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A B S T R A C T

Wikipedia contains rich biomedical information that can support medical informatics studies and applications.
Identifying the subset of medical articles of Wikipedia has many benefits, such as facilitating medical knowledge
extraction, serving as a corpus for language modeling, or simply making the size of data easy to work with.
However, due to the extremely low prevalence of medical articles in the entire Wikipedia, articles identified by
generic text classifiers would be bloated by irrelevant pages. To control the false discovery rate while main-
taining a high recall, we developed a mechanism that leverages the rich page elements and the connected nature
of Wikipedia and uses a crawling classification strategy to achieve accurate classification. Structured assertional
knowledge in Infoboxes and Wikidata items associated with the identified medical articles were also extracted.
This automatic mechanism is aimed to run periodically to update the results and share them with the informatics
community.

1. Introduction

Wikipedia contains rich biomedical information and has been
widely used for medical informatics research [1]. In addition to basic
text mining [2,3,4], Wikipedia articles can be also used for formal
knowledge extraction. For example, the article titles, text written in
bold, and redirections are usually medical concepts or named entities.
The Infobox (the information box at the top right corner of each ar-
ticle), tables in the main text, and the Wikidata item associated with
each Wikipedia article provides concept relations [5–7]. These medical
concepts and relation can also be discovered from the free text, which
are important research topics in natural language processing (NLP)
[8–10]. These concepts and relations can be used to develop medical
knowledge graphs that can provide high-level support to healthcare
artificial intelligence [11,12], such as language understanding and de-
cision support. In addition, the medical articles as a corpus can be used
for training word/concept representations [13,14] and language
models [15,16] to improve the modeling performance in various ma-
chine learning tasks. Therefore, although there are controversies about
the scientific rigor and quality of some of the articles on Wikipedia
[17–21], the size and richness of Wikipedia still make it one of the most
useful data sources for medical informatics studies.

However, the size of Wikipedia also creates problems. Wikipedia is
freely editable by internet users around the world, on any possible
subject. As a result, medical articles only represent a tiny fraction of the
entire Wikipedia. For example, the 2020-05-01 dump of Wikipedia
contains over 20 million articles, which includes 14 million redirect
pages and 6 million non-redirect articles. Among which, as our results
indicate, about only 90 thousand articles (1.5 % of non-redirect pages,
0.5 % of all pages) are related to medicine. With such a tiny re-
presentation, using the entire Wikipedia for medical research can have
negative effects. For example, language models trained on general text
are less accurate in healthcare NLP than those trained with medical
corpora [13,15,16], and medical term discovery and relation extraction
models can have many false discoveries when applied to articles un-
related to medicine. In addition, the 2020-05-01 dump of Wikipedia is
65 GB in volume, and the 2020-06-01 dump of Wikidata is 1.1 TB when
uncompressed, which creates unnecessary computational difficulties for
researchers who only need the medical parts of them.

The goal of our work is to develop an automated mechanism to
identify the medical article subset of Wikipedia, which can be used to
facilitate further medical informatics studies. Currently, we look for
articles on 7 categories of medical subjects: Anatomy (ANAT),
Chemicals & Drugs (CHEM), Devices (DEVI), Disorders (DISO), Living
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Beings (LIVB), Physiology (PHYS), and Procedures (PROC). The exact
scope of these categories follows the semantic group definition of the
Unified Medical Language System (UMLS) [22], with certain exclu-
sions, as detailed in Supplementary Materials S1. For instance, for LIVB,
we only included the semantic types of Bacterium, Fungus, Virus, and
Eukaryote, which are more related to diseases than other live beings.
Since there already exist multiple ontologies for genetics [23,24], we
decided to exclude genetic concepts from our current search scope.

Semantic web projects and efforts associated with Wikipedia can be
used to identify some of these categories [2,6,8,25]. For example,
DBpedia [26] provides class labels that can help identify articles of
certain categories, such as diseases and live beings, but it does not cover
all target categories. Besides, DBpedia is not 100 % correct, and it up-
dates slowly. Similarly, WikiProject Medicine also provides tags for
several but not all interested semantic groups [27,28]. Therefore, in-
stead of relying on existing semantic resources, we develop machine
learning algorithms to identify medical articles and classify them into
the aforementioned 7 semantic groups. As a side product, we also ex-
tract structured assertional knowledge from the Infoboxes and Wikidata
items of these articles. As Wikipedia is constantly being updated by
users, the automated mechanism allows us to periodically rerun to
update our results and share them with the medical informatics com-
munity (https://github.com/yusir521/WikiMedSubset).

