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Abstract: Internet of Things (IoT) environments such as smart homes, smart factories, and smart
buildings have become a part of our lives. The services of IoT environments are provided through
wireless networks to legal users. However, the wireless network is an open channel, which is insecure
to attacks from adversaries such as replay attacks, impersonation attacks, and invasions of privacy.
To provide secure IoT services to users, mutual authentication protocols have attracted much attention
as consequential security issues, and numerous protocols have been studied. In 2017, Bae et al.
presented a smartcard-based two-factor authentication protocol for multi-gateway IoT environments.
However, we point out that Bae et al.’s protocol is vulnerable to user impersonation attacks, gateway
spoofing attacks, and session key disclosure, and cannot provide a mutual authentication. In addition,
we propose a three-factor mutual authentication protocol for multi-gateway IoT environments to
resolve these security weaknesses. Then, we use Burrows-Abadi-Needham (BAN) logic to prove that
the proposed protocol achieves secure mutual authentication, and we use the Automated Validation
of Internet Security Protocols and Applications (AVISPA) tool to analyze a formal security verification.
In conclusion, our proposed protocol is secure and applicable in multi-gateway loT environments.

Keywords: internet of things; multi-gateway; mutual authentication; cryptanalysis, BAN logic;
AVISPA

1. Introduction

Internet of Things (IoT) provides numerous types of services through the internet to exchange
data among sensors, embedded systems, and mobile devices. In recent years, IoT environments
such as smart buildings, smart factories, smart homes, and smart offices are rapidly becoming a part
of our life. A typical IoT architecture consists of heterogeneous micro devices and collects various
types of information in real time. However, this is not efficient for practical IoT systems because
the communication and computation cost can be increased when the size of IoT networks and the
distance between participants are expanded [1,2]. The gateway nodes are deployed to enhance the
performance, which provides the ability to communicate with each other efficiently. In a multi-gateway
IoT environment, many gateway nodes are deployed and it can process the capability of large-scale
IoT networks. IoT environments are also vulnerable to various attacks due to the nature of the open
communication channel. Malicious attackers may attempt to insert, delete, and modify the data to
obtain users’ sensitive information and masquerade as valid users. Much research has been done
to resolve security problems in IoT environments. Secure mutual authentication is a primitive and
essential method to provide secure communication and numerous secure mutual authentication
protocols for IoT have been presented to provide various security features [2-16].
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In 2017, Bae et al. [15] proposed a smartcard-based secure authentication protocol in multi-gateway
IoT environments to reduce the computational and communication cost. However, we demonstrate
that Bae et al.’s protocol is vulnerable to user impersonation, gateway spoofing, and trace and session
key disclosure attacks, and does not provide anonymity and a secure mutual authentication. Then,
we propose a three-factor authentication protocol that is based on the biometric information of the user,
for IoT environments. To analyze the security aspects, we perform an informal security analysis and use
Burrows—-Abadi-Needham (BAN) logic. Furthermore, we perform a formal security verification using
Automated Validation of Internet Security Protocols and Applications (AVISPA) software to check that
our protocol can resist man-in-the-middle attacks and replay attacks. We compare the computation
cost and security features of our proposed protocol with those of related existing protocols.

The remainder of this paper is as follows. In Sections 2 and 3, we introduce related works and our
preliminary details. In Sections 4 and 5, we review Bae et al.’s protocol and cryptanalyze its security
flaws. Then, we propose a secure three-factor mutual authentication protocol for multi-gateway
IoT environments in Section 6. In Section 7, we prove that our proposed protocol provides a secure
mutual authentication using BAN logic. We also perform the AVISPA simulation as a formal security
verification and compare the computation cost and security properties with related protocols in
Sections 8 and 9. Finally, we conclude with the results of this paper in Section 10.

2. Related Works

Various authentication protocols in single server environments have been proposed [3-5].
In 2010, Wu et al. [3] presented a novel authentication protocol for the telecare medical information
system (TMIS). Their protocol provides a guarantee to legitimate users. However, Debiao et al. [6]
demonstrated that Wu et al.’s protocol cannot withstand several attacks such as impersonation, replay;,
or man-in-the-middle attacks. Debiao et al. proposed a more safe and efficient remote authentication
protocol for TMIS. In 2013, Chang et al. proposed a secure authentication protocol that provided users
privacy. But, in 2103, Das et al. [7] showed that their protocol cannot provide several security features
and proper authentication. Furthermore, these authentication protocols are not suitable for distributed
systems that consist of multiple servers, such as IoT environments, because the users who want to
access the IoT services have to know as many identities and passwords as the number of servers [8,9].
In addition, the physical performance of a single server has limitations [17], and IoT environments are
resource-constrained. Therefore, multi-gateway (multi-server) IoT environments are more efficient
and useful than the traditional IoT structure [1,2,10,13-16].

In 2014, Turkanovic et al. [5] presented an authentication protocol for IoT environments. However,
in 2016, Amin and Biswas [10] pointed out that Turkanovic et al.’s protocol does not withstand several
attacks such as offline identity and password guessing, impersonation, and stolen smartcard attacks.
They also demonstrated that Turkanovic et al.’s protocol has an inefficient authentication phase. Then,
Amin and Biswas proposed an authentication protocol for multi-gateway wireless sensor networks.
In 2017, Wu et al. [1] proved that Amin and Biswas’s protocol does not resist sensor capture, offline
guessing, session key disclosure, impersonation, and desynchronization attacks. They also proved that
Amind and Biswas’s protocol does not withstand user tracking attacks and does not achieve mutual
authentication. Then, Wu et al. proposed a mutual authentication and key agreement protocol for
multi-gateway wireless sensor network in IoT. In the same year, Srinivas et al. [13] also proved that
Amin and Biswas’s protocol has security flaws. Srinivas et al. pointed out that sensor devices have
low power, limited memory, and limited battery. Thereafter, Srinivas et al. proposed a more secure
and efficient remote user authentication protocol for multi-gateway wireless sensor networks that are
suitable for IoT environments.

In 2016, Das et al. [10] presented a three-factor multi-gateway-based user authentication protocol
for wireless sensor networks. Das et al. suggested the multi-gateway environment for wireless
sensor networks because the generalized wireless sensor networks can bring a lot of overhead to the
gateway and have more power consumption than multi-gateway-based wireless sensor networks.
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They demonstrated that their protocol can withstand attacks such as sensor capture, privileged-insider,
offline password guessing, and impersonation attacks. However, Wu et al. [1] pointed out that
Das et al.’s protocol does not resist user tracking attacks and does not have a same session key for all
three participants.

In 2018, Wu et al. [14] proposed an authentication protocol for healthcare systems in multi-gateway
wireless medical sensor networks. Their protocol prevents malicious attacks such as patient tracking,
insider, and offline guessing attacks. Wu et al. demonstrated that multi-gateway environments are
suitable for collecting patients” health data through wireless health sensors because the gateway
in each area collects the information of patients in the area and then sends it to the doctor.
They also demonstrated that their protocol is suitable for transferring data with low time and
communication costs.

In 2017, Bae et al. [15] proposed a smartcard-based secure authentication protocol in multi-gateway
IoT environments to reduce the computational and communication cost. However, their protocol does
not resist impersonation, gateway spoofing, traceability, and session key disclosure attacks and does
not guarantee secure mutual authentication and anonymity.

3. Preliminaries

In this section, we introduce a threat model for cryptanalyzing Bae et al.’s protocol, the fuzzy
extraction that we use for the cryptographic system in our authentication protocol, and the system
model of our protocol in multi-gateway loT environments. Finally, we present the notations used in
this paper.

