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Abstract: Bioenergetic and mitochondrial dysfunction are common hallmarks of neurodegenerative
diseases. Decades of research describe how genetic and environmental factors initiate changes in
mitochondria and bioenergetics across Alzheimer’s disease (AD), Parkinson’s disease (PD), and amy-
otrophic lateral sclerosis (ALS). Mitochondria control many cellular processes, including proteostasis,
inflammation, and cell survival/death. These cellular processes and pathologies are common across
neurodegenerative diseases. Evidence suggests that mitochondria and bioenergetic disruption may
drive pathological changes, placing mitochondria as an upstream causative factor in neurodegener-
ative disease onset and progression. Here, we discuss evidence of mitochondrial and bioenergetic
dysfunction in neurodegenerative diseases and address how mitochondria can drive common patho-
logical features of these diseases.

Keywords: mitochondria; bioenergetics; Alzheimer’s disease; Parkinson’s disease; amyotrophic
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1. Introduction

Neurodegenerative diseases have common pathological mechanisms, including in-
flammation, neuronal loss, vascular changes, blood brain barrier disruption, protein ag-
gregation/loss of proteostasis, and bioenergetic dysfunction [1,2]. While there are many
pathologies in neurodegenerative diseases, bioenergetic dysfunction is often cited as a
causative factor [3,4]. Bioenergetic dysfunction is an increasingly recognized driver of
the progression and onset of neurodegenerative diseases. This is not surprising, given
the unique bioenergetic considerations of the brain and central nervous system (CNS).
The brain utilizes approximately 20% of the body’s energy output while only comprising
approximately 2% of total body weight [5]. The brain is an energy-expensive organ and is
very susceptible to disruptions in bioenergetic function [2].

Neurons and astrocytes have unique bioenergetic coupling relationships that are
disturbed in neurodegenerative diseases [6,7]. The failure of bioenergetic pathways is
attributed to mitochondrial dysfunction, which can be a result of inherited mitochon-
drial DNA (mtDNA) heteroplasmy, acquired mtDNA mutations during aging, and/or
environmental factors [4]. Mitochondrial dysfunction is hypothesized to drive other patho-
logical mechanisms, including inflammation, vascular abnormalities, proteostasis, and
neuronal loss.

Mitochondria play a major role in metabolic processes in the brain, where the contin-
uous production of ATP (adenosine triphosphate) is required [8]. In the citric-acid cycle
(TCA), acetyl CoA is oxidized to generate electron carriers for use in the electron transport
chain (ETC). These electron carriers, NADH and FADH2, are oxidized, and energy is har-
nessed to pump protons out of the mitochondrial matrix as their electrons pass through
enzymatic membrane complexes [9]. The proton gradient generated in the ETC allows ATP
synthase to catalyze the synthesis of ATP from ADP and phosphate. This highly efficient
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process is known as oxidative phosphorylation. In addition to their metabolic functions, mi-
tochondria serve as vital regulators of apoptosis, calcium levels, inflammation, proteostasis,
and the biosynthesis of macromolecules. Mitochondria are important for cellular function,
but dysfunction in mitochondria has also proved to be important in the pathogenesis of
neurodegenerative diseases. Here, we discuss and review the literature covering bioener-
getic and mitochondrial dysfunction in Alzheimer’s disease (AD), Parkinson’s disease (PD),
and amyotrophic lateral sclerosis/frontotemporal lobar dementia (ALS/FTD). We further
discuss how bioenergetic/mitochondrial dysfunction can lead to common pathological
findings in these diseases.

2. Bioenergetics and Neurodegeneration
2.1. Alzheimer’s Disease

AD is the most common form of dementia and is characterized by the accumulation
of intraneuronal neurofibrillary tangles and amyloid plaques in the brain. Tangles are com-
posed of hyperphosphorylated tau, while amyloid plaques are insoluble extracellular ag-
gregates of amyloid beta (Aβ) [10]. Aβ is generated from the cleavage of amyloid-precursor
protein (APP) by secretase enzymes. Historically, the amyloid-cascade hypothesis has
dominated the field of AD research and therapeutic avenues. Given the most recent clinical
trial failures, more interest is being placed in alternative hypotheses for AD, including
bioenergetic and mitochondrial dysfunction [11].

