative midbody proteins,
including actin-related, cytokinesis-related, membrane
associated, and rho proteins. Other proteins with unrelated
annotations were classified as unknown. As compared to
degree centrality, S3 can enrich the proportion of putative
midbody proteins into the top-ranked mediators. This
implies that the ranking given by S3 could be used to refine
the composition of the midbody proteome.
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Availability and requirements
Project name: POINeT

Project home page: http://poinet.bioinformatics.tw

Operating system(s): Platform independent

Programming language: Java, Struts, JSTL, and AJAX

Other requirements: POINeT is compatible with most
computer systems. It has been tested on Windows (with
Firefox, IE6/IE7, Google Chrome), MacOS (with Safari)
and Linux (with Firefox). The network viewer should
work on any java script enabled browser. However, there
may be more browser/OS combinations that have not
been tested. Users are welcomed to provide other OS/
browser combination, and we will try to make POINeT
compatible with these systems.

Authors' contributions
CYH, CYK, FSW, and JML provided the concept and
guidelines for the POINT/POINeT web servers, and
modified the manuscript. SAL collected PPI data,
implemented the system architecture, and wrote the
manuscript. TCC did the experiment for verification of
midbody proteins and supported the findings of
previous studies. CHC proposed and implemented the
ranking scores, and wrote the manuscript. KCH provided
the schizophrenia example. CHT explored the applica-
tions in disease network analysis. CYY collected and
integrated the tissue-specific expression data.

Acknowledgements
This research was supported by grants from NSC (Program for
Interdisciplinary Research Project: NSC97-2627-B-010-011 to C. Huang,
NSC97-2627-B-030-001 to J.-M. Lai, NSC97-2627-B-194-001 to F.-S.
Wang, and NSC97-2627-B-002-005 to C.-Y. Kao), and NSC97-3112-B-
010-025-CC1 and the Program for Promoting Academic Excellence of
Universities (National Yang Ming University) to C. Huang. This study is
partly supported by the "Gene Diagnostic Service Model Research and
Niche Market Analysis" project of the Institute of Information Industry,
which is subsidized by the Ministry of Economy Affairs of the Republic of
China. We are grateful to Computer and Information Networking Center,
National Taiwan University for the support of high-performance
computing facilities.

References
1. Cekaite L, Hovig E and Sioud M: Protein arrays: a versatile

toolbox for target identification and monitoring of patient
immune responses. Methods Mol Biol 2007, 360:335–348.

2. Walhout AJ, Boulton SJ and Vidal M: Yeast two-hybrid systems
and protein interaction mapping projects for yeast and
worm. Yeast 2000, 17(2):88–94.

3. Li S, Armstrong CM, Bertin N, Ge H, Milstein S, Boxem M,
Vidalain PO, Han JD, Chesneau A and Hao T, et al: A map of the
interactome network of the metazoan C. elegans. Science
2004, 303(5657):540–543.

4. Giot L, Bader JS, Brouwer C, Chaudhuri A, Kuang B, Li Y, Hao YL,
Ooi CE, Godwin B and Vitols E, et al: A protein interaction map
of Drosoph i la melanogaster . S c i e n ce 2003 , 302
(5651):1727–1736.

5. Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H,
Stroedicke M, Zenkner M, Schoenherr A and Koeppen S, et al: A
human protein-protein interaction network: a resource for
annotating the proteome. Cell 2005, 122(6):957–968.

6. Berger SI, Posner JM and Ma'ayan A: Genes2Networks: connect-
ing lists of gene symbols using mammalian protein interac-
tions databases. BMC Bioinformatics 2007, 8(1):372.

7. Kemmer D, Huang Y, Shah SP, Lim J, Brumm J, Yuen MM, Ling J,
Xu T, Wasserman WW and Ouellette BF: Ulysses – an
application for the projection of molecular interactions
across species. Genome Biol 2005, 6(12):R106.

