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ABSTRACT Neisseria gonorrhoeae causes the sexually transmitted infection gonor-
rhea. High-coverage (�3,300-fold) transcriptome sequencing data have been col-
lected from multidrug-resistant N. gonorrhoeae strain WHO Z grown in the presence
and absence of PBT2.

Neisseria gonorrhoeae is a Gram-negative diplococcal bacterium that infects human
mucosal surfaces and causes the sexually transmitted infection gonorrhea. Symp-

tomatic gonococcal infections typically present as urethritis in males and cervicitis in
females. Up to 80% of female gonococcal infections are asymptomatic (1, 2). Untreated
or undetected infections can lead to pelvic inflammatory disease, infertility, and neo-
natal blindness; more importantly, infection is associated with increased HIV transmis-
sion (reviewed by Edwards et al. [3]). No vaccine is available, and the emergence of
multidrug-resistant (MDR) N. gonorrhoeae strains that are resistant to available antimi-
crobials is a current health emergency (4). N. gonorrhoeae WHO Z, also called strain
A8806, was identified in Australia in 2013 (5). WHO Z is resistant to penicillin G, cefixime,
ceftriaxone, azithromycin, ciprofloxacin, and tetracycline, and it carries most known
resistance genes (4).

PBT2 {5,7-dichloro-2-[(dimethylamino)methyl]quinolin-8-ol} is a hydroxyquinoline-
based ionophore that was developed as a treatment for Alzheimer’s disease and
Huntington’s disease, and it progressed to phase 2 human clinical trials (6). Recent
studies showed that PBT2-zinc complexes can sensitize bacteria to antibiotics and can
reverse antibiotic resistance in multiple Gram-positive bacteria (7) and in the Gram-
negative pathogen N. gonorrhoeae (7, 8). To understand how PBT2 sensitizes N.
gonorrhoeae to antibiotics, the transcriptome of strain WHO Z was determined in the
presence and absence of 0.5 �M PBT2.

Cultures of strain WHO Z were grown to mid-log phase in GC broth before
supplementation with PBT2 or dimethyl sulfoxide (DMSO) (the solvent for PBT2, as a
no-PBT2 control) and then grown for an additional 16 h at 37°C. Triplicate biological
replicates of total RNA (three separate cultures grown for each RNA sample) were
extracted using TRIzol (Thermo Fisher Scientific) according to the manufacturer’s
protocol. Libraries were prepared using the Illumina Ribo-Zero Gold protocol and were
assessed using an Agilent Bioanalyzer DNA 1000 chip. Each individual library was
quantified by quantitative real-time PCR and normalized to 2 nM by using the Illumina
cBot system with TruSeq PE cluster kit v3 reagents. Sequencing of 150-bp paired-end
runs was performed on the Illumina NovaSeq system with TruSeq SBS kit v3 reagents.
The sequence reads from all of the samples were analyzed according to Australian
Genome Research Facility (AGRF) quality control measures. The per-base sequence
quality for the samples was excellent, with �93% of bases having a score above
Q30 across all samples. The reads were also screened for the presence of any Illumina
adapter or overrepresented sequences and cross-species contamination. The average
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number of reads for all samples was 98,389,274 reads (see details in Table 1). Sequence
reads were aligned with the WHO Z reference genome (GenBank accession number
GCF_900087715.2) by using Bowtie 2 aligner v2.3.3.1 with default settings (9). Tran-
scripts were assembled using StringTie v1.3.3 (10). Counts were summarized at the
gene level by featureCounts v1.5.3 (11). Default settings were applied in all software
programs except where otherwise specified. Differences in gene expression due to the
presence of PBT2 were expressed as log2(fold change). Analysis of log(counts/million)
values was performed by averaging log(counts/million) across all samples. F values
were calculated as the quasi-likelihood F statistic. P values were calculated to test
for statistically different expressions, and false discovery rate-adjusted P values were
calculated for multiple hypothesis testing. These new assembled transcriptomic data
were used to determine differential gene expression influenced by the presence of
PBT2 and to elucidate the mode of action of PBT2 in breaking antibiotic resistance in
N. gonorrhoeae.

Data availability. The GEO data set is available under accession number GSE146622.
SRA accession numbers are provided in Table 1.
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TABLE 1 Summary of sequencing reads and SRA accession numbers for RNA samples

Sample Accession no. No. of reads
% of reads mapped
to genome

% of reads mapped
to rRNA

DMSO_1 SRX7874779 98,161,838 88.50 �10
DMSO_2 SRX7874780 95,396,518 89.57 �10
DMSO_3 SRX7874781 82,450,694 89.41 �10
PBT2_1 SRX7874782 102,875,880 87.71 �10
PBT2_2 SRX7874783 117,431,706 88.56 �10
PBT2_3 SRX7874784 94,019,008 89.12 �10
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