AD cases are categorized as either familial or sporadic. Familial forms of AD account
for approximately 5% of all cases and are caused by mutations or duplications in APP (chro-
mosome 21), or mutations in the secretase enzymes presenilin 1 (PS1, on chromosome 14)
or presenilin 2 (PS2 on chromosome 1). Sporadic AD accounts for most cases (~95%) and
risk factors include age, diabetes, cardiovascular disease, education level, maternal history,
and polymorphisms in the Apolipoprotein E (APOE, chromosome 19) gene [12]. Recent
genome-wide association studies (GWAS) implicate risk associated with single-nucleotide
polymorphisms (SNP) in genes that encode for pathways affecting pathologies including
inflammation and mitochondrial/bioenergetic function [13,14].

AD is a complex, multifaceted disease with numerous molecular pathologies. In a
triple-transgenic AD female mouse model (3xTg-AD), mitochondrial deficits preceded AD
pathology [15]. This study (and others reviewed below) support the mitochondrial-cascade
hypothesis of AD, which states that mitochondrial dysfunction is the cause of AD onset
and progression [3,4]. The mitochondrial-cascade hypothesis, developed by Dr. Russell
Swerdlow, postulates that inherited mtDNA determines baseline mitochondrial function
and that, throughout aging, mitochondrial function declines. Some individuals inherit
mtDNA, which allows high-baseline mitochondrial function and protects against AD onset
and progression. However, in some individuals, inherited mtDNA causes lower baseline
mitochondrial dysfunction and, during aging, a threshold is reached that leads to AD onset
and progression. Essentially, this hypothesis places mitochondria as the first mechanism in
the cascade of AD pathologies, including those listed in the introduction (Figure 1).

Cytoplasmic hybrid, or cybrid studies, further place mtDNA inheritance and mito-
chondrial dysfunction upstream of other AD pathologies. Cybrids are hybrid cells in which
patient-derived platelets are fused with cells that do not contain mtDNA. This generates
cells with mtDNA from patients on a consistent nuclear DNA background (Figure 2). The
purpose of cybrids is to study the influence of mtDNA on cell function and disease patholo-
gies [16]. In a cybrid AD model, altered bioenergetic function and bioenergetics-associated
infrastructures were observed [17]. This included changes in oxygen consumption, respira-
tory coupling, and glucose utilization.
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Figure 1. Mitochondrial-Cascade Hypothesis of AD. Inherited mtDNA determines baseline function
for individuals. During aging, mitochondrial function declines and somatic mutations accumulate. If
baseline function is low, mitochondrial dysfunction occurs earlier than if baseline function is high.
Eventually, a functional threshold is reached where mitochondrial dysfunction leads to a cascade of
loss of proteostasis (Aβ plaques, tau tangles), inflammation, and neuronal loss/degeneration.

Figure 2. Cytoplasmic Hybrids (Cybrids). Patient-derived platelets with mitochondria are fused with
cells that lack mtDNA (ρ0 cells) using PEG (polyethylene glycol). The ρ0 cells are auxotrophic for
pyruvate and uridine. After fusing platelets with ρ0 cells, pyruvate and uridine are withdrawn to
select for cells that received mitochondria.
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AD has been heavily linked with oxidative stress, a consequence of bioenergetic
processes [18]. In low concentrations, reactive oxygen species (ROS) are used as cell-
signaling molecules. ROS become harmful in situations in which antioxidants and redox
systems are depleted, such as in aging and with mitochondrial dysfunction. Oxidative
stress in the brain is increased with both aging and AD [19]. In postmortem AD brain tissue,
oxidative damage to mtDNA is increased, which can lead to mitochondrial dysfunction [20].
The disruption of oxidative phosphorylation and ETC complexes is observed in AD and
can increase ROS production. ATP synthase activity is reduced in AD postmortem brains
when compared to control cases, and this enzyme can be disrupted through ROS-associated
damage [15].