3.1. Threat Model

We adopt the Dolev-Yao (DY) threat model [18] to analyze Bae et al.’s protocol and our proposed
protocol. This model is popularly applied to estimate security. The general assumptions of the DY
threat model are as below:

e An attacker can eavesdrop, delete, modify, or insert the transmitted messages via an
insecure channel.

e An attacker can steal the smartcard or use a lost smartcard to extract the sensitive information
stored in the smartcard [19].

e An attacker can perform various attacks such as trace, impersonation, smartcard lost,
man-in-the-middle, replay attacks, and so on.

3.2. Fuzzy Extraction

We briefly show a description of the fuzzy extractor [20] that can extract key information from
the given biometric data of users. Biometric information is weak to noises and it is hard to reproduce
the actual biometrics from biometric templete in common practice. Moreover, the hash function is
sensitized to input, so completely different outputs may come out. Because of these problems, we use
the fuzzy extractor method [21,22], which is a type of key generating designed to convert noisy data
to public information and a secret random string. The fuzzy extractor restores the original biometric
information for noisy biometric data using public help information. The algorithms of the fuzzy
extractor are as follows:

e  Generate(BIO;) =< R;, P; >. This algorithm is for generating key information. It uses biometric
data BIO; as an input and then outputs secret key data R;, which is a uniformly random string,
and a public reproduction P; as a helper string.

e  Reproduce(BI O;, P;) = R;. This algorithm reproduces the secret data R;. The inputs of this
algorithm are a noisy biometric Bl O; and P;. The algorithm reproduces the secret biometric key
R;. To recover the same R;, the metric space distance between BIO; and BI O:- should be within
a given error tolerance.
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We introduce a system model of with our proposed protocol for multi-gateway IoT environments.
The model consists of three entities: Users, Gateways, and a Control Server. The multi-gateway IoT
system model is illustrated in Figure 1.
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Figure 1. System model of our protocol in multi-gateway IoT environments.
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o  Users: A user who wants to use the IoT service receives a smartcard from the control server to
access the multi-gateway. After registration, login, and authentication, the user has access to use
the IoT service. The users’ smartcard can be lost or stolen by an attacker.

° Gateways: The gateways consist of IoT environments such as smart homes, smart buildings,
smart offices, and gateways. We assume that the gateway and IoT environments are connected in
advance by a wireless network through a secure authentication. The performance of the gateways
is approximately the performance of the server computer.

e  Control Server: The control server is a trusted authentication server with sufficient computation
power to compute complicated hash and exclusive functions or store security parameters.

The control server stores the identities of the legitimate gateways in advance, and we assume that
an attacker can never attack the control server.

3.4. Notations

Table 1 shows the notations

used in this paper.

Table 1. Notations.

Notations Meanings
u; i-th user
5; j-th server
CSs Control server
ID; Identity of U;
SID; Identity of S;
PW; Password of U;
x Master secret key chosen by CS
Ts Timestamp
Ni Random number generated by U,’s smartcard
Nip Random number generated by S;
N; Random number generated by CS
SK Common session key shared among U, S, and CS
h(x) Collision-resistant one-way hash function
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4. Review of Bae et al.’s Protocol

In this section, we overview Bae et al’s authentication protocol in multi-gateway IoT
environments, which consists of three phases: user and server registration phase, user login and
authentication phase, and password update phase. In Bae et al.’s protocol, they assumed that the
authentication server CS is trusted.

4.1. Registration Phase

If a new user U; or server S; requests registration to the authentication server CS, CS issues the
smartcard to U; and sends the necessary value to S;. This phase and verifier table is shown in Figure 2
and Table 2, respectively, and the details are as follows.

| User (U;) Server (S;) Control Server (CS) |

Chooses SID;
Serinfor; = h(SID; || )
{Serinfor;}

Chooses ID;, PW,

Computes {ID;, EncPass;, UID;}
EncPass; = h(ID; [[h(PW;))

Generates Userinfor;
Smart card Userinfor; = h(EncPass; || x)
Stores
{UID;, Userinfor;, EncPass;, h(*), h(x)}
in the smart card
Stores Userinfor;, UID;, statusbit
in the verifier table

Figure 2. Registration phase of Bae et al.’s protocol.

Step 1: S; requests registration to the CS. S; sends its identity SID; to CS through a secure channel,
then CS computes Serinfor; and sends this to S;.

Step 2: U; chooses the ID;, and PW;, computes EncPass; = h(ID;||h(PW;)) and sends the message
(ID;, EncPass;) and UID;, which is an anonymity value of Uj, to CS through a closed channel.

Step 3: CS receives the message from U;. CS computes the secret information value Userinfor; =
h(EncsPass; || x), stores {UID;, Userin for;, EncPass;, h(x),h(x)} in the smartcard, and stores
Userin for;, UID; and statusbit in the verifier table. Then, CS issues the smartcard to U;.

Table 2. The verifier table.

User-Verifier ~Anonymity Value Status-Bit

Userinforq U 0/1
Userinfory U, 0/1
Userinfor; u; 0/1

4.2. Login and Authentication Phase

User U; must send a login request message to S; to use the service of server S;. After receiving
a request message, S; sends a login request message to control server CS. This phase is illustrated in
Figure 3 and the following details.
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User (U;) Server (Sj) Control Server (CS) I

Inputs smart card, 1D, PW;

smart card computes

EncPass; Z h(ID; || h(PW;))

If, EncPass; = EncPass,'

Generates a random number Nj;

Computes

A =Userinfor; @ h(x) @ Nj;

Vert; =h(h(x)[| Niz)

Generates timestamp Ts UID;, A, Veru;, Tsy Generates random number Nj,

Computes Ts =Ts +1

Checks ATs = Ts—Ts

Computes

(Niz @ Nig) = E; (A | h(x))

SK'= h(h(A; [[h(x)) @ h(Niz @ Niz & Ni3))

Computes
B; = Serinfor @ Nj,

Vers; =h(h(SID; N; .
ers; =N((SID; 1) 1Ni2) {UID;, A, Veru;, By, Vers;, SID;, Ts} Computes Ts =Ts +1

Checks ATs =Ts—Ts
Computes

Serinfori‘ =h(sID; [ x)

N;, = Serinfor, @ B

Vers; = h(h(SID; [| )| Ni2)

I, Vers; ;Vers,'

Retrieves Userinfor;

Computes

N;; = Userinfor; @ h(x) @ A

Veru; = h(h(x)|| Niy)

If, Very; ;Veru{

Generates random number N3
SK; = h(h(A [[h(x)) @ h(Njy @ Niz @ Ni3))
Generates timestamp Ts

Computes

Ci =Njg @ Niz @ h(SID; ® N;2)
D; = h(A [[h(x)) @ h(SID; & Niz)
Ej = Niz @ Ni3 @ h(A [[h(x))

Computes {Ci, Di, E;, Ts}

(Niz @ Nig) =C; @h(SID; @ Nip)
h(A Ih(x)) = D; S h(SID; @ Niz)

{E;.Ts} SK' =h(h(A [1h(x)) ® h(Ny & Nip @ Niz))
o E = (Njp @ Nig) @ h(A [[h(x)

Step 1:

Step 2:

Step 3:

Figure 3. Login and authentication phase of Bae et al.’s protocol.

U; inputs his/her ID; and PW; and inputs the smartcard into a smartcard reader.
The smartcard computes EncPass; = h(ID;||h(PW;)). Then, the smartcard checks whether

EncPass; Z EncPass;-. If it is equal, U; generates a random number N;; and computes
A; = Userinfor; ® h(x) & Ny, Veru; = h(h(x)||Nj1). Then, U; generates Ts to prevent
a replay attack. Finally, U; sends the login request message {UID;, A;, Veru;, Ts} to S; through
a secure channel.