Identifying medical articles from Wikipedia and classifying them by
semantic group pose a few uncommon challenges. The first challenge is
the extremely low prevalence of each class. Generic text classification
techniques have progressed rapidly in recent years, with some latest
deep learning models exhibiting near-human accuracy [29–31]. Tech-
niques have also been proposed to alleviate the sample imbalance issue
[32–34]. However, Wikipedia articles are not plain text, but they have
very rich elements and structures. To exploit these features to improve
classification accuracy and efficiency, we devised a crawling classifi-
cation strategy that only needs to classify a portion of Wikipedia arti-
cles, which can raise the prevalence and control the false discovery rate.
We also incorporate various elements of Wikipedia pages into our
models with feature engineering.

Another challenge to our work is acquiring annotated samples for
training and validation. With the extremely low prevalence of each
semantic category, manual annotation of a random sample is infeasible.
For example, retrospectively estimating from our result, to acquire 50
sample articles on medical devices, it would require annotating 200
thousand non-redirect pages on average. To acquire sufficient anno-
tated data, we employed the weak/distant supervision technique
[35–37] and used the UMLS for automatic annotation. We also con-
ducted limited manual validation on the model predicted medical ar-
ticles.

The structure of the remaining paper is as follows. Section 2 gives an
overall summary of the Wikipedia data and explains the preparation of
the training data. Section 3 introduces the crawling classification
strategy and models. Section 4 introduces baseline models for com-
parison and evaluation metrics. Section 5 shows the statistics of the
identified articles and comparisons of model accuracy. Section 6 dis-
cusses various aspects of the results and compares the identified articles
and extracted relations with possible alternative approaches. The last
section summarizes the work and its limitations.

2. Materials and data preparation

Wikipedia is a website that is constantly being updated. The con-
tents of Wikipedia are also available as dumps, which are backups of
the website’s database. The dumps are created every few months and
are available for download. For this paper, we used the 2020-05-01
dump of Wikipedia. This dump contains 20,208,017 Wikipedia pages,
among which 6,069,466 are non-redirect, i.e., they are actual articles.

We used the UMLS to create automatic annotations for training and
validation. Non-redirect/disambiguation article titles were matched

with the UMLS for concept recognition. To avoid ambiguities, we only
used full string matches with UMLS “preferred terms”, and terms with
multiple possible concept matchings were abandoned. Eventually,
40,856 were identifiable as UMLS concepts. Among them, 11,843 ar-
ticles/concepts were not in the chosen 7 semantic groups and were
labeled as NULL. The composition of the matched articles is shown in
Table 1. In the crawling classification, articles of the 7 target semantic
groups are considered as positive samples, and the NULL class is con-
sidered as negative samples. In addition, given the extremely low pre-
valence of medical articles in the entire Wikipedia, we used a random
sample of 17,000 Wikipedia articles whose titles could not be matched
using the UMLS as additional negative samples; these samples were
representative of the more unrelated articles. Therefore, the total au-
tomatic annotated samples had 29,013 positive and 28,843 negative. 80
% of these samples were used for training, and 20 % were used for
testing.

The crawling classification strategy, introduced in the next section,
applies a breadth-first search to the Wikipedia articles. The breadth-first
search requires at least one medical article (seed) in the search queue as
a starting point. Indeed, since medical articles on Wikipedia are not
guaranteed to be all connected (accessible from a sequence of links
from any given medical article), it is necessary to use many articles as
seed points to minimize the possibility of isolation. To find a large
number of articles as seeds, we used Wikipedia’s category hierarchy. A
Wikipedia article is usually tagged with categories that are displayed at
the bottom of the page (Fig. 1). The categories have a hierarchy: under
each category, there can be subcategories as well as articles tagged with
this category. We used articles within 5 steps down the Medicine and
Anatomy categories to populate the search queue. These articles were
likely to be in the defined scope of medical articles, and they were
classified in the same way as other articles during the search. Ad-
ditionally, UMLS-recognizable articles in the training set were also
added to the seed list. The seed list eventually contained 225,239 ar-
ticles.

