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Abstract: The mandibular and hyoid arches collectively make up the facial skeleton, also known as
the viscerocranium. Although all three germ layers come together to assemble the pharyngeal arches,
the majority of tissue within viscerocranial skeletal components differentiates from the neural crest.
Since nearly one third of all birth defects in humans affect the craniofacial region, it is important to
understand how signalling pathways and transcription factors govern the embryogenesis and skele-
togenesis of the viscerocranium. This review focuses on mouse and zebrafish models of craniofacial
development. We highlight gene regulatory networks directing the patterning and osteochondrogen-
esis of the mandibular and hyoid arches that are actually conserved among all gnathostomes. The
first part of this review describes the anatomy and development of mandibular and hyoid arches
in both species. The second part analyses cell signalling and transcription factors that ensure the
specificity of individual structures along the anatomical axes. The third part discusses the genes and
molecules that control the formation of bone and cartilage within mandibular and hyoid arches and
how dysregulation of molecular signalling influences the development of skeletal components of the
viscerocranium. In conclusion, we notice that mandibular malformations in humans and mice often
co-occur with hyoid malformations and pinpoint the similar molecular machinery controlling the
development of mandibular and hyoid arches.

Keywords: neural crest cells; craniofacial development; pharyngeal arches; jaw development; hyoid
bone; patterning; cartilage; bone; chondrogenesis; osteogenesis

1. Introduction

The primary function of the gnathostome facial skeleton is to encase the openings
to the mouth and airways and to accommodate several sensory organs (such as vision,
smell, or taste). This ancestral function of facial skeleton is shared among all of the
gnathostome species and may have played a central role in their evolution. The facial
skeleton of gnathostomes, also known as the viscerocranium, is composed of bone and
cartilage that collectively form the skeleton of the face and throat. The membranous
viscerocranium is formed by a process of intramembranous ossification, whereas the
cartilaginous viscerocranium utilizes the endochondral ossification to form bones. Since
the last common ancestor of mammals and teleosts roamed the Earth ≈450 million years
ago, the composition of murine and zebrafish viscerocrania is vastly different [1]. However,
studies show that genetic regulation of craniofacial morphogenesis between the mouse and
the zebrafish is similar, indicating a common regulatory circuit during facial development
among gnathostomes. This relative similarity means that the zebrafish is complementary
to the mouse in the research of craniofacial defects. Currently, the research of zebrafish
craniofacial development is growing in intensity, since the genetic machinery controlling
PA development is similar among zebrafish, mice, and humans. Some researchers even
use a zebrafish model to study human craniofacial diseases, such as CATSHL syndrome
(tall stature and hearing loss) and cleft lip/palate [2–4]. The adult viscerocranium is
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composed of many individually distinct elements and requires a coordinated integration
of various tissues. Intricate molecular signals and transcription factors among cranial
tissues regulate the patterning of the prospective face, which ensures the formation of
heterogenous bone and cartilage. Perturbation and impaired regulation of craniofacial
development results in dysmorphy of bones and cartilage, which collectively accounts for
at least a third of all birth defects in humans [5]. Understanding the precise mechanism of
how bony and cartilaginous structures arise and attain their distinct shape may improve
treatment and reduce the impact of certain craniofacial birth defects on human patients.
During the embryonic development in amniotes, transient embryonic structures known
as pharyngeal arches (PAs) undergo extensive growth and differentiation to create the
adult viscerocranium. Pharyngeal arches are a series of paired, bilaterally symmetrical
outgrowths on both sides of the developing pharynx. Cells from all germ layers take
part in assembling the PAs. Each PA consists primarily of two robust mesenchymal
populations, the neural crest-derived mesenchyme (also known as “ectomesenchyme”)
and the paraxial mesoderm [6]. The oral surface of arches is coated with the ectodermal
epithelium, whereas the pharyngeal surface is lined with the endodermal epithelium. The
neural crest (NC), sometimes colloquially termed as the fourth germ layer, is a multipotent
embryonic population of cells that arises at the lateral border of the neural plate, from
which it subsequently delaminates and undergoes extensive migration into distant parts of
the body [7]. Neural crest cells (NCCs) are regarded as multipotent because they have the
capacity to differentiate into plethora of cell types—osteoblasts, chondroblasts, fibroblasts,
neurons, and glia, among many others [8]. A subpopulation of NCCs coming from the level
of the future brain—named the cranial neural crest—gives rise to many tissues, including
the viscerocranium, the connective tissues, and part of the neurosensory ganglia of the
cranium [9,10]. On the other hand, the cranial paraxial mesoderm within PAs forms the
muscles and blood vessels of the face, neck, and throat [11].