Beyond ROS and changes to mtDNA, AD subjects have reduced cytochrome oxidase
(COX, or complex IV) Vmax and flux [21,22]. This deficit has been observed in brain tissue,
blood, muscle, and skin [23,24]. These data support the role of mitochondrial dysfunction
in driving AD pathology and not vice versa, because systemic tissues lack amyloid plaques
and neurofibrillary tangles, but mitochondrial deficits are present. Further studies directly
support mitochondrial dysfunction in modulating tau phosphorylation, Aβ production,
and the aggregation of both [25–27].

Novel neuroimaging studies have allowed enhanced studies examining the role of
AD pathologies and energy metabolism in the cognition of human subjects. For example,
studies correlate decreased cerebral oxygen with the severity of dementia [28,29]. Special-
ized magnetic resonance imaging (MRI) studies have shown that phosphate metabolism
and metabolites are reduced in subjects with amnestic mild cognitive impairment (aMCI),
a diagnosis that precedes AD [30]. Brain-glucose metabolism is reduced in AD subjects,
a finding that was first described in the 1980s [31]. Current research suggests reduced
brain-glucose metabolism, measured by fluorodeoxyglucose positron emission tomography
(FDG-PET), occurs early in the disease process, and can be detected in those at highest risk
for AD [32].

Decades of research record mitochondrial and bioenergetic dysfunction in AD. Studies
support the role of altered energy metabolism preceding other common AD pathological
hallmarks. These studies are vitro, in vivo, and on human subjects, and they are consistent.
Bioenergetic and mitochondrial dysfunction should be high-priority research areas in AD
for future therapeutic efforts.

2.2. Parkinson’s Disease

PD is characterized by the degeneration of dopaminergic neurons in the substantia
nigra of the basal ganglia. Dopaminergic neurons in the substantia nigra form the nigrostri-
atal pathway, a major dopamine pathway in the brain responsible for voluntary movement.
PD is often recognized by the development of Lewy bodies in the brain, mostly composed
of aggregated α-synuclein protein. The main symptoms of PD include tremors, muscular
stiffness, bradykinesia, and a shuffling gait. Mitochondrial dysfunction is an important
factor in the development of both sporadic and familial PD.

PD cases are categorized as either familial or sporadic. Familial forms of PD account
for approximately 10–15% of all cases and are caused by familial mutations in numerous
identified genes. These genes include those with autosomal-dominant patterns of inheri-
tance, such as alpha-synuclein (SNCA, chromosome 4), vacuolar protein sorting 35 ortholog
(VPS35, chromosome 8), and leucine-rich repeated kinase 2 (LRRK2, chromosome 12), or
those with autosomal recessive inheritance, such as glucocerebrosidase (GBA, chromo-
some 1), parkin (PARK2, chromosome 6), DJ-1 (PARK7, chromosome 1), and PTEN induced
kinase 1 (PINK1, chromosome 1). Currently, other genes are being identified in familial
forms of PD; therefore, this list may not be all-encompassing [33]. Sporadic PD accounts for
approximately 85–90% of cases, with risk factors including age, head injuries, and sex (its
male predominate). Some environmental risk factors also include exposure to pesticides
and resulting water contamination [34]. Sporadic PD has been associated with SNPs in
genes which are also implicated in familial PD, as well as other rare, low-abundance gene



Int. J. Mol. Sci. 2022, 23, 9212 5 of 15

variants from GWAS studies [35]. Overall, the genes implicated in familial and sporadic
forms of PD, as well as environmental exposures, are linked to disrupted bioenergetics and
mitochondrial dysfunction.