3. Classification strategy and models

Our mechanism uses a two-step workflow, illustrated in Fig. 2: the
first step identifies the medical subset of Wikipedia, and the second step
classifies the articles (which were generally about medical concepts) by
semantic group.

3.1. Step 1: the crawling classifier

To raise the prevalence of medical articles, the first step uses a
crawling strategy. The crawler starts with a search queue filled with
seed articles introduced in Section 2. At each step, the crawler uses a
support vector machine (SVM) binary classifier to classify if the article
is about medicine. If it is, links in the article to other Wikipedia articles
will be extracted, and the linked articles will be added to the end of the
queue to be classified, using the breadth-first search strategy; other-
wise, the article will be abandoned and no linked articles will be added
to the search queue. This crawling strategy leverages the fact that ar-
ticles linked from a medical article are likely about medicine as well, so
the process blocks the majority of the non-medical articles from being
classified and keeps the positive rate high.

The SVM classifier uses the Gaussian kernel with the three kinds of
features: (1) Naïve Bayes probabilities. We fit 4 Naive Bayes classifiers
using word tokens from the main body, the section titles, the Infobox,

Table 1
Composition of UMLS matched articles.

SemGroup ANAT CHEM DEVI DISO LIVB PHYS PROC NULL

Count 3,111 10,849 343 6,799 5,805 817 1,289 11,843
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and the categories, respectively (see Fig. 1 for illustration). Words from
these fields usually exhibit a clear pattern that can help distinguish
articles of different topics. The predicted probabilities from the classi-
fiers that the article is about medicine are used as features, denoted by

�∈xNB
4. Since each probability can be used for classification by itself,

these 4 features are all strong predictors. (2) Article embedding. We use
the Skip-gram model [38] to obtain 300-dimensional vector

representations of stemmed words using the entire Wikipedia. Se-
mantically close words are expected to have similar vector re-
presentations, thus words related to medicine are expected to cluster
together. The embedding for an article, denoted by �∈xemb

300, is
created by combining the vectors of the words in the main body with
Term Frequency - Inverse Document Frequency (TF-IDF) weights. (3)
Named entity recognition (NER). Three additional features, denoted by

Fig. 1. Elements of a Wikipedia article (title, main body, Infobox, section titles, categories, and links).

Fig. 2. The two-step classification workflow.
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�∈xNER
3, are based on named NER with the software NILE [39] using

the UMLS Metathesaurus as the dictionary. We use one binary feature
to indicate if there is a recognizable concept within the target semantic
groups after cue words, such as “is” and “are”, in the first sentence of
the article. Another two features count the number of recognized UMLS
concepts in the whole article that are of and not of the target semantic
groups, respectively. The features are combined as

�= ∈x x x x( , , )NB emb NER
307 as the input feature for the SVM, which is

trained using the automatically labeled training set. Model parameters
are tuned using 5-fold cross-validation.

3.2. Step 2: the semantic group classifier

Wikipedia articles classified as positive by the crawling classifier are
further classified by a deep learning model to determine its semantic
group. The classification is 8-way: the 7 target semantic groups and the
NULL class, which is still present in the articles that are considered
positive by the first classifier. To reflect the fact that the articles to be
classified in the second step are much closer to medicine than those in
the first step, the training data for the RNN only includes UMLS-mat-
ched articles and does not include the 17,000 randomly sampled arti-
cles.

After the crawling classifier in Step 1 has removed most of the non-
medical pages, the category distribution should become sufficiently
even that most mature text classifiers should work well. Our model uses
three Recurrent Neural Networks (RNNs) with Gated Recurrent Units
(GRU) [40] to generate vector representations for three parts of an
article: the first sentence of the first paragraph (which usually states the
nature of the topic entity), the remaining sentences of the first para-
graph, and the first-level section titles. The three GRUs summarize the
three text pieces to three vectors �∈x _st sen1

32, �∈x _st para1
64, and

�∈x _ttlsec
128, respectively. The three vectors are concatenated to a

single vector =x x x x( _ , _ , _ )concat st sen st para ttl1 1 sec , which is passed through
a fully-connected layer with 150 neurons, then into the final layer for 8-
way classification. The number of training epochs is determined by
training the model on 84 % of the training data and validating on the
reserved training data. The model is then retrained on the full training
data.

