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Abstract: Internet of Things (IoT) environments such as smart homes, smart factories, and smart
buildings have become a part of our lives. The services of IoT environments are provided through
wireless networks to legal users. However, the wireless network is an open channel, which is insecure
to attacks from adversaries such as replay attacks, impersonation attacks, and invasions of privacy.
To provide secure IoT services to users, mutual authentication protocols have attracted much attention
as consequential security issues, and numerous protocols have been studied. In 2017, Bae et al.
presented a smartcard-based two-factor authentication protocol for multi-gateway IoT environments.
However, we point out that Bae et al.’s protocol is vulnerable to user impersonation attacks, gateway
spoofing attacks, and session key disclosure, and cannot provide a mutual authentication. In addition,
we propose a three-factor mutual authentication protocol for multi-gateway IoT environments to
resolve these security weaknesses. Then, we use Burrows–Abadi–Needham (BAN) logic to prove that
the proposed protocol achieves secure mutual authentication, and we use the Automated Validation
of Internet Security Protocols and Applications (AVISPA) tool to analyze a formal security verification.
In conclusion, our proposed protocol is secure and applicable in multi-gateway IoT environments.

Keywords: internet of things; multi-gateway; mutual authentication; cryptanalysis, BAN logic;
AVISPA

1. Introduction

Internet of Things (IoT) provides numerous types of services through the internet to exchange
data among sensors, embedded systems, and mobile devices. In recent years, IoT environments
such as smart buildings, smart factories, smart homes, and smart offices are rapidly becoming a part
of our life. A typical IoT architecture consists of heterogeneous micro devices and collects various
types of information in real time. However, this is not efficient for practical IoT systems because
the communication and computation cost can be increased when the size of IoT networks and the
distance between participants are expanded [1,2]. The gateway nodes are deployed to enhance the
performance, which provides the ability to communicate with each other efficiently. In a multi-gateway
IoT environment, many gateway nodes are deployed and it can process the capability of large-scale
IoT networks. IoT environments are also vulnerable to various attacks due to the nature of the open
communication channel. Malicious attackers may attempt to insert, delete, and modify the data to
obtain users’ sensitive information and masquerade as valid users. Much research has been done
to resolve security problems in IoT environments. Secure mutual authentication is a primitive and
essential method to provide secure communication and numerous secure mutual authentication
protocols for IoT have been presented to provide various security features [2–16].
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In 2017, Bae et al. [15] proposed a smartcard-based secure authentication protocol in multi-gateway
IoT environments to reduce the computational and communication cost. However, we demonstrate
that Bae et al.’s protocol is vulnerable to user impersonation, gateway spoofing, and trace and session
key disclosure attacks, and does not provide anonymity and a secure mutual authentication. Then,
we propose a three-factor authentication protocol that is based on the biometric information of the user,
for IoT environments. To analyze the security aspects, we perform an informal security analysis and use
Burrows–Abadi–Needham (BAN) logic. Furthermore, we perform a formal security verification using
Automated Validation of Internet Security Protocols and Applications (AVISPA) software to check that
our protocol can resist man-in-the-middle attacks and replay attacks. We compare the computation
cost and security features of our proposed protocol with those of related existing protocols.

The remainder of this paper is as follows. In Sections 2 and 3, we introduce related works and our
preliminary details. In Sections 4 and 5, we review Bae et al.’s protocol and cryptanalyze its security
flaws. Then, we propose a secure three-factor mutual authentication protocol for multi-gateway
IoT environments in Section 6. In Section 7, we prove that our proposed protocol provides a secure
mutual authentication using BAN logic. We also perform the AVISPA simulation as a formal security
verification and compare the computation cost and security properties with related protocols in
Sections 8 and 9. Finally, we conclude with the results of this paper in Section 10.

2. Related Works

Various authentication protocols in single server environments have been proposed [3–5].
In 2010, Wu et al. [3] presented a novel authentication protocol for the telecare medical information
system (TMIS). Their protocol provides a guarantee to legitimate users. However, Debiao et al. [6]
demonstrated that Wu et al.’s protocol cannot withstand several attacks such as impersonation, replay,
or man-in-the-middle attacks. Debiao et al. proposed a more safe and efficient remote authentication
protocol for TMIS. In 2013, Chang et al. proposed a secure authentication protocol that provided users
privacy. But, in 2103, Das et al. [7] showed that their protocol cannot provide several security features
and proper authentication. Furthermore, these authentication protocols are not suitable for distributed
systems that consist of multiple servers, such as IoT environments, because the users who want to
access the IoT services have to know as many identities and passwords as the number of servers [8,9].
In addition, the physical performance of a single server has limitations [17], and IoT environments are
resource-constrained. Therefore, multi-gateway (multi-server) IoT environments are more efficient
and useful than the traditional IoT structure [1,2,10,13–16].

In 2014, Turkanovic et al. [5] presented an authentication protocol for IoT environments. However,
in 2016, Amin and Biswas [10] pointed out that Turkanovic et al.’s protocol does not withstand several
attacks such as offline identity and password guessing, impersonation, and stolen smartcard attacks.
They also demonstrated that Turkanovic et al.’s protocol has an inefficient authentication phase. Then,
Amin and Biswas proposed an authentication protocol for multi-gateway wireless sensor networks.
In 2017, Wu et al. [1] proved that Amin and Biswas’s protocol does not resist sensor capture, offline
guessing, session key disclosure, impersonation, and desynchronization attacks. They also proved that
Amind and Biswas’s protocol does not withstand user tracking attacks and does not achieve mutual
authentication. Then, Wu et al. proposed a mutual authentication and key agreement protocol for
multi-gateway wireless sensor network in IoT. In the same year, Srinivas et al. [13] also proved that
Amin and Biswas’s protocol has security flaws. Srinivas et al. pointed out that sensor devices have
low power, limited memory, and limited battery. Thereafter, Srinivas et al. proposed a more secure
and efficient remote user authentication protocol for multi-gateway wireless sensor networks that are
suitable for IoT environments.

In 2016, Das et al. [10] presented a three-factor multi-gateway-based user authentication protocol
for wireless sensor networks. Das et al. suggested the multi-gateway environment for wireless
sensor networks because the generalized wireless sensor networks can bring a lot of overhead to the
gateway and have more power consumption than multi-gateway-based wireless sensor networks.
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They demonstrated that their protocol can withstand attacks such as sensor capture, privileged-insider,
offline password guessing, and impersonation attacks. However, Wu et al. [1] pointed out that
Das et al.’s protocol does not resist user tracking attacks and does not have a same session key for all
three participants.

In 2018, Wu et al. [14] proposed an authentication protocol for healthcare systems in multi-gateway
wireless medical sensor networks. Their protocol prevents malicious attacks such as patient tracking,
insider, and offline guessing attacks. Wu et al. demonstrated that multi-gateway environments are
suitable for collecting patients’ health data through wireless health sensors because the gateway
in each area collects the information of patients in the area and then sends it to the doctor.
They also demonstrated that their protocol is suitable for transferring data with low time and
communication costs.

In 2017, Bae et al. [15] proposed a smartcard-based secure authentication protocol in multi-gateway
IoT environments to reduce the computational and communication cost. However, their protocol does
not resist impersonation, gateway spoofing, traceability, and session key disclosure attacks and does
not guarantee secure mutual authentication and anonymity.