Cells-harboring mtDNA from PD subjects, on a consistent nuclear DNA background
(cybrids; Figure 2), show a direct role for mitochondrial genetics in PD pathology. PD-
derived cybrids show reduced complex I (CI) flux, increased ROS and ETC proton leak,
and increased mitochondrial calcium [36,37]. PD-derived cybrids also have increased
oligomerization of α-synuclein and develop Lewy bodies [38]. Overall, these studies
support the role of mtDNA in the disease pathologies observed in PD.

It has been shown that mitochondrial dysfunction influences the pathology of PD,
especially when considering mitochondrial CI [39,40]. CI is the initial electron acceptor
of NADH in the ETC, and the disruption of this complex results in a dramatic loss of
energetic capacity. A recent study has shown, in a mouse knockout model, that the
disruption of CI induces PD [41]. The disruption of CI can result from oxidative damage,
among other factors. The physiological importance of CI in PD has been considered
for decades, following the observation that 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP) selectively inhibits CI. First seen as a side effect of illicit drug use, MPTP has since
been used to model PD in a variety of animal studies [42]. While MPTP does not cross
the blood–brain barrier, its metabolite, MPP+, does, where it accumulates in dopaminergic
neurons and induces toxicity through mitochondrial dysfunction [43].

ROS is an important factor in bioenergetic and mitochondrial dysfunction in PD.
Mitochondrial monoamine oxidases function in dopamine turnover, a major factor in
PD-symptom onset [44]. The reaction of monoamine oxidases generates H2O2, which,
in large amounts, can lead to cell toxicity [45]. Monoamine oxidases are involved in the
clearance of 6-hydroxydomaine (6-OHDA), a commonly used dopaminergic neuron toxin
for PD research [46]. In addition, 6-OHDA interacts with the ETC, where it impairs ATP
synthase and reduces mitophagy [47]. Overall, PD models use toxins that directly interact
with mitochondria to induce PD phenotypes. This highlights the direct involvement of
mitochondrial dysfunction in PD pathology (Figure 3).

Figure 3. Mitochondrial Dysfunction in PD. Inherited mutations in genes encoding proteins for
PINK1, Parkin, and α-synuclein affect mitochondrial function through the inhibition (red blunt
arrow) of CI and/or mitophagy inhibition. Environmental factors, such as MPTP and pesticide
rotenone, inhibit CI (orange blunt arrow). mtDNA (either inherited or somatic mutations) inhibit
complex I (red blunt arroa). All factors lead to increased ROS, mitochondrial calcium, and the
activation of the mitochondrial permeability transition pore (mPTP) with decreased bioenergetics
and mitophagy.
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The genes implicated in familial PD also interact with mitochondria and induce
mitochondrial dysfunction. For instance, α-Synuclein localizes to mitochondria and alters
mitochondrial membrane structure and function. Furthermore, α-Synuclein interacts with
outer mitochondrial membrane components, as well as ATP synthase, leading to a reduction
in ATP. Toxic α-Synuclein oligomers lead to mitochondrial-permeability transition pore
(mPTP) activation through an increase in ROS production and the inhibition of CI [48].

PINK1 and Parkin are mitophagy mediators. Mitophagy is the process of the phago-
some removal of damaged mitochondria. Mutations in PINK1 and Parkin cause familial
PD, and SNPs are also associated with sporadic forms of PD. Mitophagy impairment is
observed in both forms of PD. PINK1 and Parkin interact at the outer mitochondrial mem-
brane to facilitate autophagosome recruitment to mitochondria. Typically, PINK1 localizes
to depolarized mitochondria and recruits Parkin and ubiquitin [49]. PINK1 activates Parkin
and ubiquitin through phosphorylation. After Parkin is activated and accumulates at the
outer mitochondrial membrane, it polyubiquitinates mitochondrial proteins, which leads to
proteosome degradation [49]. Mutations in PINK1 and Parkin impair mitophagy processes
and may also be associated with reductions in mitochondrial transport in neurons [50].