If S; receives the login request message, S; generates a random number Nj; and computes
B; = Serinfor; © Ny, Vers; = h(h(SIDj||x)||Ni2). Then, S; sends the login request message
{UID;, A;, Veru;, B;, Vers;, SID;, Ts} to CS through an open channel.

After CS receives the login request message from S;, CS computes Ts' = Ts + 1 and checks

ATs > Ts' — Ts to see whether the login request message is legitimate. If it is valid,
CS computes Serinfor; = h(SIDj||x), N£2 = Serinfor:- @ B, Vers; = h(h(SIDj||x)||N;2).

Then CS compares Vers; L Vers;- to check that the message from §; is valid. If it is
equal, CS retrieves Userinfor; from the verifier table using UID; from the login request
message. Then, CS computes Nl.’l = Userinfor; @ h(x) & A;, Veru;' = h(h(x)||N;1).
If Veru; z Veru; is correct, CS selects a random number Nj3 and generates a session key
SK; = h(h(A;||h(x)) ® h(Njy & Nip & Nj3)). CS generates time stamp T5 and computes
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Step 4:

Step 5:

C; = Nj ® Ni3 @h(SID]' @D Np), D; = h(Aillh(x)) & h(SID]‘ ® Np), E; = Np ® Nj &
h(A;||h(x)). Finally, CS sends an authentication message {C;, D;, E;, Ts} to S;.

After S; receives the message from CS, S; computes (Nj; @ Nig,), = C; ® h(SID; ® Np),
h(A;||h(x)) = D; ©h(SID; ® Njp). Sj generates a session key SK' = h(h(A;||h(x)) ®h(Ny &
Ni @ Nj3))'. Then, S;j computes E; = (Njp @ Nj3) @ h(A;|[h(x)) and sends an authentication
message {E;, Ts} to U,.

After receiving the message from S;, U; computes Ts' = Ts + 1 and checks whether ATs >
Ts — Ts. If it is correct, U; computes (Nip @ Niz)' = E; @ h(A;||h(x)) and generates a session
key SK" = h(h(A;||h(x)) & h(Niy @ Nip ® Ni3))'. Therefore, U;, S;, and CS generate the same
session key, so they can perform the authentication.

4.3. Password Change Phase

If U; wants to change his/her password PW; to a new password PW;**?, the password change
phase is performed. This phase is illustrated in Figure 4 and is described as follows.

Step 1:

Step 2:

Step 3:

Step 4:

The U; inserts his/her smartcard into a card reader and inputs ID; and PW;. Then, U; sends
the {ID;, PW;} to the smartcard reader through the closed channel.
After receiving the values from Uj, the smartcard computes EncPass; = h(ID;||h(PW;)),

Userinfor; = h(EncPass;||x). The smartcard verifies whether Userinfor; Z Userinfor;. If itis
equal, the smartcard requests a new password.

U; inputs a new password PW!““ and generates EncPass!*“ = h(ID;||h(PW!"“?)). Then,
U; inputs EncPass}“” into the smartcard.

The smartcard computes Userinfor?*” = h(EncPass}*||x) by using EncPass!®”.
The smartcard updates Userin for; to Userinfor!“’ and replaces Userin for;. Finally, the user
U; changes his/her password.

Enters new password PW;""

Generates Computes
EncPass{" = h(ID; [ h(PW;"")) Userinfor"®" = h(EncPass["™" || x)
EncPass{"" updates Userinfor; to Userinfor,"®"

User (U,) Smart card
Inputs 1D;, PW,
{ID;, PW;}
----------------- Computes
EncPass; = h(ID; || (PW;))
Generates

Userinfori' = h(EncPass; || x)
Userinfori' 2 Userinfor;

request new password

then replaces Userinfor;

Figure 4. Password change phase of Bae et al.’s protocol.
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5. Cryptanalysis of Bae et al.’s Protocol

We analyze the security flaws of Bae et al.’s protocol in this section. Bae et al. asserted that
their proposed protocol can prevent various attacks such as user impersonation, server spoofing,
and session key disclosure attacks. However, we demonstrate that their protocol does not prevent the
following attacks.

5.1. User Impersonation Attack

If an attacker U, attempts to impersonate an authorized user U;, U, must successfully compute
alogin request message {UID;, A;, Veru;, Ts}. According to Section 3.1, we can assume that U, extracts
the values {UID;, Userin for;, EncPass;, h(x)} from the smartcard of U; and obtains the transmitted
messages over a public channel. After that, U, can impersonate the user in the following steps.

Step 1: U, obtains {Userinfor;, h(x)}, {A;, Ts} from the smartcard of U; and the previous session,
respectively.

Step 2: U, computes Ny = A; @ Userinfor; & h(x) and obtains a random nonce N;;. Then U,
computes Veru; = h(h(x)||Nj).

Step 3: U, computes A; = Userinfor, & h(x) & Ny, Veru, = h(h(x)||N,1). Finally, U, can generate
a login request message {UID;, A;, Veru,, Ts} successfully.

5.2. Server Spoofing Attack

To obtain the sensitive information of a user, an attacker attempts to impersonate the server.
Bae et al. asserted that their protocol can withstand server spoofing attacks. However, we analyze
that their protocol does not resist server spoofing. First, an attacker U, obtains message {E;, Ts} and
extracts the information /i(x) from the smartcard of an authorized user. Then, U, can impersonate the
server by generating authentication messages in the following steps.

Step 1: U, obtains transmitted messages {E;, Ts} in the previous session and extracts /(x) from the
smartcard of an authorized user.

Step 2: U, computes h(A;||h(x)) and obtains (Nj; & Nj3). After that, U, computes E; = (Nj & Nj3) ®
h(Aillh(x))-

Step 3: Finally, U, generates authentication messages {E;, Ts} successfully.

5.3. Session Key Disclosure Attack

Bae et al. demonstrated that their protocol can resist session key disclosure attacks because an
attacker cannot compute the values N;;, Njp, and Nj3. Furthermore, Bae et al. claimed that the attacker
cannot obtain /1(x) because the trusted party CS generated h(X). However, we demonstrate that the
attacker can compute Nj; and Nj; & Nj3 and extract /1(x) in Sections 5.1 and 5.2. Thus, the attacker can
compute SK; = h(h(A;||h(x)) ® h(Njy @& Nip @ Ni3)). Therefore, Bae et al.’s protocol is vulnerable to
session key disclosure attacks.

5.4. Mutual Authentication

In Bae et al.’s protocol, CS computes Vers; and Veru; to authenticate legitimate U; and S;. However,
CS cannot generate authentication messages for U; and S;. Thus, U; and S; receive the message from
CS, but they cannot trust the messages because they cannot check whether the attacker sends the
message. Therefore, Bae et al.’s protocol does not achieve mutual authentication.

6. A Secure Three-Factor Mutual Authentication Protocol

In this section, we propose a three-factor mutual authentication protocol for multi-gateway IoT
environments according to Section 3.3. The proposed protocol consists of three phases: users and
gateways registration, login and authentication, and password update.
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6.1. Registration Phase

First, a gateway G; must register with control server CS to provide their services to users. Then,
a new user U; first accesses the control server, and he/she must register with CS. The detailed steps
are illustrated in Figure 5 and described as follows.