3. Preliminaries

In this section, we introduce a threat model for cryptanalyzing Bae et al.’s protocol, the fuzzy
extraction that we use for the cryptographic system in our authentication protocol, and the system
model of our protocol in multi-gateway IoT environments. Finally, we present the notations used in
this paper.

3.1. Threat Model

We adopt the Dolev–Yao (DY) threat model [18] to analyze Bae et al.’s protocol and our proposed
protocol. This model is popularly applied to estimate security. The general assumptions of the DY
threat model are as below:

• An attacker can eavesdrop, delete, modify, or insert the transmitted messages via an
insecure channel.

• An attacker can steal the smartcard or use a lost smartcard to extract the sensitive information
stored in the smartcard [19].

• An attacker can perform various attacks such as trace, impersonation, smartcard lost,
man-in-the-middle, replay attacks, and so on.

3.2. Fuzzy Extraction

We briefly show a description of the fuzzy extractor [20] that can extract key information from
the given biometric data of users. Biometric information is weak to noises and it is hard to reproduce
the actual biometrics from biometric templete in common practice. Moreover, the hash function is
sensitized to input, so completely different outputs may come out. Because of these problems, we use
the fuzzy extractor method [21,22], which is a type of key generating designed to convert noisy data
to public information and a secret random string. The fuzzy extractor restores the original biometric
information for noisy biometric data using public help information. The algorithms of the fuzzy
extractor are as follows:

• Generate(BIOi) =< Ri, Pi >. This algorithm is for generating key information. It uses biometric
data BIOi as an input and then outputs secret key data Ri, which is a uniformly random string,
and a public reproduction Pi as a helper string.

• Reproduce(BIO
′
i , Pi) = Ri. This algorithm reproduces the secret data Ri. The inputs of this

algorithm are a noisy biometric BIO
′
i and Pi. The algorithm reproduces the secret biometric key

Ri. To recover the same Ri, the metric space distance between BIOi and BIO
′
i should be within

a given error tolerance.
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3.3. System Model

We introduce a system model of with our proposed protocol for multi-gateway IoT environments.
The model consists of three entities: Users, Gateways, and a Control Server. The multi-gateway IoT
system model is illustrated in Figure 1.

Figure 1. System model of our protocol in multi-gateway IoT environments.

• Users: A user who wants to use the IoT service receives a smartcard from the control server to
access the multi-gateway. After registration, login, and authentication, the user has access to use
the IoT service. The users’ smartcard can be lost or stolen by an attacker.

• Gateways: The gateways consist of IoT environments such as smart homes, smart buildings,
smart offices, and gateways. We assume that the gateway and IoT environments are connected in
advance by a wireless network through a secure authentication. The performance of the gateways
is approximately the performance of the server computer.

• Control Server: The control server is a trusted authentication server with sufficient computation
power to compute complicated hash and exclusive functions or store security parameters.
The control server stores the identities of the legitimate gateways in advance, and we assume that
an attacker can never attack the control server.

3.4. Notations

Table 1 shows the notations used in this paper.

Table 1. Notations.

Notations Meanings

Ui i-th user
Sj j-th server
CS Control server
IDi Identity of Ui

SIDj Identity of Sj
PWi Password of Ui

x Master secret key chosen by CS
Ts Timestamp
Ni1 Random number generated by Ui’s smartcard
Ni2 Random number generated by Sj
Ni3 Random number generated by CS
SK Common session key shared among Ui, Sj, and CS

h(∗) Collision-resistant one-way hash function
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4. Review of Bae et al.’s Protocol

In this section, we overview Bae et al.’s authentication protocol in multi-gateway IoT
environments, which consists of three phases: user and server registration phase, user login and
authentication phase, and password update phase. In Bae et al.’s protocol, they assumed that the
authentication server CS is trusted.

4.1. Registration Phase

If a new user Ui or server Sj requests registration to the authentication server CS, CS issues the
smartcard to Ui and sends the necessary value to Sj. This phase and verifier table is shown in Figure 2
and Table 2, respectively, and the details are as follows.
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Figure 2. Registration phase of Bae et al.’s protocol.

Step 1: Sj requests registration to the CS. Sj sends its identity SIDj to CS through a secure channel,
then CS computes Serin f orj and sends this to Sj.

Step 2: Ui chooses the IDi, and PWi, computes EncPassi = h(IDi||h(PWi)) and sends the message
(IDi, EncPassi) and UIDi, which is an anonymity value of Ui, to CS through a closed channel.

Step 3: CS receives the message from Ui. CS computes the secret information value Userin f ori =

h(EncsPassi ‖ x), stores {UIDi, Userin f ori, EncPassi, h(∗), h(x)} in the smartcard, and stores
Userin f ori, UIDi and statusbit in the verifier table. Then, CS issues the smartcard to Ui.

Table 2. The verifier table.

User-Verifier Anonymity Value Status-Bit

Userin f or1 U1 0/1

Userin f or2 U2 0/1

... ... ...

Userin f ori Ui 0/1

4.2. Login and Authentication Phase

User Ui must send a login request message to Sj to use the service of server Sj. After receiving
a request message, Sj sends a login request message to control server CS. This phase is illustrated in
Figure 3 and the following details.
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Figure 3. Login and authentication phase of Bae et al.’s protocol.

Step 1: Ui inputs his/her IDi and PWi and inputs the smartcard into a smartcard reader.
The smartcard computes EncPass

′
i = h(IDi||h(PWi)). Then, the smartcard checks whether

EncPassi
?
= EncPass

′
i. If it is equal, Ui generates a random number Ni1 and computes

Ai = Userin f ori ⊕ h(x) ⊕ Ni1, Verui = h(h(x)||Ni1). Then, Ui generates Ts to prevent
a replay attack. Finally, Ui sends the login request message {UIDi, Ai, Verui, Ts} to Sj through
a secure channel.

Step 2: If Sj receives the login request message, Sj generates a random number Ni2 and computes
Bi = Serin f orj ⊕ Ni2, Versi = h(h(SIDj||x)||Ni2). Then, Sj sends the login request message
{UIDi, Ai, Verui, Bi, Versi, SIDj, Ts} to CS through an open channel.

Step 3: After CS receives the login request message from Sj, CS computes Ts
′
= Ts + 1 and checks

∆Ts ≥ Ts
′ − Ts to see whether the login request message is legitimate. If it is valid,

CS computes Serin f or
′
j = h(SIDj||x), N

′
i2 = Serin f or

′
i ⊕ Bi, Vers

′
i = h(h(SIDj||x)||N

′
i2).

Then CS compares Versi
?
= Vers

′
i to check that the message from Sj is valid. If it is

equal, CS retrieves Userin f ori from the verifier table using UIDi from the login request
message. Then, CS computes N

′
i1 = Userin f ori ⊕ h(x) ⊕ Ai, Veru

′
i = h(h(x)||N′i1).

If Verui
?
= Veru

′
i is correct, CS selects a random number Ni3 and generates a session key

SKi = h(h(Ai||h(x)) ⊕ h(Ni1 ⊕ Ni2 ⊕ Ni3)). CS generates time stamp Ts and computes
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Ci = Ni1 ⊕ Ni3 ⊕ h(SIDj ⊕ Ni2), Di = h(Ai||h(x)) ⊕ h(SIDj ⊕ Ni2), Ei = Ni2 ⊕ Ni3 ⊕
h(Ai||h(x)). Finally, CS sends an authentication message {Ci, Di, Ei, Ts} to Sj.