Genes and environmental factors that cause familial or sporadic forms of PD directly
modulate mitochondrial function. In familial PD, genes that regulate mitophagy and vesicle
transport are causative in the onset and progression of the disease. Further, proteins that
aggregate in PD localize to mitochondria and induce dysfunction. PD is modeled using
toxins that target mitochondrial CI. Overall, PD and its associated pathologies are strongly
associated with mitochondrial and bioenergetic dysfunction.

2.3. Amyotrophic Lateral Sclerosis and Frontotemporal Lobar Dementia

ALS leads to the rapid degeneration of motor neurons, causing muscle spasticity,
atrophy, and paralysis. Patients diagnosed with ALS survive approximately 2–5 years.
Most ALS cases are sporadic (~90%), but familial ALS accounts for approximately 10% of
cases. Genetic mutations in superoxide dismutase 1 (SOD1, chromosome 21), C9orf72 (chro-
mosome 9), heterogeneous nuclear ribonucleoprotein P2 (FUS, chromosome 16), NIMA
related kinase 1 (NEK1, chromosome 4), Ubiquilin-2 (UBQLN2, chromosome X), kinesin
family member 5A (KIF5A, chromosome 12), and TAR-DNA binding protein 43 (TDP43,
chromosome 1) lead to familial ALS onset [51–53]. Both SOD1 and TDP43 localize to
mitochondria and induce mitochondrial dysfunction and bioenergetic disruption. Sporadic
ALS risk factors include sex (predominately male) and a prior history of head injuries.
GWAS implicate pathways including autophagy, cholesterol, and vesicle trafficking as
disease modifiers [54,55]. Furthermore, GWAS have shown shared pathways between AD,
PD, and ALS, which includes many genes involved in metabolic pathways.

Mitochondrial genetics may also contribute to ALS pathology. This is supported
by studies of ALS-subject-derived cybrid cells (Figure 2). These models show reduced
CI activity, altered ROS dynamics, and increased mitochondrial calcium [56]. To date,
the effects of mtDNA inheritance on SOD1, FUS, C9orf72-derived peptides, and TDP43
aggregation or accumulation have not been studied in ALS-derived cybrid models.

Both sporadic and familial ALS are hallmarked by loss of bioenergetic function and
mitochondrial dysfunction in motor neurons. Motor neurons derived from the induced
pluripotent stem cells of ALS patients show increased ROS, decreased ATP, and depolarized
mitochondria [57]. Furthermore, mitochondrial dysfunction precedes ALS onset in mouse
models. In the G93A SOD1 ALS mouse model, mitochondrial dysfunction was observed
prior to the onset of hanging-muscle-strength atrophy [58]. Overall, mitochondrial dys-
function could be upstream of other pathologies in ALS, driving its onset and progression.

Mutations in the genes that cause familial ALS are associated with mitochondrial
dysfunction and increased interactions/localization of mutant proteins to mitochondria.
SOD1 is typically found in the cytoplasm, but mutations associated with ALS lead to mito-
chondrial localization [59–61]. In animal models of ALS, which express transgenic mutant
SOD1 constructs, mitochondrial swelling and increased calcium, membrane depolarization,
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decreased ATP, and reduced ETC activities are observed [62–65]. Mutant SOD1 was shown
to bind to the anti-apoptotic protein, BCL-2, in mouse models and human-spinal-cord
samples [61]. Cell models that express mutant SOD1 also show mitochondrial dysfunction.
These findings include mitochondrial swelling, reduced ETC function, changes to redox
balance, and decreased ATP [65]. Mitochondrial dysfunction was not observed in models
expressing wild-type (WT) SOD1. Mutations in SOD1 elicit mitochondrial dysfunction
across in vitro and in vivo models.