4. Evaluation methods

We compared our mechanism with three off-the-shelf text classi-
fiers: Naïve Bayes (NaïveB) [41], the logistic regression model with TF-
IDF features (RM-TF-IDF) [42], and TextCNN [43], which usually attain
excellent performance in semantic classification. All three models were
trained on automatically labeled training data, including the randomly
sampled Wikipedia pages labeled as NULL. TextCNN used kernel sizes
3, 4, and 5, with 100 channels. The embedding dimension for each
word was 128. The baseline classifiers were applied to the entire Wi-
kipedia for 8-way classification.

Two ways are used to evaluate the results from the proposed me-
chanism and the baseline models. The first way uses the 20 % auto-
matically annotated samples reserved for testing, containing 11,571
samples. Recall, precision, and F score are calculated for each category.
The second way randomly samples 100 articles predicted as medical
articles from the result of each model and manually labels their cate-
gories (7 medical semantic groups+NULL). Accuracy and false dis-
covery rate (the rate of NULL among articles predicted as medical) are
calculated for each model.

We also considered and compared with alternative ways not using
machine learning to identify Wikipedia medical articles. One such way
is via Wikidata. A Wikidata item associated with a Wikipedia medical
article may contain concept IDs from notable medical ontologies.
Therefore, querying Wikidata items with such IDs can be used to
identify medical articles in Wikipedia. We queried the 2020-06-01
dump of Wikidata for items that contained a concept ID from UMLS,
RxNorm, NDF-RT, ICD-9, ICD-10, or LOINC to search for Wikipedia
medical articles. We also compared our result with the 2020-06-01
version of DISNET [25], which was based on DBpedia and focused on
diseases.

5. Results

The crawling classifier reached and classified 1,205,568 articles,
which is 19.9 % of all the non-redirect Wikipedia articles. 111,900
articles were considered positive and were further classified by the
second 8-way classifier, and 93,420 of them were classified into 1 of the
7 target medical semantic groups. In comparison, the baseline models
NaïveB, RM-TF-IDF, and TextCNN predicted 405,468, 123,886, and
163,294 articles as medical articles, respectively. Table 2 shows the

Table 2
The number of medical articles identified by the proposed mechanism (Proposed), NaïveB, RM-TF-IDF, and TextCNN.

ANAT CHEM DEVI DISO LIVB PHYS PROC TOTAL

Proposed 6863 35026 1502 14145 28524 2948 4412 93420
NaïveB 12544 62524 18764 18191 261697 16680 15068 405468
RM-TF-IDF 9058 46293 1911 18274 40841 2899 4610 123886
TextCNN 10719 55095 1806 33586 52317 4909 4862 163294

Table 3
Precision (P), recall (R), and F-score (F) evaluated using the reversed articles with automatic labels.

ANAT CHEM DEVI DISO LIVB NULL PHYS PROC

Proposed P 94.44% 95.64% 83.33% 94.50% 96.85% 88.22% 60.53 % 80.90 %
NaïveB P 77.16 % 83.18 % 31.18 % 82.60 % 70.69 % 94.70 % 24.69 % 45.36 %
RM-TF-IDF P 92.24 % 91.92 % 69.57 % 90.92 % 94.15 % 91.28 % 48.00 % 76.47 %
TextCNN P 93.62 % 90.52 % 64.29 % 87.51 % 93.33 % 90.66 % 35.43 % 66.48 %
Proposed R 90.63 % 92.16 % 49.30 % 86.62 % 71.59 % 97.62 % 46.62 % 64.92 %
NaïveB R 86.75 % 91.60 % 40.85 % 77.68 % 95.16 % 82.18 % 40.54 % 53.23 %
RM-TF-IDF R 86.43 % 91.88 % 22.54 % 85.02 % 91.71 % 95.86 % 32.43 % 62.90 %
TextCNN R 80.61 % 91.32 % 12.68 % 83.03 % 91.80 % 95.29 % 30.41 % 47.98 %
Proposed F 92.50 % 93.87 % 61.95 % 90.39 % 82.32 % 92.68 % 52.67 % 72.04 %
NaïveB F 81.67 % 87.19 % 35.37 % 80.06 % 81.12 % 88.00 % 30.69 % 48.98 %
RM-TF-IDF F 89.24 % 91.90 % 34.04 % 87.87 % 92.91 % 93.52 % 38.71 % 69.03 %
TextCNN F 86.63 % 90.92 % 21.18 % 85.21 % 92.56 % 92.91 % 32.73 % 55.74 %
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decomposition of the identified articles by semantic groups.
The baseline models predicted much more medical articles than the