The segmentation of the pharyngeal region appears to be driven by the endoderm and
is independent of NCCs that migrate into PAs [12]. Moreover, the pharyngeal endoderm
provides positional clues for the mesenchyme within PAs and is also responsible for
the formation of particular arch components. Via interaction with migrating NCCs, the
mesoderm actively participates in the formation of PAs [13]. The cranial paraxial mesoderm
proliferates ahead of the neural crest migratory front, thus prior to the migration of the
neural crest. Like the NC, the mesoderm is inherently motile. Proliferating mesodermal
cells commence the PA formation by driving outgrowth in the lateral direction. After the
initiation of NC migration, a portion of mesodermal cells freely intermingles with NCCs,
while others are displaced by migrating NCCs. After NCCs invade the nascent arches, they
actively proliferate in order to stay in pace with the mesoderm. Thus, the mesoderm is the
main driver of PA growth, and PAs can form even the absence of NC. The fact that mouse
mutants lacking specific NC streams will still form normal PAs supports the notion that
NCCs are not required during the initial stages of PA formation. Thus, the formation of
the PA template precedes the appearance of NCCs in the pharyngeal region [14,15]. This
narrative review focuses on the morphogenesis and skeletogenesis of the first two PAs in
mice and zebrafish, since both these models are used in the research of craniofacial diseases.
Tight control of temporospatial cell specification and differentiation along the anatomical
axes is crucial for the embryonic formation of various structures. The authors present an
overview of signalling pathways and regulatory networks involved in this process in the
mandibular and hyoid arches. Furthermore, we outline that the mandibular and hyoid
arches are collectively governed by a shared gene regulatory network.

2. Anatomy and Fate of Pharyngeal Arches

In amniotes, including humans, there are five PAs, numbered first, second, third,
fourth, and fifth. Previously, the terminal arch used to be labelled as the sixth, while the
fifth was considered rudimentary, disappearing almost as soon as it has formed. However,
new analyses show that there is no evidence from amniote embryology for the existence of
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a transient, rudimentary fifth arch [16]. Collectively, the abnormal development of PAs is
linked to several major groups of birth defects in humans [17]. The first two PAs are called
the mandibular and the hyoid and have been named according to the anatomical structures
they turn into in the adult organism. The third, fourth, and fifth PAs are collectively known
as the posterior pharyngeal arches. After formation of the mandibular arch, the first PA
is split into upper maxillary and lower mandibular processes. Cartilage elements and
endochondral bone originating from PAs collectively make up the splanchnocranium. In
the mandibular arch, two cartilaginous elements arise—a rod shaped, oblongate Meckel’s
cartilage in the mandibular process and subtler palatoquadrate cartilage in the maxillary
process. During craniofacial morphogenesis, palatoquadrate cartilage undergoes endo-
chondral ossification to form a portion of orbital and lateral skull wall, the alisphenoid,
and the second middle ear bone, the incus [18–20]. In contrast, a fraction of NCCs encasing
the splanchnocranium differentiates directly into functional osteoblasts without a carti-
laginous intermediate by the process of intramembranous ossification. In the maxillary
process, NCCs surrounding the palatoquadrate cartilage form the maxilla, zygomatic,
and squamous part of the temporal bone [21]. Facial bones, which are created around
splanchnocranial cartilages, collectively comprise a membranous viscerocranium and serve
as the functional jaws in mammals. Interestingly, in the mouse, only NCCs in the first PA
have the potential to generate osteoblasts that undergo intramembranous ossification.