TDP43 mutations are associated with both familial and sporadic forms of ALS. TDP43
regulates gene transcription in the nucleus but can form aggregates within the cyto-
plasm [66,67]. Both cell and animal models suggest the role of TDP43 in mitochondrial
dysfunction. The overexpression of mutant and WT forms induces changes in mitochon-
drial mass and structure, as well as reduced mitochondrial transport in motor neurons [68].

Fused-in sarcoma (FUS) is an RNA-binding protein implicated in ALS/FTD pathology.
FUS shuttles between the cytoplasm and the nucleus, where it regulates gene expression,
RNA splicing, and mRNA processing. FUS accumulates in the cytoplasm and induces
mitochondrial dysfunction [69]. FUS binds to ATP synthase within mitochondria and
induces the unfolded protein response [70,71]. Other studies support the role of FUS in
the dysregulation of mitochondrial and endoplasmic reticulum (ER) interactions. Overall,
the genes implicated in both sporadic and familial ALS may drive disease onset and
progression through mitochondrial/bioenergetic dysfunction.

Mitochondrial and bioenergetic dysfunction are observed in human ALS subjects.
One study determined that DNA damage in postmortem tissue correlated with oxidative
damage [72]. The mtDNA levels are reduced and there is an increase in mtDNA mutations
and deletions in postmortem ALS spinal cord tissue [73]. Mitochondria from dorsal-root
ganglion cells have increased protein aggregates within the intermembrane space and
cristae [74]. The anterior horn of the spinal cord showed mitochondrial aggregation and
altered morphology, while COX activity was reduced [75]. Mitochondrial and bioenergetic
changes are also observed in muscle from ALS patients. Findings in skeletal muscle include
reduced activities for CI, COX, citrate synthase (CS), and succinate dehydrogenase [76].
Mitochondrial morphology and mtDNA deletions and mutations are also observed in
muscle [77]. Mitochondrial changes are evident across in vitro and in vivo models and
human ALS subjects within spinal cord and muscle.

ALS is often diagnosed with FTD, and it is currently estimated that 50% of those
afflicted with ALS also develop FTD [78]. FTD is associated with neuronal loss in the frontal
and temporal lobes, leading to disinhibition, changes in personality, and speech pathology.
Mitochondrial dysfunction is a hallmark of ALS/FTD and the C9orf72 gene is associated
with ALS/FTD. Increased GGGGCC repeat expansions in C9orf72 lead to the production of
dipeptide repeat proteins (DPR). DPR (GR)80 preferentially binds mitochondria ribosomal
proteins, causing mitochondrial dysfunction in induced pluripotent stem-cell-derived
neurons [79]. Other genetic risk factors are conserved between ALS and FTD and implicate
mitochondrial function, as discussed above.

ALS and FTD are associated with significant changes in mitochondrial and bioen-
ergetic function. The mechanisms of mitochondrial functional changes in driving the
diseases’ pathology are not completely understood, but data support the upstream role of
mitochondria in the disease process (Figure 4).
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Figure 4. Mitochondrial dysfunction in ALS. Inherited mutations in genes encoding proteins for
TDP43 and SOD1 affect mitochondrial function through inhibition of bioenergetics and mitochondrial
transport. Mutations in FUS inhibit ATP synthase or complex V (CV) and C9orf72 peptides interact
with mitochondrial ribosomes and affect the expression of mtDNA encoded proteins (red blunt
arrows). Environmental factors and head injuries affect overall mitochondrial function (orange
blunt arrow). Furthermore, mtDNA (either inherited or somatic mutations) inhibits complex I (red
blunt arrow). All these factors lead to increased ROS, mitochondrial calcium, and activation of the
mitochondrial permeability transition pore (mPTP) with decreased bioenergetics.

3. Consequences of Disturbed Bioenergetics

Numerous studies place mitochondrial dysfunction and bioenergetic stress upstream
of other pathological features of neurodegenerative diseases. Here, we discuss how mi-
tochondrial and bioenergetic dysfunction can lead to the pathological hallmarks that are
common between AD, PD, ALS, and ALS/FTD.