proposed method, which is undesirable because they were inaccurate
and included many false discoveries. Table 3 shows the precision, re-
call, and F score evaluated using the reserved articles with automatic
labels. The proposed mechanism achieved the best performance on al-
most every metric. It achieved the worst performance on NULL preci-
sion, that is, articles were incorrectly classified as non-medical. Among
the 5,876 positive samples in the test set, 766 were misclassified as
NULL, and 607 of which were misclassified by the crawling classifier.
Interestingly, about half of the 607 were LIVB, most of which were not
reached by the crawler, which is also reflected by the low recall of the
category. This suggests that many UMLS-recognizable LIVB (viruses,
bacteria, fungi, etc.) may not be linked to medical pages. And this may
not be a drawback as it appears, as many microbes are not directly
related to human health and thus are not desired in the medical subset.
On the other hand, the proposed mechanism achieved the highest recall
on the NULL category, which means that its results contain the fewest
false discoveries. A high recall on NULL is an important property to
have because most Wikipedia articles are non-medical, which means
that a small drop on NULL recall would result in many false discoveries,
as shown in Table 2. Table 4 further confirms this point. Based on
manual review of the identified articles, the proposed mechanism has
far higher positive sample accuracy than the baseline models, and it has
the fewest false discoveries (“Richard Shope”, “Isturgia”, “Epichlorops”,
and “List of virus species” classified as LIVB, “Chlamys” and “Kiss curl”
classified as DISO, “Hair-cutting shears” classified as ANAT, and
“Pentamerida” classified as CHEM). Indeed, the false discovery rates of
the baseline models are so high that their results are hardly usable, even
though they are excellent text classifiers in general.

Combining our automatic search mechanism and medical ontology
code queries, 110,850 Wikidata items in total can be found, as Fig. 3
shows. Among them, 91,513 can be identified by our mechanism, and
79,714 are exclusively identified from Wikipedia, showing our work is
not replaceable by simple queries. This also partially suggests that our
search has a high recall of medical articles on Wikipedia. Note that not
all Wikidata items have associated Wikipedia pages. There are 87
million Wikidata items in the 2020-06-01 dump, but only 6 million
Wikipedia non-redirect pages.

In comparing with DISNET, we found that of its 7324 diseases, 6979
(95.3 %) were classified as DISO by our search mechanism. There are
159 articles labeled as diseases by DISNET and were classified into
other categories by our method, and many of our classifications were
correct. There are also 186 articles labeled as diseases by DISNET but
were not found by our mechanism. Many of these articles are about
medicine and are true misses by our method, though they are not all
diseases. Overall, judging from DISNET, our method’s recall of diseases
is very high. Finally, there are 7166 articles classified as DISO by our
method but are not in DISNET, and they are generally correctly clas-
sified. Note that the UMLS DISO semantic group includes not only
diseases but also other concepts, such as findings. However, many of
the 7166 articles are indeed diseases. This shows that the DBpedia-
based approach can still miss many pages. Samples of these

comparisons are provided in Supplementary Materials S2-5.

6. Discussions

An automatic mechanism to periodically identify medical articles in
Wikipedia and extract their structured knowledge is important to keep
our medical informatics infrastructures up to date. For instance,
“Coronavirus disease 2019” is already in our identified medical subset
(the 2020-05-01 dump of Wikipedia), while it is not in DISNET (2020-
06-01), which is DBpedia-based that is updated in a long cycle.