Step 1: G; requests registration to the CS. G; selects GID; and sends the value to CS through a secure
channel, then CS computes PID; = h(GID;||h(x||ly)) and sends PID; to G; via a secure
channel. G; stores PID; in itself.

Step 2: U; chooses the his/her identification ID; and password PW; and imprints biometrics BIO;.
Then U; generates a random number 4;, computes < R;, P; >= Gen(BIO;), HIDi =
h(ID;||a;)), which is an anonymity value of U;, and HPW; = h(ID;||PW;||a;), and sends
the message { HID;, HPW;, a;} to CS through closed channel.

Step 3: After CS receives the message from U;, CS computes the secret information value UI; =
h(HID;||a;||x), A; = Ul; & h(HPW;), B; = h(Ul,||A;), and X; = h(UL]||x). Then, CS stores
{Aj, B;, Xj, h(x)} in the smartcard, and stores U[; with HID; in the database. Then CS issues
the smartcard to U;.

Step 4: After receiving the smartcard from CS, U; computes L; = h(R;||PW;) & a;. Then U; inputs L;
and P; in the smartcard.

| User (U;) Gateway (G) Control Server (CS) |

Chooses GID;

Generates random number b )
{GIDj, b} x is master key of CS

________________________ ’ y is secret key of CS
PID; =h(GIDj ||b;)
Gl =h(PIDj[Ih(x]ly))
Stores y in the CS
Compares GID; with values
{PID;, GI} . .
€emnennne i stored in the CS's database
Chooses ID;, PW;
Imprints biometric BIO;
Generates random number a;
Computes
<R;, B>=Gen(BIO;)
HID; = h(ID; [|a;)
HPW; = h(ID; || PW; || &) {HID;, HPW;, aj}

Ul; = h(HID; || a || x)
Ai :Uli @h(HPWl)

B =h(Ul; | A)
X; = h(Ul; [1%)
Stores

{A, Bi, Xj, h(*)}

in the smart card
Stores Ul; with HID;
in the verifier table

Smart card

Li =h(Ri [IPW)) & &;
Inputs L, B in the smart card

Figure 5. Registration phase of our proposed protocol.
6.2. Login and Authentication Phase

If a user U; wants to use the service of gateway G;, U; must send a login request message to
G;. Then, G; sends a login request message to control server CS. The detailed steps are illustrated in
Figure 6 and described as follows.



Sensors 2019, 19, 2358

10 of 25

| User (U;) Gateway (G;)

Control Server (CS) |

Inputs smart card, ID;, PW;
and biometric BIO;

Smart card computes

R; = Rep(BIO;,R)

a; = L @ h(Ry || PW;)

HID; = h(ID; || a)

HPW; = h(ID; | PW, || ;)
Ul; = A @ h(HPW,;)

B =h(Ul; | A)

If,B 28

Generates a random number N;

Computes

Ci=Ul; ®N;

VU; =h(X; [|N; [|GID;) Generates random number N ;
Computes
D =Gl ®N;

VS =h(GID; [IGI;IINj) {HID;, G, VU;, PID}, D}, VS }

{Mcg- Mcu- Ei, FI}

Ne = Ei® Gl

Mg = h(Ei GIj IIN;)

If, Mg 2 Mgq

Computes

Ni =F @Gl
Mgy =h(X; [IU1; | N;) SK=h(N; @ h(N; [| Ne)
If, M3y 2 Mg, Hi Mo} G; =h(GIDj [IN;)
Computes o e H; =G @ h(N; [IN)
Gi =h(GID; |IN;)

h(NjIN) = H; © G/

SK =h(N; @ h(N;[IN))

Updates HID;, Ul; to HID™", uI™"
then replaces HID;, Ul;

HID™ = h(HID; || N; [[(N j [| N¢))
UI™ = h(HID™" IN{|U1;)
Updates

A UMV @ h(HPW)

Bl = h(UIT® || A™")
X" = h(UI™" [|U;)

Computes

Gl =h(PID;j [[h(x]l y))
Nj=D ®Gl;

VS| =h(GID; [|GI[IN;)

If,vs} 2vs;

Retrieves Ul;

Computes

Xi =hUl; [1x)

N; =C; ®UI;

VU7 =h(X{ [IN; [|GID;)
If,vU; 2vu;

Generates a random number N,
E; =Gl; ® N,

F=Gl;®N;

Mcg =h(E; [IGIj[INc)

SK =h(N; ®h(N; [IN))

My =h(Xj VI [IN;)

Updates HID;, Ul; to HID™", U1
then replaces HID;, Ul;
HID{™ = h(HID; [| N [[h(N ;|| Ne))
U = h(HID™" |INj{|U1;)

Step 1:

Step 2:

Figure 6. Login and authentication phase of our proposed protocol.

U; inserts the smartcard, his/her ID; and PW;, and biometric BIO;. The smartcard computes
Ri = Rep(BIOi,Pi), a; = Lj @h(RiHPWl'), HIDZ' = h(IDi||ai), HPWI' = h(IDi||PWi||ai),
Ul; = A; @ h(HPW;), Bf = h(UL||A;). Then, the smartcard checks whether Bf < B; to
check whether the user is legitimate. If it is valid, U; generates a random number N; and
computes C; = Ul; ® N;, VU; = h(X;||N;||GIDj). Finally, U; sends the login request message
{HID;, C;, VU;} to Gj through a public channel.

After receiving a login request message, G; generates a random number N; and computes
D; = GI;® Nj, VS; = h(GID;||GL||N;). Then, G; sends the login request message
{HID;,C;, PID;, D;, VS]-} to CS via an open channel.
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Step 3: After CS receives the login request message from G;, CS computes GI; = h(PID;||h(x||y)),

N; = D; ® Gl; and compares VS;‘ < VS; to see whether G;’s login request message is
legitimate. If it is equal, CS retrieves UI; from the verifier table using HID; of the login request
message. Then, CS computes X; = h(UI;|[x), N; = C; @ UL;, VU = h(X;||N;||GID;). Then
CS compares VU L VU, to check that the message from U; is valid. If it is valid, CS generates
a random number N, and computes E; = GIj @ Ng, F; = GIj @ N;. CS computes Mgy =
h(E;||GI;||N;) to mutually authenticate with Gjand M, = h(X;||UL||N;) to authenticate with
U; and generates a session key SK = h(N; @ h(N;j||Nc)). CS updates HID; to HID}*" =
h(HID;||N;||h(N;|[Nc)) and UT; to U = h(HID}“||N;||UI;), then replaces HID; and U];.
Finally, CS sends the authentication message {Mcg, My, E;, Fi} to Gj.

Step 4: After G; receives the authentication message from CS, G;j computes N. = E; & GIj, Mé‘g =

h(E;||GI;||Nc).Then, G; compares M, L Mg to verify whether the message from CS is
legitimate. If it is valid, G; computes N; = F; @ GI; and generates a session key SK =
h(N; © h(Nj||Nc)). Then, G; computes G; = h(GID;||N;), H; = G; ® h(Nj||N) and sends the
authentication message { H;, M, } to Uj.

Step 5: After receiving the message from G;, U; computes M, = h(X;[|UL;]||N;) and verifies whether
M, L Mg, If it is valid, U; computes G/ = h(GIDj||N;), h(Nj||[N.) = H; ® G} and
generates a session key SK = h(N; @ h(N;j[|N;)). Therefore, U;, S;, and CS generate
the same session key, so they can perform the authentication. U; updates HID; to
HID}*“ = h(HID;||N;|[h(Nj||Nc)) and UI; to UI}'“ = h(HID}*“|[N;||UI;), then replaces
HID; and UJ;. The smartcard updates A"¢ = UT"¥ @ h(HPW), BIe® = h(UIIew|| Alew),
and X0 — p(UT"®||UL,).