3.1. Neuronal Loss and Degeneration

The mechanism(s) of neuronal loss are not fully understood. Neuronal loss and
degeneration have been difficult to study, as animal models of disease (such as AD) do not
have neurodegenerative features as in those observed in human disease. Another major
caveat in the understanding of neuronal loss and degeneration is a lack of specific markers
and harmonized methods to measure this phenomenon [80]. Several mechanisms have
been identified in neuronal loss and degeneration, and one of the most cited is oxidative
stress [81].

ROS generation is a by-product of energy production, particularly at the ETC. Ox-
idative stress occurs when ROS production overwhelms antioxidant defense mechanisms,
or those mechanisms become depleted [82]. The consequences of oxidative stress include
DNA damage to chromosomes in the nucleus, as well as mtDNA damage; mtDNA is
particularly prone to oxidative damage due to its lack of histones and proximity to the
ETC [83,84].

Reduced mitophagy or loss of mitophagy function are hallmarks of neurodegenerative
diseases and can lead to neuronal cell death [85]. The exact mechanism(s) of mitophagy
failure are not understood, but mitophagy is currently a major therapeutic target. Studies in
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models of AD showed significant results when mitophagy was increased [86–90]. However,
without a full understanding of where or how mitophagy is disrupted, it will be difficult
to appropriately target. For example, the lesion affecting the mitophagy could originate
during induction or lysosome function. If lysosome function is disrupted, then inducing
mitophagy pathways at the level of increasing mitochondrial trafficking to lysosomes is
not advantageous.

Reduced mitochondrial trafficking can lead to bioenergetic dysfunction at synapses
and neuronal cell death [91–94]. For proper synaptic signaling, a large amount of ATP is
required. Mitochondria are important for the generation of neurotransmitters and provid-
ing energy for their release and uptake. One hypothesis is that the reduced mitochondrial
numbers in synapses can lead to reduced signaling and the degeneration of neurons. Fur-
thermore, the mechanisms of mitophagy and the mitochondrial biogenesis within synapses
are important factors that require further study. Some mechanisms have been described
recently, including transcellular mitophagy [95]. Transcellular mitophagy is a process
in which neurons release mitochondria into the synapse, resulting in phagocytosis and
mitophagy by glial cells. Limited research is available on this process, but it remains
a mechanism that could link mitophagy disruption and synaptic dysfunction, beyond
bioenergetic loss.

Disturbed mitochondrial bioenergetics lead to altered neurometabolic coupling, energy
processing, and function [96]. Neurons are non-mitotic, and some neurons are not replaced
throughout the lifespan. Some studies do support neurogenesis (new neuron formation)
in certain brain structures, including the hippocampus, but others dispute these findings.
Regardless, neurons are not easily replaced if they degenerate.

The bioenergetic requirements of neurons are high, especially for synaptic function
and neurotransmitter synthesis, release, and uptake. Oxidative phosphorylation accounts
for the majority of neuronal ATP production and, upon disruption, can have severe con-
sequences. Neurons do not have the ability to switch to glycolytic or non-aerobic ATP
production because they lack key enzymes for this pathway [97–99]. As a result, neu-
rons rely on astrocytes for bioenergetic support, especially as a source for lactate. During
stress, astrocytes can increase the glycolytic output of lactate to support neurons [1,98–102].
A consequence of these bioenergetic shifts, however, is an imbalance in lactate/glucose
levels, which can alter mitochondrial function and the redox pairs that control bioenergetic-
pathway feedback [103]. These effects can lead to further mitochondrial damage, glutamate
toxicity, and neurodegeneration [100,103].

3.2. Proteostasis

Recent studies implicate mitochondria and mitophagy in the regulation of proteosta-
sis. In vitro work describes mitochondria as guardians of the cytoplasm (MAGIC), where
aggregation-prone proteins localize to mitochondria and are disposed of via mitophagy [104].
Beyond their direct involvement in protein folding and proteostasis pathways, mitochon-
dria may play a direct role in modulating the expression and production of aggregation-
prone proteins.