In all gnathostomes, Meckel’s cartilage represents a strut of the lower jaw during
embryonic development. Meckel’s cartilage initially consists of a pair of continuous rods
of cartilage, which subsequently elongate anteriorly and later fuse in the distal midline
to form a V-shaped structure outlining the forming lower jaw in mice. In mammals,
Meckel’s cartilage can be divided into three parts according to the fate of each region:
anterior/distal, intermediate/central, and posterior/proximal [22–25]. In humans, the
distal part of Meckel’s cartilage undergoes endochondral ossification and forms a portion
of dentary bone extending from the mental foramen to the midline. However, isolated car-
tilaginous nodules originating from Meckel’s cartilage can be found on the dorsal surface
of the mandibular symphysis [26]. The most proximal part of Meckel’s cartilage turns to
bone and forms the first middle ear bone—the malleus. Even though the intermediate part
of Meckel’s cartilage initially serves as a template during the development of the lower jaw,
it later degenerates, and a dentary bone emerges in its place, also known as the jawbone or
the mandible. Although chondrocytes in Meckel’s cartilage have been shown to be able
to transdifferentiate into osteogenic cells, evidence for the ossification of the intermediate
part of Meckel’s cartilage in vivo is currently limited [27–32]. Most importantly, the car-
tilaginous matrix of Meckel’s cartilage is removed during the mandibular development.
Nonetheless, two separate parts of the intermediate region of Meckel’s cartilage, one at
the base of skull and the other just at the periphery of the mandibular foramen, ultimately
undergo endochondral ossification and turn into the spine of the sphenoid and the lingula
of the mandible, respectively. In the adult organism, the dentary bone and the malleus
are interconnected by ligaments. Parts of Meckel’s cartilage connecting the spine and
lingula are thought to transdifferentiate to become the anterior ligament of the malleus and
sphenomandibular ligament [33,34]. The sphenomandibular ligament connects the lingula
of the mandible, situated at the periphery of the mandibular foramen and the spine of the
sphenoid, hanging from the cranial base, from which it continues as an anterior ligament
of the malleus to the middle ear cavity and attaches itself to the malleus. In adulthood, the
connection between the mandible and the middle ear is still apparent, as trauma to the jaw
joint can potentially cause dislocation of ear bones [35]. After the dentary bone undergoes
intramembranous ossification, secondary ossification centres appear in the key points of
articulation and mechanical force—in the condylar, coronoid, and angular processes of the
mandible—where they initiate endochondral ossification. Since Meckel’s cartilage acts as
a template for later formation of the lower jaw bones, its defects lead to anomalies in the
pattern and size of the lower jaw in both mouse and human embryos [36]. In summary,
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Meckel’s cartilage turns into diverse structures along the proximal-distal axis: the malleus;
ligaments, replaced by the dentary; and mandibular symphyseal cartilage [25].

Generation of bone in the second PA generally involves endochondral ossification [37].
In the mammalian hyoid arch, several separate cartilaginous elements arise, i.e., anlage of
the third middle ear bone—the stapes, and Reichert’s cartilage. Unlike Meckel’s cartilage,
Reichert’s cartilage is not a continuous structure [38]. The cranial portion of Reichert’s
cartilage is continuous with the ear capsule and undergoes endochondral ossification to
form a bony projection of the temporal bone, termed the styloid process. The smaller
caudal segment of Reichert’s cartilage develops in close relation to the oropharynx and
undergoes endochondral ossification to form lesser horns of the hyoid. No cartilage
connection between these segments exists, although they are temporarily linked by a
mesenchymal band, which is thought to differentiate into muscles and ligaments [39]. The
cartilage element of the third PA does not bear any eponymous name and contributes
to the development of greater horns of the hyoid and possibly to superior horns of the
thyroid [40]. The body of the hyoid bone originates from a single growth centre, without
overt contributions from the second PA and third cartilage elements. In mammals, posterior
PAs probably bear a miniscule importance. Analyses of chondrogenesis and myogenesis in
the chick and mouse, as well as three-dimensional analysis of human embryos, revealed
that cartilage formation does not occur within the fourth and fifth PAs [41,42]. Laryngeal
cartilages, previously considered to be derived from the posterior PAs, likely develop as
new mesenchymal condensations in the throat region [41].