8. Hulbert EM, Smink LJ, Adlem EC, Allen JE, Burdick DB, Burren OS,
Cassen VM, Cavnor CC, Dolman GE and Flamez D, et al: T1DBase:
integration and presentation of complex data for type 1
diabetes research. Nucleic Acids Res 2007, 35 Database:
D742–746.

9. Geisler-Lee J, O'Toole N, Ammar R, Provart NJ, Millar AH and
Geisler M: A predicted interactome for Arabidopsis. Plant
Physiol 2007, 145(2):317–329.

10. Batagelj VaM and Pajek A: A program for large network
analysis. Connections 1998, 21(2):47–57.

11. Junker B, Koschutzki D and Schreiber F: Exploration of biological
network centralities with CentiBiN. BMC Bioinformatics 2006, 7
(1):219.

12. Assenov Y, Ramirez F, Schelhorn SE, Lengauer T and Albrecht M:
Computing topological parameters of biological networks.
Bioinformatics 2008, 24(2):282–284.

13. Jeong H, Mason SP, Barabasi AL and Oltvai ZN: Lethality and
centrality in protein networks. Nature 2001, 411(6833):41–42.

14. Batada NN, Hurst LD and Tyers M: Evolutionary and physiolo-
gical importance of hub proteins. PLoS Comput Biol 2006, 2(7):
e88.

15. Hahn MW and Kern AD: Comparative genomics of centrality
and essentiality in three eukaryotic protein-interaction
networks. Mol Biol Evol 2005, 22(4):803–806.

16. Yu H, Greenbaum D, Xin Lu H, Zhu X and Gerstein M: Genomic
analysis of essentiality within protein networks. Trends Genet
2004, 20(6):227–231.

17. Zotenko E, Mestre J, O'Leary DP and Przytycka TM: Why do hubs
in the yeast protein interaction network tend to be
essential: reexamining the connection between the network
topology and essentiality. PLoS Comput Biol 2008, 4(8):e1000140.

18. He X and Zhang J: Why do hubs tend to be essential in protein
networks?. PLoS Genet 2006, 2(6):e88.

19. Huang TW, Tien AC, Huang WS, Lee YC, Peng CL, Tseng HH,
Kao CY and Huang CY: POINT: a database for the prediction
of protein-protein interactions based on the orthologous
interactome. Bioinformatics 2004, 20(17):3273–3276.

20. Lee SA, Chan CH, Tsai CH, Lai JM, Wang FS, Kao CY and Huang CY:
Ortholog-based protein-protein interaction prediction and
its application to inter-species interactions. BMC Bioinformatics
2008, 9(Suppl 12):S11.

21. Walhout AJ and Vidal M: Protein interaction maps for model
organisms. Nat Rev Mol Cell Biol 2001, 2(1):55–62.

22. Matthews LR, Vaglio P, Reboul J, Ge H, Davis BP, Garrels J, Vincent S
and Vidal M: Identification of potential interaction networks
using sequence-based searches for conserved protein-pro-
tein interactions or "interologs". Genome Res 2001, 11
(12):2120–2126.

23. Koschützki D, Lehmann KA, Peeters L, Richter S, Tenfelde-Podehl D
and Zlotowski O: Centrality Indices. Network Analysis LNCS
Tutorial: Springer; 2005, 3418:16–61.

24. Xenarios I, Rice DW, Salwinski L, Baron MK, Marcotte EM and
Eisenberg D: DIP: the database of interacting proteins. Nucleic
Acids Res 2000, 28(1):289–291.

25. Zanzoni A, Montecchi-Palazzi L, Quondam M, Ausiello G, Helmer-
Citterich M and Cesareni G: MINT: a Molecular INTeraction
database. FEBS Lett 2002, 513(1):135–140.

26. Bader GD, Betel D and Hogue CW: BIND: the Biomolecular
Interaction Network Database. Nucleic Acids Res 2003, 31
(1):248–250.