Decades of research link mitochondrial and bioenergetic stress with increased or
decreased APP processing to Aβ [27,105]. More recently, mitochondrial membrane potential
and, ultimately, mitochondrial activity were shown to directly influence the secretion of
Aβ and the accumulation of intracellular Aβ [27]. Studies also directly link changes to
mitochondrial function driving tau phosphorylation and accumulation [25]. While these
studies are more relevant to AD, further studies are warranted to examine aggregation-
prone proteins in PD and ALS. Most studies focused on the effects of α-synuclein, SOD1,
or TDP43 on mitochondrial function, but the effects of mitochondrial function on the
localization and aggregation of these proteins have not been studied.

Mitochondria contain quality-control mechanisms to maintain proteostasis. Energy
disruption can negatively influence protein folding. During protein-unfolding stress re-
sponses, mitochondria activate the mitochondrial unfolded-protein response pathway
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(UPRmt). In many neurodegenerative disease models, these pathways are activated (CHOP,
ATF4/5, AFS-1; see cited review) [106,107]. While the UPRmt promotes the recovery of
mitochondria, its constant activation can lead to a state of chronic mitochondrial recovery
and imbalanced bioenergetics. The role that mitochondrial dysfunction plays in driving
UPRmt versus other neurodegenerative pathologies (such as disrupted proteostasis) is
currently unclear.

3.3. Inflammation

Damage associate molecular patterns (DAMPs) are molecules released during cell
death or damage [108–110]. DAMPs induce an inflammatory response, probably due to
their resemblance of virus- or bacteria-derived particles. Mitochondria and mitochondrial
components can serve as DAMPs [111,112]. Mitochondria-induced inflammation can lead
to changes in AD-like pathology in vitro and in vivo [111,113]. Further work is needed to
determine whether this is a driving factor in neurodegenerative diseases, or whether these
findings are specific to AD pathologies.

Mitochondrial dysfunction can directly or indirectly induce inflammation. Mitochon-
drial dysfunction can lead to necrotic cell death, the release of cell components, and the
activation of inflammation through DAMP pathways [112]. Mitochondria can also activate
inflammation via redox through the NLRP3 inflammasome. The release of mtDNA frag-
ments to the cytoplasm activates the cGAS-STING pathway, TLR9/NFκB inflammatory
pathways, and cytokine production [108,114]. Overall, mitochondria-induced inflammation
is observed, and these pathways are activated in neurodegenerative diseases [112,115].

4. Concluding Remarks

Mitochondrial and bioenergetic changes are common across AD, PD, and ALS/FTD.
These changes were discovered decades previously; however, its mechanisms are not fully
understood. The data are consistent across in vitro, in vivo, and human-derived samples,
which show specific changes in mitochondrial function across neurodegenerative diseases.
The mitochondrial changes observed in neurodegenerative diseases are linked to mtDNA
inheritance or somatic mutations. In some cases, mtDNA SNPs can modulate the risk of
neurodegenerative disease and interact with nuclear-encoded genetic risk factors.

Recent research has revealed a strong correlation between mitochondrial changes in
disease and observed pathological hallmarks. Mitochondria are implicated in pathological
changes, including loss of proteostasis, inflammation, and cell loss/death. As models for neu-
rodegenerative diseases improve and further GWAS are completed, we can better understand
the role of mitochondria in the onset and progression of neurodegenerative diseases.

There is a significant need for further research in order to determine how mitochon-
drial and bioenergetics lead to neurodegenerative phenotypes. Many clinical trials target
mitochondria and bioenergetics (both directly and indirectly) for neurodegenerative dis-
eases. Based on this, a better understanding of the underlying mechanisms will help in
the design of better therapeutics and biomarkers for target engagement outcomes. The
data are very clear that mitochondria are likely upstream in the pathological process of
neurodegeneration; further research will aid in understanding how and why.
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