Step 4: After Sj receives the message from CS, Sj computes (Ni1 ⊕ Ni3)
′
= Ci ⊕ h(SIDj ⊕ Ni2),

h(Ai||h(x))
′
= Di⊕ h(SIDj⊕Ni2). Sj generates a session key SK

′
= h(h(Ai||h(x))

′ ⊕ h(Ni1⊕
Ni2 ⊕ Ni3))

′
. Then, Sj computes Ei = (Ni2 ⊕ Ni3)⊕ h(Ai||h(x)) and sends an authentication

message {Ei, Ts} to Ui.
Step 5: After receiving the message from Sj, Ui computes Ts

′
= Ts + 1 and checks whether ∆Ts ≥

Ts
′ − Ts. If it is correct, Ui computes (Ni2 ⊕ Ni3)

′
= Ei ⊕ h(Ai||h(x)) and generates a session

key SK
′′
= h(h(Ai||h(x))⊕ h(Ni1 ⊕ Ni2 ⊕ Ni3))

′
. Therefore, Ui, Sj, and CS generate the same

session key, so they can perform the authentication.

4.3. Password Change Phase

If Ui wants to change his/her password PWi to a new password PWnew
i , the password change

phase is performed. This phase is illustrated in Figure 4 and is described as follows.

Step 1: The Ui inserts his/her smartcard into a card reader and inputs IDi and PWi. Then, Ui sends
the {IDi, PWi} to the smartcard reader through the closed channel.

Step 2: After receiving the values from Ui, the smartcard computes EncPassi = h(IDi||h(PWi)),

Userin f or
′
i = h(EncPassi||x). The smartcard verifies whether Userin f or

′
i

?
= Userin f ori. If it is

equal, the smartcard requests a new password.
Step 3: Ui inputs a new password PWnew

i and generates EncPassnew
i = h(IDi||h(PWnew

i )). Then,
Ui inputs EncPassnew

i into the smartcard.
Step 4: The smartcard computes Userin f ornew

i = h(EncPassnew
i ||x) by using EncPassnew

i .
The smartcard updates Userin f ori to Userin f ornew

i and replaces Userin f ori. Finally, the user
Ui changes his/her password.
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Figure 4. Password change phase of Bae et al.’s protocol.
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5. Cryptanalysis of Bae et al.’s Protocol

We analyze the security flaws of Bae et al.’s protocol in this section. Bae et al. asserted that
their proposed protocol can prevent various attacks such as user impersonation, server spoofing,
and session key disclosure attacks. However, we demonstrate that their protocol does not prevent the
following attacks.

5.1. User Impersonation Attack

If an attacker Ua attempts to impersonate an authorized user Ui, Ua must successfully compute
a login request message {UIDi, Ai, Verui, Ts}. According to Section 3.1, we can assume that Ua extracts
the values {UIDi, Userin f ori, EncPassi, h(x)} from the smartcard of Ui and obtains the transmitted
messages over a public channel. After that, Ua can impersonate the user in the following steps.

Step 1: Ua obtains {Userin f ori, h(x)}, {Ai, Ts} from the smartcard of Ui and the previous session,
respectively.

Step 2: Ua computes Ni1 = Ai ⊕ Userin f ori ⊕ h(x) and obtains a random nonce Ni1. Then Ua

computes Verui = h(h(x)||Ni1).
Step 3: Ua computes Ai = Userin f ora ⊕ h(x)⊕ Na1, Verua = h(h(x)||Na1). Finally, Ua can generate

a login request message {UIDi, Ai, Verua, Ts} successfully.

5.2. Server Spoofing Attack

To obtain the sensitive information of a user, an attacker attempts to impersonate the server.
Bae et al. asserted that their protocol can withstand server spoofing attacks. However, we analyze
that their protocol does not resist server spoofing. First, an attacker Ua obtains message {Ei, Ts} and
extracts the information h(x) from the smartcard of an authorized user. Then, Ua can impersonate the
server by generating authentication messages in the following steps.

Step 1: Ua obtains transmitted messages {Ei, Ts} in the previous session and extracts h(x) from the
smartcard of an authorized user.

Step 2: Ua computes h(Ai||h(x)) and obtains (Ni2⊕ Ni3). After that, Ua computes Ei = (Ni2⊕ Ni3)⊕
h(Ai||h(x)).

Step 3: Finally, Ua generates authentication messages {Ei, Ts} successfully.

5.3. Session Key Disclosure Attack

Bae et al. demonstrated that their protocol can resist session key disclosure attacks because an
attacker cannot compute the values Ni1, Ni2, and Ni3. Furthermore, Bae et al. claimed that the attacker
cannot obtain h(x) because the trusted party CS generated h(X). However, we demonstrate that the
attacker can compute Ni1 and Ni2 ⊕ Ni3 and extract h(x) in Sections 5.1 and 5.2. Thus, the attacker can
compute SKi = h(h(Ai||h(x))⊕ h(Ni1 ⊕ Ni2 ⊕ Ni3)). Therefore, Bae et al.’s protocol is vulnerable to
session key disclosure attacks.

5.4. Mutual Authentication

In Bae et al.’s protocol, CS computes Vers
′
i and Veru

′
i to authenticate legitimate Ui and Sj. However,

CS cannot generate authentication messages for Ui and Sj. Thus, Ui and Sj receive the message from
CS, but they cannot trust the messages because they cannot check whether the attacker sends the
message. Therefore, Bae et al.’s protocol does not achieve mutual authentication.

6. A Secure Three-Factor Mutual Authentication Protocol

In this section, we propose a three-factor mutual authentication protocol for multi-gateway IoT
environments according to Section 3.3. The proposed protocol consists of three phases: users and
gateways registration, login and authentication, and password update.
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6.1. Registration Phase

First, a gateway Gj must register with control server CS to provide their services to users. Then,
a new user Ui first accesses the control server, and he/she must register with CS. The detailed steps
are illustrated in Figure 5 and described as follows.

Step 1: Gj requests registration to the CS. Gj selects GIDj and sends the value to CS through a secure
channel, then CS computes PIDj = h(GIDj||h(x||y)) and sends PIDj to Gj via a secure
channel. Gj stores PIDj in itself.

Step 2: Ui chooses the his/her identification IDi and password PWi and imprints biometrics BIOi.
Then Ui generates a random number ai, computes < Ri, Pi >= Gen(BIOi), HIDi =

h(IDi||ai)), which is an anonymity value of Ui, and HPWi = h(IDi||PWi||ai), and sends
the message {HIDi, HPWi, ai} to CS through closed channel.

Step 3: After CS receives the message from Ui, CS computes the secret information value UIi =

h(HIDi||ai||x), Ai = UIi ⊕ h(HPWi), Bi = h(UIi||Ai), and Xi = h(UIi||x). Then, CS stores
{Ai, Bi, Xi, h(∗)} in the smartcard, and stores UIi with HIDi in the database. Then CS issues
the smartcard to Ui.

Step 4: After receiving the smartcard from CS, Ui computes Li = h(Ri||PWi)⊕ ai. Then Ui inputs Li
and Pi in the smartcard.
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Figure 5. Registration phase of our proposed protocol.