As discussed at the beginning, the major difficulty for developing a
text classifier for the automatic mechanism is the extremely low pre-
valence of medical articles in Wikipedia. A high proportion of negative
samples means a high false discovery rate for machine learning algo-
rithms, which can potentially render the results useless. Therefore, the
main goal of our design decisions is how to achieve a low false dis-
covery rate while maintaining a high recall for medical articles. Instead
of seeking more sophisticated deep learning text classification models,
we decided to leverage the rich page elements and the connected nature
of Wikipedia and developed the crawling classification strategy. The
estimated numbers of identified medical articles in Table 4 show that
our unique search mechanism did not sacrifice recall (compared to RM-
TF-IDF and TextCNN, the two better models of the baselines), and its
number of false discoveries is 1–2 levels of magnitude fewer than the
baselines. In semantic group classification, as shown in Table 3, which
is evaluated using the automatically annotated samples, our method
still shines in most categories. The low recall of LIVB in Table 3 was
because many pages of microbes (especially those not related to human
health) were not connected with medical articles and they were not
reached by the crawler. We do not consider this an issue at the moment
until we can find better labels to differentiate microbes related to
human health from those that are not.

To avoid missing medical articles, we used over 225 thousand seed
articles in the breadth-first search, and the crawler eventually covered
20 % of Wikipedia articles, which we think is sufficiently large. Further
raising the coverage would risk more false discoveries. We reviewed
incorrect classifications by our method and found that many errors
were due to articles being too short. For instance, the Wikipedia article
‘Ancylobacter rudongensis’ contained only one sentence: ‘Ancylobacter
rudongensis is a bacterium from the family of Xanthobacteraceae which
has been isolated from root of the plant Spartina anglica from the beach
from the Jiangsu Province in China’ and was classified as ‘NULL’. Short
texts were particularly common in LIVB and caused many of our mis-
classifications. To accommodate the cases of insufficient information,
our models avoided relying on a single source, such as the main text,
and used various components of Wikipedia pages as features. For this
reason, we did not conduct an ablation test and wanted to have feature
redundancy. However, it appears that our models still need to improve
on classifying very short articles. In terms of speed, although the
crawling classification method only needed to classify 20 % of the non-
redirect pages, it currently does not have a clear advantage in speed due
to limited database optimization (crawling requires random reads of the
database, while algorithms applied to the whole database use sequen-
tial reads). However, the time spent on training and applying the al-
gorithms is little compared to the time spent on preprocessing
Wikipedia and Wikidata (the 2020−06-01 dump of Wikidata is over
1TB in size and takes more than 1 day to decompress), so improving the
speed is not of top priority.

Another difficulty and a major limitation to our study is the lack of
gold-standard labels. As explained in Section 1, unbiased manual an-
notation is infeasible given the rareness of medical articles. Therefore,
we used the UMLS for automatic labeling. The benefit of using the
UMLS is that the generated sample size is very large. On the other hand,
UMLS can introduce biased sample distribution to both training and
validation. The labels are also imperfect. For example, we only want
LIVB and CHEM that are related to human health, but UMLS cannot

Table 4
Accuracy of positive predictions, false discovery rate, the estimated number of
medical articles with correct classification, and the estimated number of iden-
tified articles with wrong classifications by the proposed mechanism and the
baselines.

Positive
accuracy

False discovery
rate

Est. medical
articles

Est. wrong
articles

Proposed 0.92 0.08 85,946 7,474
NaïveB 0.26 0.72 105,421 300,046
RM-TF-IDF 0.69 0.26 85,481 38,405
TextCNN 0.53 0.39 86,546 76,748

L. Yu and S. Yu International Journal of Medical Informatics 141 (2020) 104234

5



give us that information. Additionally, we also do not know the true
ratio of non-medical articles in Wikipedia, so randomly sampling
17,000 negative samples for training is also biased. For an unbiased
validation, we manually reviewed samples that were classified as
medical (that is, in one of the 7 semantic groups), and results show that
the proposed mechanism is far superior to the baseline text classifiers,
and is the only one that has an acceptable false discovery rate (Table 4).
The manual review cannot evaluate recall. If we use DISNET as a re-
ference for diseases, then the recall is at least 95 %. Inference from this
kind of positive vs. unlabeled data is an open question and active re-
search area [44].