6.3. Password Change Phase

If U; wants to change his/her password, U; performs the password change phase without the
help of G;. The detailed steps of the password change phase are shown in Figure 7 and described
as follows.

Step 1: A legitimate user U; inserts the smartcard, his/her ID; and PW;, and biometric BIO;.

Step 2: The smartcard computes < R;, P; >= Gen(BIO;), a; = L; ® h(R;||PW;), HPW; =
h(ID;||PW;||a;), and Bf = h(UL||A;). After that, the smartcard compares the B} with B;
stored value. If it is equal, the smartcard requests a new password to U;.

Step 3: When U, receives the request message from smartcard, U; inputs a new password PW/**.

Step 4: After receiving the new password from U;, the smartcard computes L = a; © h(R;||PW/*?),
HPW" = h(ID;||PW!"®||a;), A" = Ul; & h(HPW""), and B!““ = h(UL;||A").
Consequently, the smartcard updates the old information {A;, B;, L;} to new information
{A;’lew/ B;zew’ L;’lﬂ’w}'
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User (U;) Smart card
Inputs 1D;, PW;
Imprints BIO;
S 1Dy, P, BIO) Computes

< Ri, PI >= Gen(BIO,)
a; = L @ h(R; | PW;)
HPW; =h(ID; || PW; || &)

Bi =h(Ul; || A)
B B
. request new password
Inputs new password PW;"V
P
Computes

L = a; @ h(R; | PW;"")
HPW"® = h(ID; || PW;™™" || 3)
A =UI; @ h(HPW;"*")
B =h(UI; | A™)

Figure 7. Password change phase of our proposed protocol.

7. Security Analysis

We show that our proposed protocol can prevent various attacks by performing an informal
analysis, as mentioned in Section 3.1. We analyze our protocol using Burrows—Abadi-Needham (BAN)
logic to prove that our protocol can achieve secure mutual authentication.

7.1. Informal Security

To prove that our proposed protocol can prevent various attacks such as trace, smartcard
lost, impersonation, off-line guessing, and session key disclosure attacks, we perform an informal
security analysis. Additionally, we show that proposed protocol provides anonymity and a secure
mutual authentication.

7.1.1. User Impersonation Attack

If a malicious attacker U, attempts to masquerade as a user U;, U, can generate a login request
message {HID;, C;, VU;} and message {H;, M, }. However, U, cannot compute HID; because U,
cannot extract a random number a; from HID;. U, cannot retrieve a random number N; because
the attacker cannot know secret parameter UJ;. Thus, U, cannot compute C;, VU; because U, cannot
extract a random number N;. Therefore, our protocol resists user impersonation attack.

7.1.2. Server Spoofing Attack

To impersonate the server, an attacker U, can generate an authentication message {H;, M¢y }.
However, U, cannot compute these because U, cannot know the random nonces Nj, N i N..
Furthermore, if U, attempts to impersonate the gateway by using public parameter GIDj;, the control
server compares it with the stored identities of the legitimate gateways in advance. Thus, our proposed
protocol is secure against server spoofing attacks because U, cannot generate valid messages.
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7.1.3. Smartcard Stolen Attack

We assume that an attacker U, can extract the values of the smartcard {A;, B;, X;, L;, h(x*)}
according to Section 3.1. However, U, cannot obtain sensitive or useful information without the
identity, password, and biometrics of the legitimate user because the values stored in the smartcard are
safeguarded with a one-way hash function or an XOR operation of ID;, PW;, HPW; = h(ID;||PW;||a;).
Therefore, our protocol can prevent smartcard stolen attacks.

7.1.4. Trace Attack and Anonymity

In our protocol, an attacker U, cannot know the identity of the users and gateways. The user U;
does not send a real identity ID; via the public channels. The user generates and sends a pseudonym
identity HID; = h(ID;||a;). Because HID; is a transmitted message via a public channel, U, can obtain
this value. Therefore, U; updates it as HID}*“ = h(HID;||N;|[h(Nj||Nc)) for every session to prevent
the attack of U,. The gateway uses PID;, which is generated in the registration phase, instead of GID;,
so our protocol provides anonymity of users and gateways. In addition, the proposed protocol resists
trace attacks because all messages are dynamic for every session.

7.1.5. Man-in-the-Middle Attack and Replay Attack

We assume that attacker U, knows the information transmitted via an insecure channel and
information from the smartcard of U; to set up a secure channel with G]-. However, U, cannot generate
a valid login request message, as mentioned. Furthermore, U, cannot impersonate user U, by resending
the messages because the messages are refreshed with random numbers N;, N;, and N.. Therefore,
our proposed protocol prevents man-in-the-middle attacks and replay attacks.

7.1.6. Off-Line Password Guessing Attack

An attacker U, attempts to guess the password PW; of legitimate user U;. If U, can guess the
password, U, can compute a series of equations and compute several equations and the valid value
with the guessed passwords. However, U, must know the unique biometrics of the user to compute
equations. Therefore, it is impossible to guess the user’s password in our protocol.

7.1.7. Desynchronization Attack

For a desynchronization attack, an adversary disturbs the communication of the login and
authentication request message. However, CS uses HID; to retrieve UI; after checking message from
Gj, and HID; updates HID*" after authentication of the request message. Furthermore, an attacker
disturbs the response communication to desynchronize HID}*“. Even if the user cannot receive the
response message, the user can generate and update HID*. Thus, our proposed protocol can resist
desynchronization attacks.

7.1.8. Mutual Authentication

When control server CS receives the login request message from gateway G;, CS computes VS;‘
and VU to authenticate user U; and G]-. If VS]- and VS;‘ are equal, CS authenticates G]-. Furthermore,
CS retrieves U; from a database to an available VS;. After that, CS compares VU; and VU If they are
equal, CS authenticates U;. Then, CS computes and sends the login response messages Mcg and M,
to authenticate. After receiving Mg from CS, G; computes M¢, and compares Mg, and Mcg. If they

are equal, G; authenticates CS. Finally, U; computes M, and checks whether M, Z Mgy If itis
valid, U; authenticates CS. Therefore, U;, Gj, and CS successfully mutually authenticate. An attacker
cannot validate the message, as mentioned in Sections 7.1.1 and 7.1.2. Moreover, the login request
and response messages are refreshed for every session according to Sections 7.1.4 and 7.1.5. Therefore,
our proposed protocol provides secure mutual authentication.
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7.2. Ban Logic

We perform a formal verification to check that our proposed protocol achieves a secure mutual
authentication using BAN logic. Table 3 presents the notation of BAN logic. We show the logical
rules of BAN logic in Section 7.2.1. In the following sections, we show the goals, idealized forms,
and assumptions of our proposed protocol. In Section 7.2.5, we show that our proposed protocol
can provide mutual authentication among U;, G]-, and CS. More details of BAN logic can be found
in [23,24].

Table 3. Notations of Burrows—-Abadi-Needham (BAN) logic.