6.2. Login and Authentication Phase

If a user Ui wants to use the service of gateway Gj, Ui must send a login request message to
Gj. Then, Gj sends a login request message to control server CS. The detailed steps are illustrated in
Figure 6 and described as follows.
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Figure 6. Login and authentication phase of our proposed protocol.

Step 1: Ui inserts the smartcard, his/her IDi and PWi, and biometric BIOi. The smartcard computes
Ri = Rep(BIOi, Pi), ai = Li ⊕ h(Ri||PWi), HIDi = h(IDi||ai), HPWi = h(IDi||PWi||ai),

UIi = Ai ⊕ h(HPWi), B∗i = h(UIi||Ai). Then, the smartcard checks whether B∗i
?
= Bi to

check whether the user is legitimate. If it is valid, Ui generates a random number Ni and
computes Ci = UIi ⊕ Ni, VUi = h(Xi||Ni||GIDj). Finally, Ui sends the login request message
{HIDi, Ci, VUi} to Gj through a public channel.

Step 2: After receiving a login request message, Gj generates a random number Nj and computes
Di = GIj ⊕ Nj, VSj = h(GIDj||GIj||Nj). Then, Gj sends the login request message
{HIDi, Ci, PIDj, Di, VSj} to CS via an open channel.
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Step 3: After CS receives the login request message from Gj, CS computes GIj = h(PIDj||h(x||y)),
Nj = Di ⊕ GIj and compares VS∗j

?
= VSj to see whether Gj’s login request message is

legitimate. If it is equal, CS retrieves UIi from the verifier table using HIDi of the login request
message. Then, CS computes Xi = h(UIi||x), Ni = Ci ⊕UIi, VU∗i = h(Xi||Ni||GIDj). Then

CS compares VU∗i
?
= VUi to check that the message from Ui is valid. If it is valid, CS generates

a random number Nc and computes Ei = GIj ⊕ Nc, Fi = GIj ⊕ Ni. CS computes Mcg =

h(Ei||GIj||Nc) to mutually authenticate with Gjand Mcu = h(Xi||UIi||Ni) to authenticate with
Ui and generates a session key SK = h(Ni ⊕ h(Nj||Nc)). CS updates HIDi to HIDnew

i =

h(HIDi||Ni||h(Nj||Nc)) and UIi to UInew
i = h(HIDnew

i ||Ni||UIi), then replaces HIDi and UIi.
Finally, CS sends the authentication message {Mcg, Mcu, Ei, Fi} to Gj.

Step 4: After Gj receives the authentication message from CS, Gj computes Nc = Ei ⊕ GIj, M∗cg =

h(Ei||GIj||Nc).Then, Gj compares M∗cg
?
= Mcg to verify whether the message from CS is

legitimate. If it is valid, Gj computes Ni = Fi ⊕ GIj and generates a session key SK =

h(Ni ⊕ h(Nj||Nc)). Then, Gj computes Gi = h(GIDj||Ni), Hi = Gi ⊕ h(Nj||Nc) and sends the
authentication message {Hi, Mcu} to Ui.

Step 5: After receiving the message from Gj, Ui computes M∗cu = h(Xi||UIi||Ni) and verifies whether

M∗cu
?
= Mcu. If it is valid, Ui computes G∗i = h(GIDj||Ni), h(Nj||Nc) = Hi ⊕ G∗i and

generates a session key SK = h(Ni ⊕ h(Nj||Nc)). Therefore, Ui, Sj, and CS generate
the same session key, so they can perform the authentication. Ui updates HIDi to
HIDnew

i = h(HIDi||Ni||h(Nj||Nc)) and UIi to UInew
i = h(HIDnew

i ||Ni||UIi), then replaces
HIDi and UIi. The smartcard updates Anew

i = UInew
i ⊕ h(HPW), Bnew

i = h(UInew
i ||Anew

i ),
and Xnew

i = h(UInew
i ||UIi).

6.3. Password Change Phase

If Ui wants to change his/her password, Ui performs the password change phase without the
help of Gj. The detailed steps of the password change phase are shown in Figure 7 and described
as follows.

Step 1: A legitimate user Ui inserts the smartcard, his/her IDi and PWi, and biometric BIOi.
Step 2: The smartcard computes < Ri, Pi >= Gen(BIOi), ai = Li ⊕ h(Ri||PWi), HPWi =

h(IDi||PWi||ai), and B∗i = h(UIi||Ai). After that, the smartcard compares the B∗i with Bi
stored value. If it is equal, the smartcard requests a new password to Ui.

Step 3: When Ui receives the request message from smartcard, Ui inputs a new password PWnew
i .

Step 4: After receiving the new password from Ui, the smartcard computes Lnew
i = ai ⊕ h(Ri||PWnew

i ),
HPWnew

i = h(IDi||PWnew
i ||ai), Anew

i = UIi ⊕ h(HPWnew
i ), and Bnew

i = h(UIi||Anew
i ).

Consequently, the smartcard updates the old information {Ai, Bi, Li} to new information
{Anew

i , Bnew
i , Lnew

i }.
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Figure 7. Password change phase of our proposed protocol.

7. Security Analysis

We show that our proposed protocol can prevent various attacks by performing an informal
analysis, as mentioned in Section 3.1. We analyze our protocol using Burrows–Abadi–Needham (BAN)
logic to prove that our protocol can achieve secure mutual authentication.

7.1. Informal Security

To prove that our proposed protocol can prevent various attacks such as trace, smartcard
lost, impersonation, off-line guessing, and session key disclosure attacks, we perform an informal
security analysis. Additionally, we show that proposed protocol provides anonymity and a secure
mutual authentication.

7.1.1. User Impersonation Attack

If a malicious attacker Ua attempts to masquerade as a user Ui, Ua can generate a login request
message {HIDi, Ci, VUi} and message {Hi, Mcu}. However, Ua cannot compute HIDi because Ua

cannot extract a random number ai from HIDi. Ua cannot retrieve a random number Ni because
the attacker cannot know secret parameter UIi. Thus, Ua cannot compute Ci, VUi because Ua cannot
extract a random number Ni. Therefore, our protocol resists user impersonation attack.

7.1.2. Server Spoofing Attack

To impersonate the server, an attacker Ua can generate an authentication message {Hi, Mcu}.
However, Ua cannot compute these because Ua cannot know the random nonces Ni, Nj, Nc.
Furthermore, if Ua attempts to impersonate the gateway by using public parameter GIDj, the control
server compares it with the stored identities of the legitimate gateways in advance. Thus, our proposed
protocol is secure against server spoofing attacks because Ua cannot generate valid messages.
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7.1.3. Smartcard Stolen Attack

We assume that an attacker Ua can extract the values of the smartcard {Ai, Bi, Xi, Li, h(∗)}
according to Section 3.1. However, Ua cannot obtain sensitive or useful information without the
identity, password, and biometrics of the legitimate user because the values stored in the smartcard are
safeguarded with a one-way hash function or an XOR operation of IDi, PWi, HPWi = h(IDi||PWi||ai).
Therefore, our protocol can prevent smartcard stolen attacks.