One of the end goals of identifying the medical subset of Wikipedia
is to extract structured assertional knowledge to support the develop-
ment of medical knowledge graphs. We extracted 1.3 million facts and
concept names in multiple languages from the Wikidata and 667
thousand lines of properties from the Infobox, which are a wealth of
information that can be used in future modeling and NLP tasks. We also
wanted to know how many new diseases-related relations the extracted
Infobox and Wikidata might add to what the UMLS already had. We
used the recognizable UMLS DISO concepts in the identified subset that
are likely diseases (see Supplementary Materials S6) as a common
ground for comparison. The infobox and Wikidata are stored in a ‘key:

Fig. 3. The number of Wikidata items identifiable using each method.

Fig. 4. Number of concepts that each relation covered that were unique in the UMLS, unique in Infobox/Wikidata, or common in both.

Table 5
Relation name mapping for May cause, Caused by, Treatment, Differential diagnosis, and Site. Words in the table show relation names used by each source; The
meaning of Wikidata properties are in parentheses; ‘NA’: unavailable.

UMLS relation names Infobox relation names Wikidata relation names

May cause has_manifestation, has_definitional_manifestation Symptoms, Complications P780 (symptoms), P1542 (has effect)
Caused by has_causative_agent, cause_of Causes, Risk factors P828 (has cause), P5642 (risk factor)
Treatment may_be_treated_by Treatment, Medication P2176 (drug used for treatment), P924 (possible

treatment)
Differential diagnosis ddx Differential diagnosis NA
Site disease_has_primary_anatomic_site, disease_has_associated_anatomic_site NA P689 (afflicts), P927 (anatomical location)
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value’ format, with the key names express relations and are standar-
dized for diseases. We investigated the relation coverage by counting
what relations the UMLS, Infobox, and Wikidata included, respectively,
and how many concepts each relation covered. A concept is ‘covered’ by
a relation if its Infobox or Wikidata has the corresponding key entry.
The detailed counts are given in Supplementary Materials S7.
Additionally, we analyzed 5 relations that were important to clinical
decision support, namely: May cause, Caused by, Treatment,
Differential diagnosis, and Site. Fig. 4 compares the number of concepts
that these relations covered, grouped by whether they were unique in
the UMLS, unique in Infobox/Wikidata, or common in both. Table 5
gives the relation name mapping used for counting the number of
concepts covered. Note that the mapped relations might not be
equivalent in broadness. For example, “has causative agent” in the
UMLS is a narrower relation than Caused by. From Fig. 4, one can see
that Infobox and Wikidata can provide a significant supplement to the
UMLS in 4 of the 5 relations. Examining closer about which diseases are
covered further shows that a large proportion of those covered by In-
fobox/Wikidata but not by the UMLS are common diseases, such as type
2 diabetes and influenza. This could be due to that researches of some
common diseases were not as heavily funded as diseases like cancer and
do not have dedicated ontologies. Therefore, from the perspective of
primary healthcare decision support, the value of the added relations
can be more substantial than what Fig. 4 can show.

7. Conclusion

Wikipedia can provide very rich structured and unstructured in-
formation to support medical informatics. However, the subset of
medical articles in Wikipedia had not been identified and the whole
Wikipedia can be difficult to work with. The automatic mechanism that
we developed can identify the medical articles in Wikipedia with high
accuracy. In particular, the crawling classification strategy and the
utilization of Wikipedia’s rich structures allow it to achieve far superior
performance than generic text classifiers in false discovery control. Due
to the extremely low prevalence of medical articles in Wikipedia, our
study is limited in the evaluation of overall recall by manually reviewed
gold-standards. Our future research aims to simplify the classification
process and to develop adaptive classifiers to improve the accuracy on
the very short articles. To facilitate healthcare modeling and NLP, more
semantic groups may be included in subsequent iterations.
Additionally, automatic article quality assessment can also be added to
avoid extracting knowledge from uninformative articles [45,46].
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Summary Table

What was already known on the topic

1 Wikipedia medical articles provide comprehensive and fre-
quently updated information that is useful for medical in-
formatics.

2 Medical articles are extremely scarce in Wikipedia, which
makes their identification with text classification difficult.

What this study added to our knowledge

1 Crawling classification is more effective than off-the-shelf text
classifiers in identifying the extremely scarce medical arti-
cles from Wikipedia.

2 The extracted relations from Wikipedia infobox and Wikidata
can provide rich supplement to the relations in UMLS.
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