Notations Meaning

Pl=X P believes the statement X
#X The statement X is fresh
P<X P sees the statement X
P| X P once said X
P=X P controls the statement X
< X >y  Formula X is combined with formula Y
{X}k Formula X is encrypted by the key K

p& Q P and Q communicate using K as the shared key
SK Session key used in the current authentication session

7.2.1. Rules of Ban Logic

We introduce rules of BAN logic as follows:

1. Message meaning rule:
Pl=P&Q, Pa{Xl
Pl=Q|~X

2. Nonce verification rule:
P |=#(X), P|EQ‘~X

Pl=Q|=X

3.  Jurisdiction rule:
Pl=Q|=X, P|=Q|=X

P ’ =X
4.  Freshness rule:
P ‘ = #(X)
P ‘ =#(X,Y)
5.  Belief rule:
p ‘ =(X,Y)
P ’ =X

7.2.2. Goals

We present the following goals to prove that our protocol achieves secure mutual authentication:

Goal 1: Gj| =CS| = (N, N;),
Goal 2: Gj| = (N, N;),
Goal 3: CS| =Gj| = (N;, Nj),
Goal 4: CS| = (N, Nj),
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Goal 5: U;| = Gj| = (N, N;),
Goal 6: U;| = (N;, N;)

7.2.3. Idealized Forms
Msg1 : Ui — G] : (HIDZ', Ni, X, GIDj)LH,-

Msgz : G] — CS: (HIDI, N,‘,x, GID], N]')GI/'
MSg3 : CS— G] : (NC, N;, UL, x)G]],
Msg4 : G] — U;: (NC,N]', ur, GID]‘,X)NI.

7.2.4. Assumptions

To achieve the BAN logic proof, we make the following assumptions about the initial state of our
proposed protocol:

ur
A2 : G]| = #(Ni)
GI;
Az CS| = (Gj +— CS)
A4 : CS| = #(N]', Nj)
GI;
As : G]| = (G] — CS)
N;
A6 : U,’| = (U,» — G])
A7 : U,’| = #(N])
GI;
Ag: CS|=Gj= (CS«— Gj)
7.2.5. Proof Using Ban Logic
The following steps are the main proofs using BAN rules and assumptions:
Step 1: According to Msg;, we can get
Sy G] < (HID,, N;, x, GID])LH,
Step 2: From A; and S, we apply the message meaning rule to obtain
52 H G]| = u,‘ (HID,‘,NZ',X, GID]')LHI"
Step 3: From Aj; and S;, we apply the freshness rule to obtain
53 : G]| = #(HIDI, Nir X, GID])LHI
Step 4: From Sy and S3, we apply the nonce verification rule to obtain
54 : G]| = ul' = (HIDI',NZ',X, GIDj)l,IIi-

Step 5: From S4, we apply the belief rule to obtain
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55 : G]| = LIZ-| = (Nz')LH»-

1

Step 6: According to Msg,, we can get
S¢: CS« (HIDI, N;, x, GID], N]‘)G]],.
Step 7: From As and S¢, we apply the message meaning rule to obtain
S7 : C5| = G] (HIDl, Ni/ X, GID], Nj)Gl]-'
Step 8: From A, and S7, we apply the freshness rule to obtain
Sg : CSl = #(HIDZ, Nir X, GID], Nj)GIj-
Step 9: From S7 and Sg, we apply the nonce verification rule to obtain
59 : CS| = G]| = (HIDi,Ni,X, GID],N])G[]
Step 10: From Sg, we apply the belief rule to obtain
510 : CS| = G]| = (Ni/ Nj)GIj- (Goal 3)
Step 11: According to Msg», we can get
S11: Gj < (Ne, Nj, Ul;, )i
Step 12: From As and S1;, we apply the message meaning rule to obtain
512 : G]| =CS (NC,N,‘, UIi/x)GIj'
Step 13: From A¢ and Sqp, we apply the freshness rule to obtain
513 : G]| = #(Nc/Ni/ UIi, X)GI]--
Step 14: From S;; and S13, we apply the nonce verification rule to obtain
514 : G]| = CSl = (Nc, Ni, UIi/x)GIj~
Step 15: From Sy4, we apply the belief rule to obtain
Si5: G]| =CS| = (N, Ni)GIj- (Goal 1)
Step 16: According to Msg4, we can obtain
816 U< (NC, N]', ur, GID]‘, X)Ni.
Step 17: From Ag and 514, we apply the message meaning rule to obtain
517 : Ul-| = G] (N,;, Nj, UIZ', GID]‘, X)Ni.
Step 18: From Ay and Sq7, we apply the freshness rule to obtain
518 . U,’| = #Gj (NC, N]‘, UIZ', GID]‘, X)Ni'

Step 19: From Sq7 and S1g, we apply the nonce verification rule to obtain
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519 : Ui‘ = G]| = (NC,N]‘, UIZ', GIDj,x)Ni.

Step 20: From Sq9, we apply the belief rule to obtain

520 : Ui| = G]| = (NC, Nj)Ni' (Goal 5)

Step 21: From Sqp and Ag, we apply the jurisdiction rule to obtain

So1: CS| = (N, Nj). (Goal 4)

Step 22: From S15 and Ag, we apply the jurisdiction rule to obtain

Sy : Gj| = (N, N;). (Goal 2)

Step 23: From Sy and Ajg, we apply the jurisdiction rule to obtain
5232 Ul| = (NC, Nz) (Goal 6)

We show that the proposed protocol can provide secure mutual authentication between U;, Gj,
and CS based on goals 1-6.

8. Formal Verification Using Avispa

We present a formal verification of our proposed protocol using the AVISPA tool based on the
High-Level Protocol Specification Language (HLPSL) code [25]. AVISPA is one of the widely used
verification tools to check that protocols are secure against man-in-the-middle attacks and replay
attacks. Numerous studies have been simulated using the AVISPA tool [26-28]. We will shortly
describe AVISPA and show the HLPSL specifications of our proposed protocol. Then, we will assert
that the proposed protocol can resist replay and man-in-the-middle attacks through the results of the
AVISPA simulation.

8.1. Description of Avispa

AVISPA  performs security verification through four back-ends consisting of
Constraint-Logic-based Attack Searcher (CL-AtSe) [29], On-the-Fly Model-Checker (OFMC) [30],
Tree Automate-Based Protocol Analyzer (TA4SP), and SAT-Based Model-Checker (SATMC). HLPSL
specification is translated into intermediate format (IF) by an hlpsl2if translator. IF is converted to the
output format (OF), which is produced using the four back-ends as mentioned above. But usually,
CL-Atse and OFMC are used for verification. AVISPA has several functions that are mentioned below
for analyzing protocols. More details on AVISPA can be found in [31,32].

e secret(A,id, B): id denotes an information A that is only known to B.

° witness(A,B,id,E): id denotes a weakness authentication factor E that is used by A to
authenticate B.

e request(A,B,id, E): id denotes a strong authentication factor. B requests A for E to authenticate.
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8.2. Hlpsl Specifications of Our Protocol

Our protocol has three basic roles which are denoted by entities that have been specified
according to HLPSL: UA denotes a user, GA denotes a gateway, and CS denotes a control server.
The role of session and environments are shown in Figure 8. In the session, we describe participants.
In environments, intruder knowledge is defined, and four secrecy goals and four authentication goals
are described. The HLPSL specifications of role UA are shown in Figure 9, and the details are as follows.

role environment()

def=

const ua, ga, cs : agent,

skuacs, skgacs: symmetric_key,

h: hash_func,

ua_cs_ni, €s_ua_mcu, ga_cs_nj, cS_ga_mcg:
protocol_id,

spl,sp2,sp3,sp4: protocol_id

role session(UA, GA, CS : agent, SKuacs, SKgacs :
symmetric_key, H: hash_func) | a A me i Ridi

composition

def= : —

Kuacs, skgacs, )\
local SN1, SN2, SN3, RV1, RV2, RV3: channel(dy) :iiﬂg:g‘;;g:sci)s uacs, skgacs,m/session(i.ga.cs,
composition ! '

N\session(ua,i,cs, skuacs,skgacs,h)

user(UA, GA, CS, SKuacs, H, SN1, RV1) Nsession(ua,ga,i, skuacs,skgacs,h)

/\ gateway(UA, GA, CS, SKgacs, H, SN2, RV2)

N\ controlserver(UA, GA, CS,SKuacs, SKgacs, H, SN3,
RV3)

end role

end role

goal

secrecy_of spl, sp2, sp3, sp4
authentication_on ua_cs_ni
authentication_on cs_ua_mcu
authentication_on ga_cs_nj
authentication_on cs_ga_mcg
end goal

environment()

Figure 8. Specification of session and environments.