7.1.4. Trace Attack and Anonymity

In our protocol, an attacker Ua cannot know the identity of the users and gateways. The user Ui
does not send a real identity IDi via the public channels. The user generates and sends a pseudonym
identity HIDi = h(IDi||ai). Because HIDi is a transmitted message via a public channel, Ua can obtain
this value. Therefore, Ui updates it as HIDnew

i = h(HIDi||Ni||h(Nj||Nc)) for every session to prevent
the attack of Ua. The gateway uses PIDj, which is generated in the registration phase, instead of GIDj,
so our protocol provides anonymity of users and gateways. In addition, the proposed protocol resists
trace attacks because all messages are dynamic for every session.

7.1.5. Man-in-the-Middle Attack and Replay Attack

We assume that attacker Ua knows the information transmitted via an insecure channel and
information from the smartcard of Ui to set up a secure channel with Gj. However, Ua cannot generate
a valid login request message, as mentioned. Furthermore, Ua cannot impersonate user Ui by resending
the messages because the messages are refreshed with random numbers Ni, Nj, and Nc. Therefore,
our proposed protocol prevents man-in-the-middle attacks and replay attacks.

7.1.6. Off-Line Password Guessing Attack

An attacker Ua attempts to guess the password PWi of legitimate user Ui. If Ua can guess the
password, Ua can compute a series of equations and compute several equations and the valid value
with the guessed passwords. However, Ua must know the unique biometrics of the user to compute
equations. Therefore, it is impossible to guess the user’s password in our protocol.

7.1.7. Desynchronization Attack

For a desynchronization attack, an adversary disturbs the communication of the login and
authentication request message. However, CS uses HIDi to retrieve UIi after checking message from
Gj, and HIDi updates HIDnew

i after authentication of the request message. Furthermore, an attacker
disturbs the response communication to desynchronize HIDnew

i . Even if the user cannot receive the
response message, the user can generate and update HIDnew

i . Thus, our proposed protocol can resist
desynchronization attacks.

7.1.8. Mutual Authentication

When control server CS receives the login request message from gateway Gj, CS computes VS∗j
and VU∗i to authenticate user Ui and Gj. If VSj and VS∗j are equal, CS authenticates Gj. Furthermore,
CS retrieves Ui from a database to an available VSj. After that, CS compares VUi and VU∗i . If they are
equal, CS authenticates Ui. Then, CS computes and sends the login response messages Mcg and Mcu

to authenticate. After receiving Mcg from CS, Gj computes M∗cg and compares M∗cg and Mcg. If they

are equal, Gj authenticates CS. Finally, Ui computes M∗cu and checks whether M∗cu
?
= Mcu. If it is

valid, Ui authenticates CS. Therefore, Ui, Gj, and CS successfully mutually authenticate. An attacker
cannot validate the message, as mentioned in Sections 7.1.1 and 7.1.2. Moreover, the login request
and response messages are refreshed for every session according to Sections 7.1.4 and 7.1.5. Therefore,
our proposed protocol provides secure mutual authentication.
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7.2. Ban Logic

We perform a formal verification to check that our proposed protocol achieves a secure mutual
authentication using BAN logic. Table 3 presents the notation of BAN logic. We show the logical
rules of BAN logic in Section 7.2.1. In the following sections, we show the goals, idealized forms,
and assumptions of our proposed protocol. In Section 7.2.5, we show that our proposed protocol
can provide mutual authentication among Ui, Gj, and CS. More details of BAN logic can be found
in [23,24].

Table 3. Notations of Burrows–Abadi–Needham (BAN) logic.

Notations Meaning

P| ≡ X P believes the statement X
#X The statement X is fresh

P C X P sees the statement X
P| X P once said X

P⇒ X P controls the statement X
< X >Y Formula X is combined with formula Y
{X}K Formula X is encrypted by the key K

P K↔ Q P and Q communicate using K as the shared key
SK Session key used in the current authentication session

7.2.1. Rules of Ban Logic

We introduce rules of BAN logic as follows:

1. Message meaning rule:

P
∣∣∣ ≡ P K↔ Q, P C {X}K

P |≡ Q | ∼ X

2. Nonce verification rule:
P |≡ #(X), P | ≡ Q

∣∣∣ ∼ X

P |≡ Q | ≡ X

3. Jurisdiction rule:
P |≡ Q | =⇒ X, P |≡ Q | ≡ X

P
∣∣∣ ≡ X

4. Freshness rule:
P
∣∣∣ ≡ #(X)

P
∣∣∣ ≡ # (X, Y)

5. Belief rule:
P
∣∣∣ ≡ (X, Y)

P
∣∣∣ ≡ X

7.2.2. Goals

We present the following goals to prove that our protocol achieves secure mutual authentication:

Goal 1: Gj| ≡ CS| ≡ (Nc, Ni),
Goal 2: Gj| ≡ (Nc, Ni),
Goal 3: CS| ≡ Gj| ≡ (Ni, Nj),
Goal 4: CS| ≡ (Ni, Nj),
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Goal 5: Ui| ≡ Gj| ≡ (Nc, Ni),
Goal 6: Ui| ≡ (Nj, Nc)

7.2.3. Idealized Forms

Msg1 : Ui → Gj : (HIDi, Ni, x, GIDj)UIi

Msg2 : Gj → CS : (HIDi, Ni, x, GIDj, Nj)GIj

Msg3 : CS→ Gj : (Nc, Ni, UIi, x)GIj

Msg4 : Gj → Ui : (Nc, Nj, UIi, GIDj, x)Ni

7.2.4. Assumptions

To achieve the BAN logic proof, we make the following assumptions about the initial state of our
proposed protocol:

A1 : Gj| ≡ (Ui
UIi←→ Gj)

A2 : Gj| ≡ #(Ni)

A3 : CS| ≡ (Gj
GIj←→ CS)

A4 : CS| ≡ #(Nj, Ni)

A5 : Gj| ≡ (Gj
GIj←→ CS)

A6 : Ui| ≡ (Ui
Ni←→ Gj)

A7 : Ui| ≡ #(Nj)

A8 : CS| ≡ Gj ⇒ (CS
GIj←→ Gj)

7.2.5. Proof Using Ban Logic

The following steps are the main proofs using BAN rules and assumptions:

Step 1: According to Msg1, we can get

S1 : Gj C (HIDi, Ni, x, GIDj)UIi .

Step 2: From A1 and S1, we apply the message meaning rule to obtain

S2 : Gj| ≡ Ui (HIDi, Ni, x, GIDj)UIi .

Step 3: From A2 and S2, we apply the freshness rule to obtain

S3 : Gj| ≡ #(HIDi, Ni, x, GIDj)UIi .

Step 4: From S2 and S3, we apply the nonce verification rule to obtain

S4 : Gj| ≡ Ui ≡ (HIDi, Ni, x, GIDj)UIi .

Step 5: From S4, we apply the belief rule to obtain
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S5 : Gj| ≡ Ui| ≡ (Ni)UIi .

Step 6: According to Msg2, we can get

S6 : CS C (HIDi, Ni, x, GIDj, Nj)GIj .

Step 7: From A3 and S6, we apply the message meaning rule to obtain

S7 : CS| ≡ Gj (HIDi, Ni, x, GIDj, Nj)GIj .

Step 8: From A4 and S7, we apply the freshness rule to obtain

S8 : CS| ≡ #(HIDi, Ni, x, GIDj, Nj)GIj .

Step 9: From S7 and S8, we apply the nonce verification rule to obtain

S9 : CS| ≡ Gj| ≡ (HIDi, Ni, x, GIDj, Nj)GIj .