Interestingly, reports of abnormalities in the hyoid arch in humans are uncommon
in the literature. However, severe hyoid abnormalities associated with swallowing dys-
function occur in patients with Pierre Robin sequence [43], and infants with cleft lip and
palate occasionally exhibit delayed ossification of the hyoid bone, as well as a significantly
lower position of the hyoid bone relative to the cervical vertebrae [44]. Conversely, the
hyoid bone has been shown to have a more superior and posterior position in patients
with hyperdivergent vertical facial growth [45]. In a 15-year-old boy patient with clei-
docranial dysplasia, Yoshida et al. reported a unique case of abnormal ossification of the
hyoid bone [46]. Cephalometry of children with 22q11.2 deletion syndrome revealed a
reduction of hyoid bone lengths, and hyoidal gaps, which reflect the fusion of the hyoidal
segments, the greater horns, and the body, were larger than those of the controls [47]. This
finding indicates that the ossification of the hyoid bone is delayed in children with 22q11.2
deletion syndrome. In accordance with this, the delayed ossification of the hyoid bone
was suggested to be a useful tool in the diagnosis of DiGeorge syndrome during the first
postnatal months, before the diagnostic use of the FISH hybridization techniques [48].
Moreover, autopsied infants with DiGeorge syndrome, tetralogy of Fallot, and interrupted
aortic arch showed a significantly low incidence of visible hyoid ossification centre [49].
Since the hyoid bone has an important role in respiration, deglutition, and speech, delayed
development of the hyoid bone in children with 22q11.2 deletion syndrome may be related
to hypotonia of the velopharyngeal muscles and nasal speech.

In teleosts, seven PAs, numbered first, second, third, fourth, fifth, sixth, and seventh,
have been described. As a hallmark of gnathostomes, the first PA/the mandibular arch in
teleosts transforms into the jaws during embryogenesis. The second PA, the hyoid arch,
mainly provides the attachment of the jaws to the base of neurocranium. The remaining
five PAs, also known as branchial/gill arches, provide a gill-supporting function. The
mandibular arch is divided into two clearly distinguishable cartilaginous bars, Meckel’s
cartilage and palatoquadrate cartilage. While Meckel’s cartilage is the precursor of the
lower jaw, dorsally situated palatoquadrate cartilage precedes the appearance of individual
bones in the upper jaw. Similar to the mandibular, the hyoid arch is divided into a dorsal
region, represented by hyosymplectic cartilage, and a ventral region, represented by cera-
tohyal and basihyal cartilages. The hyosymplectic cartilage in the dorsal region provides
the attachment of jaw to the neurocranium, whereas the ventrally situated ceratohyal and
basihyal cartilages act to stabilize the jaw and support the neck region. This primary setting
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of the teleost viscerocranium represents a base for further development, which is the bone
formation. The mechanism of ossification in teleosts slightly differs from that in mammals.
At first, endochondral bone usually goes through a perichondral ossification, meaning
that cartilage ossification initially occurs within the perichondrium and then continues
progressively from outside to inside. It is important to note that the nascent bone still
remains a rod-like shaped cartilage in the centre [49].

In the zebrafish lower jaw, the perichondral ossification of Meckel’s cartilage is ini-
tiated on the anterior, labial side. The bulkiest bone arising from Meckel’s cartilage via
perichondral ossification is the anguloarticular [49]. Nonetheless, most parts of Meckel’s
cartilage are encased within intramembranous bone, such as the dentary bone. In the upper
jaw, palatoquadrate cartilage turns to bone and in the posterior region gives rise to the
endochondral bone, the quadrate, which articulates with the anguloarticular in the jaw
hinge region. Conversely, the upper jaw is composed of two dermal bones in the anterior
region, premaxilla and maxilla [50]. In contrast with teleosts, there is an evolutionary trend
towards the reduction and/or fusion of skeletal elements within mandibular and hyoid
arches in mammals. Teleost jaws are composed of a large amount of individual bones
which are mostly clearly identifiable.

Similar to Meckel’s, the ossification of ceratohyal cartilage in the ventral region of
the hyoid arch starts within the perichondrium, progressing in the anteroposterior direc-
tion. In the dorsal region of the hyoid arch, the hyosymplectic cartilage ossifies into the
hyomandibular bone. The hyomandibula is fused with the symplectic bone, which itself de-
rives from the hyosymplectic cartilage in the middle region. Moreover, the hyomandibula
articulates with the opercular series, which is composed of several intramembranous
bones, including the opercle. Collectively, the intramembranous bones of the opercular
series serve as a protection of gill slits. Meanwhile, subsequent branchial arches also
ossify perichondrally [50] Opercular intramembranous bones are in sharp contrast with
the mammalian hyoid arch, as NCCs in the murine hyoid arch are incompetent at forming
intramembranous bone under normal conditions. A summary of skeletal derivates of PAs
in the mouse and zebrafish can be found in Table 1.