At transition 1, UA starts the registration phase with a start message in state value 0 and then
updates the state from 0 to 1. UA sends the registration message { HID;, HPW;,a} to CS through
a closed channel. At transition 2, UA receives the smartcard from CS, then it updates the state
from 1 to 2. In state value 2, UA generates the random number N;, sends the login request message
{HID;,C;, VU;} to GA via an insecure channel, and declares witness(UA, CS, us_cs_ni, N;), which
means that N; denotes a weakness authentication factor. At transition 3, UA receives the login
response message from GA. After that, UA changes the state value from 2 to 3, generates the session
key, and declares request(UA,CS, cs_ua_mcu, N.). The specifications of role GA and CS are similar
and shown in Figures 10 and 11.
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role user(UA, GA, CS : agent, SKuacs : symmetric_key, H: hash_func, SND, RCV :
channel(dy))

played_by UA
def=
local State: nat,
IDi,PWi,BIOI,Ri,Pi,HIDi, HPWi,GIDj,Li, Ai, Uli, Aii, Bi, Ni,Nj,Nc, Ci, Xi, X, Y,
Bj,VUi: text,
Di,Ei,Fi,Gi,Hi, VSj, Mcg,Mcu, Glj, PIDj : text,
HIDinew, Ulinew, Aiinew, Binew, Xinew : text,
SKi, SKj, SKc: text
const spl, sp2, sp3, sp4, ua_cs_ni, cs_ua_mcu, ga_cs_nj, ¢s_ga_mcg: protocol_id
init State := 0
transition

%%%%%%%%%%%%Registration phase
1. State = 0 A\ RCV/(start) =|>
State' := 1 A Ai' := new() A Ri' := new() \ Pi' := new()
N HIDI'" := H(IDi.AiI")
NHPWI' := H(IDi.PWi.AI')
N\ SND({HIDi'.HPWiI'.Ai'}_SKuacs)
N\ secret({IDi, PWi, Ri, Pi}, sp1, {UA})

%%%% %% %% %% %% Recieve smartcard
2. State =1 \RCV
({xor(H(H(IDi.PWi.Ai").X),H(H(IDi.PWi.Ai"))).HH(H(IDi.PWi.Ai").X).xor(H(H(IDi
PWi.AI").X),H(H(IDi.PWi.Ai"))).H(H(H(IDi.PWi.Ai").X).X)}_SKuacs)=|>
State' := 2 A Ri':= new() N Li:=xor(H(Ri'.PWi),Ai")
%%%%%%%%%%%%Login & Authentication phase

ANi' = new()

N Ci' := xor(H(H(IDi.PWi.Ai').X),Ni")

NVUI' := HH(H(H(IDi.PWi.Ai").X).X).Ni'.GIDj)

N\ SND(H(IDi.AI").Ci".VUI")

N\ witness(UA,CS,ua_cs_ni,Ni")
3. State =2
N\ RCV(xor(H(GIDj.Ni"),H(Nj'.Nc")).H(H(H(H(IDi.PWi.Ai").X).X).H(H(IDi.PWi.Ai").
X).Ni")) =>
State' := 3 A SKi' := H(xor(Ni',H(Nj".Nc"))

N\ HIDinew' := H(H(IDi.Ai").Ni".H(Nj'.Nc")

N Ulinew' := H(H(H(IDi.Ai").Ni'.H(Nj".Nc")).Ni.H(H(IDi.Ai").Ai'. X))

N\ Aiinew' := xor(Ulinew', H(H(IDi.PWi.Ai"))

N\ Binew' := H(Ulinew'. Aiinew')

N\ Xinew' := H(Ulinew'.H(H(IDi.Ai").Ai'. X))

N request(UA,CS,cs_ua_mcu,Nc')
end role

Figure 9. Specification of user.
8.3. Results of Avispa Simulation

The results of AVISPA simulation through OFMC and CL-AtSe verification are shown in Figure 12.
The OFMC and CL-AtSe back-ends check whether our proposed protocol can resist replay attacks
and man-in-the-middle attacks. The OFMC verification shows that search time is 12 s for visiting
1040 nodes, and the CL-AtSe verification analyzes 3 states with 0.13 s to translate. Because the summary
part of OFMC and CL-AtSe indicates that the protocol is SAFE, our proposed protocol is secure against
replay and man-in-the-middle attacks.
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role gateway(UA, GA, CS : agent, SKgacs : symmetric_key,
H: hash_func, SND, RCV : channel(dy))

played_by GA

def=
local State: nat,
IDi,PWi,BIOI,Ri,Pi,HIDi, HPWi,GIDj,Li, Ai, Uli, Aii, Bi : text,
Ni,Nj,Nc, Ci, Xi, X, Y, Bj,VUi: text,
Di,Ei,Fi,Gi,Hi, VSj, Mcg,Mcu, Glj, PIDj : text,
HIDinew, Ulinew, Aiinew, Binew, Xinew : text,
SKi, SKj, SKc: text

const spl, sp2, sp3, sp4 : protocol_id,

ua_cs_ni, cs_ua_mcu, ga_cs_nj, cs_ga_mcg: protocol_id
init State := 0

transition

1. State = 0 A RCV/(start) =[>
State' := 1 \ Bj' := new()
N SND({GIDj.Bj'}_SKgacs)
NRCV({H(GIDj.Bj").H(H(GIDj.Bj").H(X.Y))}_SKgacs)
N secret({Bj},sp2,{GA,CS})

2. State =2
N RCV(H(IDi.Ai').xor(H(H(IDi.PWi.Ai").Ai'.X),Ni").H(H(H(H(IDi.Ai").Ai'. X).X).Ni".
GIDj)) =>

State' := 3 A Nj':= new() N\ Bj' := new()

N\ Di' := xor(H(H(GIDj.Bj").H(X.Y)),Nj")

A\VSj' := H(GIDj.H(H(GIDj.Bj").H(X.Y)).Nj"

/\ SND(H(IDi.Ai").xor(H(H(IDi.Ai").Ai".X),Ni").H(H(H(H(IDi.Ai").Ai'.X).X).Ni".
GIDj).H(GID;j.Bj").Di'.VSj')

N\ witness(GA,CS,ga_cs_nj,Nj")

3. State =3
N RCV(H(xor(H(GIDj".Ni"),Nc").H(GIDj.Ni").Nc").H(H(H(H(IDi.Ai").Ai'.X).X).H(H(I
Di.Ai").Ai"'.X).Ni").xor(H(GIDj.Ni),Nc").xor(H(GIDj.Ni),Ni")) =|>