Step 10: From S9, we apply the belief rule to obtain

S10 : CS| ≡ Gj| ≡ (Ni, Nj)GIj . (Goal 3)

Step 11: According to Msg2, we can get

S11 : Gj C (Nc, Ni, UIi, x)GIj .

Step 12: From A5 and S11, we apply the message meaning rule to obtain

S12 : Gj| ≡ CS (Nc, Ni, UIi, x)GIj .

Step 13: From A6 and S12, we apply the freshness rule to obtain

S13 : Gj| ≡ #(Nc, Ni, UIi, x)GIj .

Step 14: From S12 and S13, we apply the nonce verification rule to obtain

S14 : Gj| ≡ CS| ≡ (Nc, Ni, UIi, x)GIj .

Step 15: From S14, we apply the belief rule to obtain

S15 : Gj| ≡ CS| ≡ (Nc, Ni)GIj . (Goal 1)

Step 16: According to Msg4, we can obtain

S16 : Ui C (Nc, Nj, UIi, GIDj, x)Ni .

Step 17: From A6 and S16, we apply the message meaning rule to obtain

S17 : Ui| ≡ Gj (Nc, Nj, UIi, GIDj, x)Ni .

Step 18: From A7 and S17, we apply the freshness rule to obtain

S18 : Ui| ≡ #Gj (Nc, Nj, UIi, GIDj, x)Ni .

Step 19: From S17 and S18, we apply the nonce verification rule to obtain
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S19 : Ui| ≡ Gj| ≡ (Nc, Nj, UIi, GIDj, x)Ni .

Step 20: From S19, we apply the belief rule to obtain

S20 : Ui| ≡ Gj| ≡ (Nc, Nj)Ni . (Goal 5)

Step 21: From S10 and A8, we apply the jurisdiction rule to obtain

S21 : CS| ≡ (Ni, Nj). (Goal 4)

Step 22: From S15 and A9, we apply the jurisdiction rule to obtain

S22 : Gj| ≡ (Nc, Ni). (Goal 2)

Step 23: From S20 and A10, we apply the jurisdiction rule to obtain

S23 : Ui| ≡ (Nc, Ni). (Goal 6)

We show that the proposed protocol can provide secure mutual authentication between Ui, Gj,
and CS based on goals 1–6.

8. Formal Verification Using Avispa

We present a formal verification of our proposed protocol using the AVISPA tool based on the
High-Level Protocol Specification Language (HLPSL) code [25]. AVISPA is one of the widely used
verification tools to check that protocols are secure against man-in-the-middle attacks and replay
attacks. Numerous studies have been simulated using the AVISPA tool [26–28]. We will shortly
describe AVISPA and show the HLPSL specifications of our proposed protocol. Then, we will assert
that the proposed protocol can resist replay and man-in-the-middle attacks through the results of the
AVISPA simulation.

8.1. Description of Avispa

AVISPA performs security verification through four back-ends consisting of
Constraint-Logic-based Attack Searcher (CL-AtSe) [29], On-the-Fly Model-Checker (OFMC) [30],
Tree Automate-Based Protocol Analyzer (TA4SP), and SAT-Based Model-Checker (SATMC). HLPSL
specification is translated into intermediate format (IF) by an hlpsl2if translator. IF is converted to the
output format (OF), which is produced using the four back-ends as mentioned above. But usually,
CL-Atse and OFMC are used for verification. AVISPA has several functions that are mentioned below
for analyzing protocols. More details on AVISPA can be found in [31,32].

• secret(A, id, B): id denotes an information A that is only known to B.
• witness(A, B, id, E): id denotes a weakness authentication factor E that is used by A to

authenticate B.
• request(A, B, id, E): id denotes a strong authentication factor. B requests A for E to authenticate.
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8.2. Hlpsl Specifications of Our Protocol

Our protocol has three basic roles which are denoted by entities that have been specified
according to HLPSL: UA denotes a user, GA denotes a gateway, and CS denotes a control server.
The role of session and environments are shown in Figure 8. In the session, we describe participants.
In environments, intruder knowledge is defined, and four secrecy goals and four authentication goals
are described. The HLPSL specifications of role UA are shown in Figure 9, and the details are as follows.

role session(UA, GA, CS : agent, SKuacs, SKgacs : 

symmetric_key, H: hash_func) 

 

def= 

local SN1, SN2, SN3, RV1, RV2, RV3: channel(dy) 

composition 

user(UA, GA, CS, SKuacs, H, SN1, RV1) 

/\ gateway(UA, GA, CS, SKgacs, H, SN2, RV2) 

/\ controlserver(UA, GA, CS,SKuacs, SKgacs, H, SN3, 

RV3) 

end role 

role environment() 

def= 

const ua, ga, cs : agent, 

skuacs, skgacs: symmetric_key, 

h: hash_func, 

gidj,hidi,idi: text, 

ua_cs_ni, cs_ua_mcu, ga_cs_nj, cs_ga_mcg: 

protocol_id, 

sp1,sp2,sp3,sp4: protocol_id 

 

intruder_knowledge = {ua,ga,cs,gidj,hidi,idi,h} 

composition 

session(ua,ga,cs, skuacs, skgacs,h)/\session(i,ga,cs, 

skuacs,skgacs, h) 

/\session(ua,i,cs, skuacs,skgacs,h) 

/\session(ua,ga,i, skuacs,skgacs,h) 

 

end role 

 

goal 

secrecy_of sp1, sp2, sp3, sp4 

authentication_on ua_cs_ni 

authentication_on cs_ua_mcu 

authentication_on ga_cs_nj 

authentication_on cs_ga_mcg 

end goal 

 

environment()   

Figure 8. Specification of session and environments.

At transition 1, UA starts the registration phase with a start message in state value 0 and then
updates the state from 0 to 1. UA sends the registration message {HIDi, HPWi, a} to CS through
a closed channel. At transition 2, UA receives the smartcard from CS, then it updates the state
from 1 to 2. In state value 2, UA generates the random number Ni, sends the login request message
{HIDi, Ci, VUi} to GA via an insecure channel, and declares witness(UA, CS, us_cs_ni, Ni), which
means that Ni denotes a weakness authentication factor. At transition 3, UA receives the login
response message from GA. After that, UA changes the state value from 2 to 3, generates the session
key, and declares request(UA, CS, cs_ua_mcu, Nc). The specifications of role GA and CS are similar
and shown in Figures 10 and 11.
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role user(UA, GA, CS : agent, SKuacs : symmetric_key, H: hash_func, SND, RCV : 

channel(dy)) 

 

played_by UA 

def= 

local State: nat, 

    IDi,PWi,BIOi,Ri,Pi,HIDi, HPWi,GIDj,Li, Ai, UIi, Aii, Bi, Ni,Nj,Nc, Ci, Xi, X, Y, 

Bj,VUi: text, 

    Di,Ei,Fi,Gi,Hi, VSj, Mcg,Mcu, GIj, PIDj : text, 

    HIDinew, UIinew, Aiinew, Binew, Xinew : text, 

    SKi, SKj, SKc: text   

const sp1, sp2, sp3, sp4, ua_cs_ni, cs_ua_mcu, ga_cs_nj, cs_ga_mcg: protocol_id 

init State := 0 

transition 

 