27. Mishra GR, Suresh M, Kumaran K, Kannabiran N, Suresh S, Bala P,
Shivakumar K, Anuradha N, Reddy R and Raghavan TM, et al:
Human protein reference database – 2006 update. Nucleic
Acids Res 2006, 34 Database: D411–414.

28. Mewes HW, Amid C, Arnold R, Frishman D, Guldener U,
Mannhaupt G, Munsterkotter M, Pagel P, Strack N and
Stumpflen V, et al: MIPS: analysis and annotation of proteins
from whole genomes. Nucleic Acids Res 2004, 32 Database:
D41–44.

BMC Bioinformatics 2009, 10:114 http://www.biomedcentral.com/1471-2105/10/114

Page 10 of 11
(page number not for citation purposes)

http://poinet.bioinformatics.tw
http://www.ncbi.nlm.nih.gov/pubmed/17172738?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17172738?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17172738?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10900455?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10900455?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10900455?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14704431?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14704431?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14605208?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14605208?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16169070?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16169070?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16169070?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17916244?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17916244?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17916244?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16356269?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16356269?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16356269?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17169983?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17169983?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17169983?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17675552?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16630347?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16630347?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18006545?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11333967?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11333967?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16839197?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16839197?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15616139?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15616139?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15616139?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15145574?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15145574?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18670624?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18670624?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18670624?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18670624?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16751849?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16751849?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15217821?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15217821?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15217821?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19091010?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19091010?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11413466?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11413466?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11731503?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11731503?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11731503?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10592249?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11911893?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11911893?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12519993?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12519993?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16381900?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14681354?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14681354?dopt=Abstract


29. Guldener U, Munsterkotter M, Kastenmuller G, Strack N, van
Helden J, Lemer C, Richelles J, Wodak SJ, Garcia-Martinez J and
Perez-Ortin JE, et al: CYGD: the Comprehensive Yeast
Genome Database. Nucleic Acids Res 2005, 33 Database:
D364–368.

30. Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A and
Tyers M: BioGRID: a general repository for interaction
datasets. Nucleic Acids Res 2006, 34 Database: D535–539.

31. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM,
Davis AP, Dolinski K, Dwight SS and Eppig JT, et al: Gene ontology:
tool for the unification of biology. The Gene Ontology
Consortium. Nat Genet 2000, 25(1):25–29.

32. Rhodes DR, Tomlins SA, Varambally S, Mahavisno V, Barrette T,
Kalyana-Sundaram S, Ghosh D, Pandey A and Chinnaiyan AM:
Probabilistic model of the human protein-protein interac-
tion network. Nat Biotechnol 2005, 23(8):951–959.

33. Su AI, Cooke MP, Ching KA, Hakak Y, Walker JR, Wiltshire T,
Orth AP, Vega RG, Sapinoso LM and Moqrich A, et al: Large-scale
analysis of the human and mouse transcriptomes. Proc Natl
Acad Sci USA 2002, 99(7):4465–4470.

34. Jacob R, Koschutzki D, Lehmann KA, Peeters L and Tenfelde-
Podehl D: Algorithms for Centrality Indices. Network Analysis:
Methodological Foundations, of LNCS Tutorial 2005, 3418:62–82.

35. Koschutzki D and Schreiber F: Comparison of Centralities for
Biological Networks. Proc German Conf Bioinformatics (GCB'04), of
LNI 2004, P-53:199–206.

36. Valente TW and Foreman RK: Integration and radiality:
Measuring the extent of an individual's connectedness and
reachability in a network. Social Networks 1998, 20(1):89–105.

37. Muff S, Rao F and Caflisch A: Local modularity measure for
network clusterizations. Phys Rev E Stat Nonlin Soft Matter Phys
2005, 72(5 Pt 2):056107.

38. Hsu DF and Isak T: Comparing Rank and Score Combination
Methods for Data Fusion in Information Retrieval. Inf Retr
2005, 8(3):449–480.

39. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D,
Amin N, Schwikowski B and Ideker T: Cytoscape: a software
environment for integrated models of biomolecular inter-
action networks. Genome Res 2003, 13(11):2498–2504.

40. Wendy Z and Theresa B: Geographic information systems: real
world applications for computer science. SIGCSE Bull 2008, 40
(2):124–127.

41. Pujana MA, Han JD, Starita LM, Stevens KN, Tewari M, Ahn JS,
Rennert G, Moreno V, Kirchhoff T and Gold B, et al: Network
modeling links breast cancer susceptibility and centrosome
dysfunction. Nat Genet 2007, 39(11):1338–1349.

42. Goh KI, Cusick ME, Valle D, Childs B, Vidal M and Barabasi AL: The
human disease network. Proc Natl Acad Sci USA 2007, 104
(21):8685–8690.

43. Stefanis NC, Trikalinos TA, Avramopoulos D, Smyrnis N,
Evdokimidis I, Ntzani EE, Ioannidis JP and Stefanis CN: Impact of
schizophrenia candidate genes on schizotypy and cognitive
endophenotypes at the population level. Biol Psychiatry 2007, 62
(7):784–792.

44. Lou XY, Ma JZ, Sun D, Payne TJ and Li MD: Fine mapping of a
linkage region on chromosome 17p13 reveals that
GABARAP and DLG4 are associated with vulnerability to
nicotine dependence in European-Americans. Hum Mol Genet
2007, 16(2):142–153.

45. Hsu SC, TerBush D, Abraham M and Guo W: The exocyst
complex in polarized exocytosis. Int Rev Cytol 2004,
233:243–265.

46. Skop AR, Liu H, Yates J 3rd, Meyer BJ and Heald R: Dissection of
the mammalian midbody proteome reveals conserved
cytokinesis mechanisms. Science 2004, 305(5680):61–66.

47. He F: Human liver proteome project: plan, progress, and
perspectives. Mol Cell Proteomics 2005, 4(12):1841–1848.

48. Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S,
Mathivanan S, Telikicherla D, Raju R, Shafreen B and Venugopal A,
et al: Human Protein Reference Database – 2009 update.
Nucleic Acids Res 2009, 37 Database: D767–772.

49. Tamiolakis D, Venizelos I, Nikolaidou S and Jivanakis T: Normal
development of fetal hepatic haematopoiesis during the
second trimester of gestation is upregulated by fibronectin
expression in the stromal cells of the portal triads. Rev Esp
Enferm Dig 2007, 99(10):576–580.

Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

BMC Bioinformatics 2009, 10:114 http://www.biomedcentral.com/1471-2105/10/114

Page 11 of 11
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/pubmed/15608217?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15608217?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16381927?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16381927?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10802651?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10802651?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10802651?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16082366?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16082366?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11904358?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11904358?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16383688?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16383688?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14597658?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14597658?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14597658?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17922014?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17922014?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17922014?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17502601?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17502601?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17336946?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17336946?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17336946?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17164261?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17164261?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17164261?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17164261?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15037366?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15037366?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15166316?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15166316?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15166316?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16118399?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16118399?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18988627?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18052660?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18052660?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18052660?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18052660?dopt=Abstract
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Implementation
	Protein-protein interaction Data Resources
	Protein-protein interaction Query Flow
	Protein-protein interaction filtering component
	Interaction Filtering Using Biological Characteristics
	Interaction Filtering Using Tissue-Specific Expression Profiles

	Protein filtering component
	Protein Filtering Using Centralities
	Protein Filtering Using Sub-Network Specificity Scores

	Output component
	Network viewer

	Discussion
	Putative Risk Gene Identification
	Hub Prioritization for the Midbody Interactome
	Filtering PPI with Tissue-Specific Expression Profiles

	Conclusion
	Availability and requirements
	Authors' contributions
	Acknowledgements
	References