State' := 4 \ SKj' := H(xor(Ni',H(Nj".Nc")))A Nj':= new()
N\ Gi' := H(GIDj.Ni")
N Hi' := xor(Gi',H(Nj".Nc"))
N SND(Hi"H(H(H(H(IDi.AI").Ai'.X).X).H(H(IDi.Ai").Ai'. X).Ni")
N\ request(GA,CS,cs_ga_mcg,Nc')

end role

Figure 10. Specification of gateway.
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role controlserver(UA, GA, CS : agent, SKuacs, SKgacs : symmetric_key, H:
hash_func, SND, RCV : channel(dy))

played_by CS
def=
local State: nat,
IDi,PWi,B10i,Ri,Pi,HIDi, HPWiI,GIDj,Li, Ai, Uli, Aii, Bi, Ni,Nj,Nc, Ci, Xi, X, Y,
Bj,VUi: text,
Di,Ei,Fi,Gi,Hi, VSj, Mcg,Mcu, Glj, PIDj : text,
HIDinew, Ulinew, Aiinew, Binew, Xinew : text,
SKi, SKj, SKc: text
const spl, sp2, sp3, sp4, ua_cs_ni, ¢s_ua_mcu, ga_cs_nj, ¢s_ga_mcg : protocol_id
init State := 0
transition

1. State = 0 A RCV({GIDj.Bj'}_SKgacs) =>
State' := 1 \ PIDj' := H(GIDj.Bj")
N Glj' := H(H(GIDj.BJj').H(X.Y))
N\ SND({PIDj".Glj'}_SKgacs)
N secret({X,Y},sp3,{CS})
N secret({PIDj',Glj'},sp4,{GA,CS})
2. State = 1 A RCV({H(IDi.Ai").H(IDi.PWi.Ai")}_SKuacs) =|>
State' := 2 A Uli' := H(H(IDi.Ai").Ai'.X)
N Aii' == xor(Uli,H(H(IDi.PWi.Ai")))
N BI' := H(UIi' Aii")
N Xi' := H(UIi". X)
N\ SND({Aii'.Bi'. Xi'}_SKuacs)
3. State = 2
N RCV(H(IDi.Ai").xor(H(H(IDi.AI").Ai'.X),Ni").HH(H(H(IDi.Ai").Ai'.X).X).Ni'.GIDj
).H(GIDj'.Bj).xor(H(H(GIDj.Bj").H(X.Y)),Nj").H(GIDj.H(H(GIDj.Bj").H(X.Y)).Nj")
:|>
State' := 3 /A Nc' := new()
N Ei" := xor(H(GIDj.Ni"),Nc")
N Fi' := xor(H(GIDj.Ni"),Ni")
N Mcg' := H(xor(H(GIDj.Ni'),Nc').H(GIDj.Ni').Nc")
N\ SKc' := H(xor(Ni',H(Nj'.Nc")))
N\ Mcu' := HH(H(H(IDi.AI").Ai'.X).X).H(H(IDi.Ai').Ai'. X).Ni")
N HIDinew' := H(H(IDi.Ai").Ni'.H(Nj".Nc")
N Ulinew' := H(HIDinew".Ni'.H(H(IDi.Ai").Ai'.X))
N\ witness(CS,UA,cs_ua_mcu,Nc')
N\ witness(CS,GA,cs_ga_mcg,Nc')
N\ SND(Mcg'.Mcu'.Ei'.Fi")
N request(UA,CS, ua_cs_ni,Ni")
N request(GA,CS, ga_cs_nj,Nj")

end role

Figure 11. Specification of control server.
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Figure 12. The result of Automated Validation of Internet Security Protocols and Applications (AVISPA)
simulation using OFMC and CL-AtSe.

9. Performance Analysis

In this section, we show the comparison of computation cost, communication cost, and security
features among our proposed protocol and other IoT-related protocols.

9.1. Computation Cost

We compare the computational overhead between our proposed protocol and other related
protocols. We define some notations for convenience of comparison.

o  Tye: The times for modular exponential operation (/0.522 s [33,34])
e  Ty: The times for one-way hash operation (=0.0005 s [33,34])
e  Ty: The times for fuzzy extraction operation (~0.063075 s [34,35])

Table 4 shows the results of the comparison. In multi-gateway environments, it is important to
reduce the computation cost of gateway nodes because the gateway nodes process a large amount of
information. Although the total computation cost of our proposed protocol is higher than other related
protocols, it is similar to [15] in terms of gateway nodes. Therefore, our proposed protocol is suitable
for practical IoT environments.

Table 4. Computation cost of the login and authentication phase.

Protocols User Gateway Control Server Total Cost
Turkanovic et al. [5] 7Ty, 5Ty, 7Ty, 19T;,(0.0095s)
Wu et al. [3] 2Tme + 4Ty, - 1 Tye + 4Ty, 3Te+ 8T,(1.57s)
Amin and Biswas Case-1 [10] 7Ty, 5Ty, 8Ty, 20T}, (0.01s)
Amin and Biswas Case-2 [10] 8Ty, 5Ty, 7Ty, 20T},(0.01s)

Bae et al. [15] 5Ty, 6T}, 10Ty, 21T;,(0.0105s)
Ours 1T¢+14Ty, 5Ty, 9Ty, 1T¢+28T;,(0.07707s)

XOR operation is negligible compared to other operations.

9.2. Communication Cost

We have compared the communication overheads at the login and authentication phase of our
proposed protocol and other related protocols in Table 5. We assume that the acknowledgment
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message and the one-way hash function, the timestamp, random number, and identity all are 160 bits.
Additionally, we assume that the AES (Advanced Encryption Standard) key is 512 bits [33]. According
to the results, our proposed protocol has more efficiency than other related protocols.

Table 5. Communication cost.

Protocols Communication Cost
Turkanovic et al. [5] 4000 bits
Wu et al. [3] 2368 bits
Amin and Biswas Case-1 [10] 2080 bits
Amin and Biswas Case-2 [10] 3520 bits
Bae et al. [15] 2720 bits
Ours 2400 bits

9.3. Security Properties

Table 6 shows the security comparisons among the proposed protocol and other related protocols
based on IoT environment. Our proposed protocol can resist more attacks than other related protocols.
Furthermore, our proposed protocol provides anonymity and achieves mutual authentication.
Therefore, we demonstrate that the proposed protocol is more safe than other related protocols
and satisfies the security requirements of IoT environments.

Table 6. Security properties.

Security Property Turkanovicetal. [5] Wuetal.[3] Aminand Biswas [10] Baeetal.[15] Ours

User impersonation attack

Server spoofing attack

Smartcard stolen attack

Trace attack

Off-line password guessing attack
Replay attack

Man-in-the-middle attack
Desynchronization attack
Anonymity

Mutual authentication

X X 1 0 0 X X X O X
X X 1 0 0 0 X X X X

X X O 0 X X X X O
X © 1 O 0 0 X X X X
©C 0000000 O0OO0o

[}

x: does not prevent the property; o: prevents the property; -: does not concern the property.

10. Conclusions

IoT is becoming a part of our life and helps people to easily communicate data and comfortably
obtain mobile services. However, data scalability, unsolved security problems, and malicious attacks
can limit the widespread extension of IoT services. The gateway nodes must process a large amount of
information to provide IoT services to users. Thus, reducing the computation cost of gateways is a very
important issue, and users and gateways should verify each other’s legitimacy with the aid of a control
server to provide authorized and secure communication. In this paper, we demonstrated the security
weaknesses of Bae et al.’s protocol. We showed that their protocol is vulnerable to user impersonation
attacks, gateway spoofing attacks, session key disclosure attacks, offline password guessing attacks,
and does not provide secure mutual authentication. Moreover, we proposed a multi-factor mutual
authentication protocol for multi-gateway IoT environments with better security functionality than
that of Bae et al.’s protocol. We also proved the security of the proposed protocol using BAN logic and
the AVISPA tool.

Author Contributions: Y.P. (YoungHo Park) supervised the research and contributed to manuscript organization;
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