%%%%%%%%%%%%Registration phase 

1. State = 0 /\ RCV(start) =|> 

State' := 1 /\ Ai' := new() /\ Ri' := new() /\ Pi' := new() 

        /\ HIDi' := H(IDi.Ai')  

        /\ HPWi' := H(IDi.PWi.Ai') 

        /\ SND({HIDi'.HPWi'.Ai'}_SKuacs) 

           /\ secret({IDi, PWi, Ri', Pi'}, sp1, {UA}) 

 

%%%%%%%%%%%%Recieve smartcard 

2. State = 1 /\ RCV 

({xor(H(H(IDi.PWi.Ai').X),H(H(IDi.PWi.Ai'))).H(H(H(IDi.PWi.Ai').X).xor(H(H(IDi

.PWi.Ai').X),H(H(IDi.PWi.Ai')))).H(H(H(IDi.PWi.Ai').X).X)}_SKuacs)=|> 

 State' := 2  /\ Ri' := new() /\ Li':=xor(H(Ri'.PWi),Ai') 

%%%%%%%%%%%%Login & Authentication phase 

         /\ Ni' := new() 

         /\ Ci' := xor(H(H(IDi.PWi.Ai').X),Ni') 

         /\ VUi' := H(H(H(H(IDi.PWi.Ai').X).X).Ni'.GIDj) 

         /\ SND(H(IDi.Ai').Ci'.VUi') 

         /\ witness(UA,CS,ua_cs_ni,Ni') 

3. State = 2 

/\ RCV(xor(H(GIDj.Ni'),H(Nj'.Nc')).H(H(H(H(IDi.PWi.Ai').X).X).H(H(IDi.PWi.Ai').

X).Ni')) =|> 

State' := 3 /\ SKi' := H(xor(Ni',H(Nj'.Nc'))) 

        /\ HIDinew' := H(H(IDi.Ai').Ni'.H(Nj'.Nc')) 

        /\ UIinew' := H(H(H(IDi.Ai').Ni'.H(Nj'.Nc')).Ni'.H(H(IDi.Ai').Ai'.X)) 

        /\ Aiinew' := xor(UIinew', H(H(IDi.PWi.Ai'))) 

        /\ Binew' := H(UIinew'.Aiinew') 

        /\ Xinew' := H(UIinew'.H(H(IDi.Ai').Ai'.X)) 

        /\ request(UA,CS,cs_ua_mcu,Nc') 

end role 

Figure 9. Specification of user.

8.3. Results of Avispa Simulation

The results of AVISPA simulation through OFMC and CL-AtSe verification are shown in Figure 12.
The OFMC and CL-AtSe back-ends check whether our proposed protocol can resist replay attacks
and man-in-the-middle attacks. The OFMC verification shows that search time is 12 s for visiting
1040 nodes, and the CL-AtSe verification analyzes 3 states with 0.13 s to translate. Because the summary
part of OFMC and CL-AtSe indicates that the protocol is SAFE, our proposed protocol is secure against
replay and man-in-the-middle attacks.
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role gateway(UA, GA, CS : agent, SKgacs : symmetric_key, 

 H: hash_func, SND, RCV : channel(dy)) 

 

played_by GA 

 

def= 

local State: nat, 

    IDi,PWi,BIOi,Ri,Pi,HIDi, HPWi,GIDj,Li, Ai, UIi, Aii, Bi : text,  

    Ni,Nj,Nc, Ci, Xi, X, Y, Bj,VUi: text, 

    Di,Ei,Fi,Gi,Hi, VSj, Mcg,Mcu, GIj, PIDj : text, 

    HIDinew, UIinew, Aiinew, Binew, Xinew : text, 

    SKi, SKj, SKc: text 

 

const sp1, sp2, sp3, sp4 : protocol_id, 

 ua_cs_ni, cs_ua_mcu, ga_cs_nj, cs_ga_mcg: protocol_id 

init State := 0 

transition 

 

1. State = 0 /\ RCV(start) =|> 

  State' := 1 /\ Bj' := new() 

          /\ SND({GIDj.Bj'}_SKgacs) 

          /\ RCV({H(GIDj.Bj').H(H(GIDj.Bj').H(X.Y))}_SKgacs) 

          /\ secret({Bj},sp2,{GA,CS}) 

 

2. State = 2 

/\ RCV(H(IDi.Ai').xor(H(H(IDi.PWi.Ai').Ai'.X),Ni').H(H(H(H(IDi.Ai').Ai'.X).X).Ni'.

GIDj)) =|> 

 

State' := 3 /\ Nj':= new() /\ Bj' := new() 

        /\ Di' := xor(H(H(GIDj.Bj').H(X.Y)),Nj') 

        /\ VSj' := H(GIDj.H(H(GIDj.Bj').H(X.Y)).Nj') 

        /\ SND(H(IDi.Ai').xor(H(H(IDi.Ai').Ai'.X),Ni').H(H(H(H(IDi.Ai').Ai'.X).X).Ni'.

GIDj).H(GIDj.Bj').Di'.VSj') 

        /\ witness(GA,CS,ga_cs_nj,Nj') 

 

3. State = 3 

/\ RCV(H(xor(H(GIDj'.Ni'),Nc').H(GIDj.Ni').Nc').H(H(H(H(IDi.Ai').Ai'.X).X).H(H(I

Di.Ai').Ai'.X).Ni').xor(H(GIDj.Ni),Nc').xor(H(GIDj.Ni),Ni')) =|> 

 

State' := 4 /\ SKj' :=  H(xor(Ni',H(Nj'.Nc')))/\ Nj':= new() 

        /\ Gi' := H(GIDj.Ni') 

        /\ Hi' := xor(Gi',H(Nj'.Nc')) 

        /\ SND(Hi'.H(H(H(H(IDi.Ai').Ai'.X).X).H(H(IDi.Ai').Ai'.X).Ni')) 

        /\ request(GA,CS,cs_ga_mcg,Nc') 

 

end role 

 

Figure 10. Specification of gateway.
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role controlserver(UA, GA, CS : agent, SKuacs, SKgacs : symmetric_key, H: 

hash_func, SND, RCV : channel(dy)) 

 

played_by CS 

def= 

local State: nat, 

    IDi,PWi,BIOi,Ri,Pi,HIDi, HPWi,GIDj,Li, Ai, UIi, Aii, Bi, Ni,Nj,Nc, Ci, Xi, X, Y, 

Bj,VUi: text, 

    Di,Ei,Fi,Gi,Hi, VSj, Mcg,Mcu, GIj, PIDj : text, 

    HIDinew, UIinew, Aiinew, Binew, Xinew : text, 

    SKi, SKj, SKc: text 

const sp1, sp2, sp3, sp4, ua_cs_ni, cs_ua_mcu, ga_cs_nj, cs_ga_mcg : protocol_id 

init State := 0 

transition 

 

1. State = 0 /\ RCV({GIDj.Bj'}_SKgacs) =|> 

State' := 1 /\ PIDj' := H(GIDj.Bj') 

       /\ GIj' := H(H(GIDj.Bj').H(X.Y)) 

       /\ SND({PIDj'.GIj'}_SKgacs) 

       /\ secret({X,Y},sp3,{CS}) 

       /\ secret({PIDj',GIj'},sp4,{GA,CS}) 