Table 1. Skeletal derivatives of PAs in the mouse and zebrafish.

Viscerocranium Mouse Zebrafish
Cartilaginous Membranous Cartilaginous Membranous

First pharyngeal arch
(the mandibular)

Palatoquadrate cartilage:
Alisphenoid

Incus

Premaxilla
Maxilla

Zygomatic bone
Temporal squama

Palatoquadrate
cartilage:
Quadrate

Metapterygoids
Palatines

Premaxilla
Maxilla

Ectopterygoid
Entopterygoid

Meckel’s cartilage:
Mandibular symphysis

Lingula of mandible
Sphenomandibular ligament

Spine of sphenoid
Anterior ligament of malleus

Malleus

Dentary bone Meckel’s cartilage:
Retroarticular

Dentary
Anguloarticular

Coronomeckelian

Second pharyngeal arch
(the hyoid)

Stapes
Styloid process of the temporal

bone
Stylohyoid ligament

Lesser horns of the hyoid bone

Basihyal
Ceratohyal

Epihyal
Hypohyal

Hyomandibula
Interhyal

Symplectic

Urohyals
Branchiostegal rays

Interopercle
Opercles

Preopercles
Subopercles

Third pharyngeal arch Greater horns of the hyoid
bone

Basibranchials
Ceratobranchials

Epibranchials
Hypobranchials

Pharyngobranchials
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In teleosts, the cranial skeleton is highly developed, and the function of pharyngeal
cartilage is more akin to the ancestral gnathostome state in comparison with amniotes,
as each PA-derived element reflects the adaption to aquatic life [51]. The number of PAs
in aquatic species is usually higher, since the gills are relatively inefficient filters. There
appears to be a general trend towards the reduction of PAs during evolution. Fossil fish
have high numbers of PAs, and there have even been ostracoderm fossils with as many
as 30 arches [52]. One reason for the general decrease in PA number in amniotes could be
the transition from an aquatic to land dwelling lifestyle. However, it is important to note
that the anterior–posterior and dorsal–ventral PA identity and polarity has largely been
conserved among all gnathostomes [21].

3. Specification of Pharyngeal Arches by the Hox Code

The anatomical identity of individual PAs is dependent on their position along the
anterior-posterior axis. The axial identity of PAs is determined by the expression of Hox
genes in the hindbrain and in migrating NCCs [53,54]. However, even crestless PAs have a
sense of individual identity [15]. Hox genes control the segmentation of the hindbrain by
the principle of collinearity, meaning that they are organized in clusters in the chromosomes
in the same order, as is their expression along the anterior–posterior axis [55]. Cranial
NCCs populate PAs in distinct segregated streams, which are defined by the spatiotemporal
expression of Hox genes in the hindbrain [56]. The neuroepithelium of the hindbrain is
transiently subdivided into a series of eight metameric segments, called rhombomeres
(r1–r8) [57]. NCCs arising at the level of rhombomeres colonize PAs, which are worth to
note also metameric [9]. While NCCs migrating from the level of the forebrain, midbrain,
and anterior hindbrain do not express Hox genes, those that arise at the level of r3–r8
are Hox-positive. According to this anterior–posterior specification, NCCs colonizing
the prospective face and the mandibular arch are Hox-negative, whereas the hyoid and
posterior PAs are Hox-positive [58]. In humans and mice, four Hox paralogue groups,
numbered Hox1, Hox2, Hox3, and Hox4, are expressed in the head and neck. Each paralogue
group contains Hox genes from at least two Hox clusters—Hoxa, Hoxb, Hoxc, and Hoxd.
For example, Hox1a and Hox1b collectively form one paralogue group, and they both
come from two distinct clusters. Due to teleost-specific duplication, as much as seven
hox clusters appear in the zebrafish genome—hoxaa/hoxbb, hoxba/hoxbb, hoxca/hoxcb, and
hoxda/hoxdb [59]. Generally, each PA is governed by one Hox group—the second PA is
controlled by Hox2, the third PA by Hox3, and the fourth PA by Hox4 [60,61]. Hoxa1 itself is
not expressed in migrating NCCs but solely in their precursors at the neural plate prior to
NCC delamination, and Hoxa1 lineage gives rise to all NCCs that emanate from r4 [62,63].
Likewise, the expression of Hoxb1 is apparent only in the neuroepithelium and is very
temporary in the mouse [56]. In the zebrafish, hoxb1 in conjunction with other transcription
factors modulates NCC activity in streams migrating from r4 [56]. Mice lacking Hoxa1 show
a significant decrease in migratory NCCs in the second PA and the reduction of the NCC
number is even stronger in Hoxa1 and Hoxb2 double-null embryos, which lack any NCCs
from r4, a major site of origin of the second PA neural crest [14]. In zebrafish, overexpression
of hoxa1 results in robust and partially duplicated ceratohyal cartilages, while the remaining
PAs, including the mandibular arch, are underdeveloped [64]. Interestingly, single Hoxb1-
null mouse embryos display no discernible defects in NCCs [14,65].