2. State = 1 /\ RCV({H(IDi.Ai').H(IDi.PWi.Ai')}_SKuacs) =|> 

State' := 2 /\ UIi' := H(H(IDi.Ai').Ai'.X) 

       /\ Aii' := xor(UIi,H(H(IDi.PWi.Ai'))) 

       /\ Bi' := H(UIi'.Aii') 

       /\ Xi' := H(UIi'.X) 

       /\ SND({Aii'.Bi'.Xi'}_SKuacs) 

3. State = 2 

/\ RCV(H(IDi.Ai').xor(H(H(IDi.Ai').Ai'.X),Ni').H(H(H(H(IDi.Ai').Ai'.X).X).Ni'.GIDj

).H(GIDj'.Bj).xor(H(H(GIDj.Bj').H(X.Y)),Nj').H(GIDj.H(H(GIDj.Bj').H(X.Y)).Nj')) 

=|> 

State' := 3 /\ Nc' := new() 

       /\ Ei' := xor(H(GIDj.Ni'),Nc') 

       /\ Fi' := xor(H(GIDj.Ni'),Ni') 

       /\ Mcg' := H(xor(H(GIDj.Ni'),Nc').H(GIDj.Ni').Nc') 

       /\ SKc' := H(xor(Ni',H(Nj'.Nc'))) 

        /\ Mcu' := H(H(H(H(IDi.Ai').Ai'.X).X).H(H(IDi.Ai').Ai'.X).Ni') 

       /\ HIDinew' := H(H(IDi.Ai').Ni'.H(Nj'.Nc')) 

       /\ UIinew' := H(HIDinew'.Ni'.H(H(IDi.Ai').Ai'.X)) 

       /\ witness(CS,UA,cs_ua_mcu,Nc') 

       /\ witness(CS,GA,cs_ga_mcg,Nc') 

       /\ SND(Mcg'.Mcu'.Ei'.Fi') 

       /\ request(UA,CS, ua_cs_ni,Ni') 

       /\ request(GA,CS, ga_cs_nj,Nj') 

 

 

end role 

Figure 11. Specification of control server.



Sensors 2019, 19, 2358 22 of 25

 

 

% OFMC 

% Version of 2006/02/13 

SUMMARY 

  SAFE 

DETAILS 

  BOUNDED_NUMBER_OF_SESSIONS 

PROTOCOL 

  /home/span/span/testsuite/results/APMI.if 

GOAL 

  as_specified 

BACKEND 

  OFMC 

COMMENTS 

STATISTICS 

  parseTime: 0.00s 

  searchTime: 12.00s 

  visitedNodes: 1040 nodes 

  depth: 9 plies 

 

 

SUMMARY 

  SAFE 

 

DETAILS 

  BOUNDED_NUMBER_OF_SESSIONS 

  TYPED_MODEL 

 

PROTOCOL 

  /home/span/span/testsuite/results/APMI.if 

 

GOAL 

  As Specified 

 

BACKEND 

  CL-AtSe 

 

STATISTICS 

 

  Analysed   : 3 states 

  Reachable  : 3 states 

  Translation: 0.13 seconds 

  Computation: 0.00 seconds  

Figure 12. The result of Automated Validation of Internet Security Protocols and Applications (AVISPA)
simulation using OFMC and CL-AtSe.

9. Performance Analysis

In this section, we show the comparison of computation cost, communication cost, and security
features among our proposed protocol and other IoT-related protocols.

9.1. Computation Cost

We compare the computational overhead between our proposed protocol and other related
protocols. We define some notations for convenience of comparison.

• Tme: The times for modular exponential operation (≈0.522 s [33,34])
• Th: The times for one-way hash operation (≈0.0005 s [33,34])
• Tf : The times for fuzzy extraction operation (≈0.063075 s [34,35])

Table 4 shows the results of the comparison. In multi-gateway environments, it is important to
reduce the computation cost of gateway nodes because the gateway nodes process a large amount of
information. Although the total computation cost of our proposed protocol is higher than other related
protocols, it is similar to [15] in terms of gateway nodes. Therefore, our proposed protocol is suitable
for practical IoT environments.

Table 4. Computation cost of the login and authentication phase.

Protocols User Gateway Control Server Total Cost

Turkanovic et al. [5] 7Th 5Th 7Th 19Th(0.0095s)
Wu et al. [3] 2Tme + 4Th - 1 Tme + 4Th 3Tme+ 8Th(1.57s)
Amin and Biswas Case-1 [10] 7Th 5Th 8Th 20Th(0.01s)
Amin and Biswas Case-2 [10] 8Th 5Th 7Th 20Th(0.01s)
Bae et al. [15] 5Th 6Th 10Th 21Th(0.0105s)
Ours 1Tf +14Th 5Th 9Th 1Tf + 28Th(0.07707s)

XOR operation is negligible compared to other operations.

9.2. Communication Cost

We have compared the communication overheads at the login and authentication phase of our
proposed protocol and other related protocols in Table 5. We assume that the acknowledgment
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message and the one-way hash function, the timestamp, random number, and identity all are 160 bits.
Additionally, we assume that the AES (Advanced Encryption Standard) key is 512 bits [33]. According
to the results, our proposed protocol has more efficiency than other related protocols.

Table 5. Communication cost.

Protocols Communication Cost

Turkanovic et al. [5] 4000 bits
Wu et al. [3] 2368 bits
Amin and Biswas Case-1 [10] 2080 bits
Amin and Biswas Case-2 [10] 3520 bits
Bae et al. [15] 2720 bits
Ours 2400 bits

9.3. Security Properties

Table 6 shows the security comparisons among the proposed protocol and other related protocols
based on IoT environment. Our proposed protocol can resist more attacks than other related protocols.
Furthermore, our proposed protocol provides anonymity and achieves mutual authentication.
Therefore, we demonstrate that the proposed protocol is more safe than other related protocols
and satisfies the security requirements of IoT environments.

Table 6. Security properties.

Security Property Turkanovic et al. [5] Wu et al. [3] Amin and Biswas [10] Bae et al. [15] Ours

User impersonation attack x x o x o
Server spoofing attack o x x x o
Smartcard stolen attack x x x x o
Trace attack x x x x o
Off-line password guessing attack x o x o o
Replay attack o o o o o
Man-in-the-middle attack o o o o o
Desynchronization attack - - x - o
Anonymity x x x o o
Mutual authentication x x o x o

x: does not prevent the property; o: prevents the property; -: does not concern the property.

10. Conclusions

IoT is becoming a part of our life and helps people to easily communicate data and comfortably
obtain mobile services. However, data scalability, unsolved security problems, and malicious attacks
can limit the widespread extension of IoT services. The gateway nodes must process a large amount of
information to provide IoT services to users. Thus, reducing the computation cost of gateways is a very
important issue, and users and gateways should verify each other’s legitimacy with the aid of a control
server to provide authorized and secure communication. In this paper, we demonstrated the security
weaknesses of Bae et al.’s protocol. We showed that their protocol is vulnerable to user impersonation
attacks, gateway spoofing attacks, session key disclosure attacks, offline password guessing attacks,
and does not provide secure mutual authentication. Moreover, we proposed a multi-factor mutual
authentication protocol for multi-gateway IoT environments with better security functionality than
that of Bae et al.’s protocol. We also proved the security of the proposed protocol using BAN logic and
the AVISPA tool.
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