In contrast, Hoxa2 has a more direct effect on the craniofacial morphogenesis, since
Hoxa2 is expressed in NCCs emanating to the second, third, and fourth PAs. Strictly
speaking, Hoxa2 is a key determinant of the second PA fate in the mouse [66]. Hoxa2-null
mice exhibit a homeotic transformation of the first arch derivatives into the second arch
skeletal elements [67,68]. Although not studied in the mouse, the ectopic activation of
Hoxa2 in the mandibular arch of fish, frog, and chick transforms the identity of the first PA
elements into that of the second arch [69–71]. Phenotypic changes in Hoxa2 mutants suggest
that Hox genes are incompatible with the mandibular arch development, and this idea is
further supported by mutants missing the entire Hoxa cluster. In these mouse mutants,
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the individual identities of the second, third, and fourth PAs are diminished and all are
transformed the into rudimentary first PA elements, while posterior PA derivatives do not
develop altogether [72]. Nonetheless, this is not firm evidence that the first PA represents a
ground state, and the formation of successive PAs requires the Hoxa cluster. Akin to Hoxb1,
mouse Hoxb2 mutants have only mild craniofacial defects, and their pharyngeal skeletal
elements appear normal. In zebrafish, hoxb2 is expressed only in NCCs emanating from r4
to the second PA, and its individual function is not necessary for hyoid arch development.
However, it is important to note that hoxa2 alone does not drive the development of second
PA derivatives in the zebrafish [70]. During the second PA morphogenesis in zebrafish, the
combined action of hoxa2 and hoxb2 patterns the nascent hyoid arch, as hoxa2/hoxb2 double
knockdown changes the morphology of the second PA derivates so that they appear similar
to the mandibular arch-derived elements. Altogether, data from Hox mutants suggest that
the Hoxa gene cluster has a primary role in the specification of the axial identity of the PAs,
whereas Hoxb cluster may serve as a fine tuner of the nascent PA morphology.

4. Specification of Mandibular and Hyoid Arches by the MEIS/PBX Complex

MEIS and PBX transcription factors are regulatory proteins containing TALE (three-
amino-acid-loop extension) homeodomain. MEIS binds PBX, among other transcription
factors, and they collectively form a complex that binds to a DNA via respective MEIS- and
PBX-consensus binding sites [73]. Mice and humans possess three Meis paralogues—Meis1,
Meis2, and Meis3. In zebrafish, meis1 and meis2 genes were duplicated during teleost
evolution, and its genome contains meis1a/meis1b and meis2a/meis2b. When it comes to
Pbx, mice and humans have four Pbx genes Pbx1, Pbx2, Pbx3, and Pbx4, whereas the pbx
family in the zebrafish genes consists of pbx1a, pbx2, pbx3, and pbx4, whose function is more
akin to murine Pbx1 [74].

MEIS and PBX transcription factors serve important roles by interaction with HOX
proteins during development of the hindbrain and NC. MEIS factors bind to the PBX–
HOX complex, therefore forming a stable trimeric complex, allowing the modulation
of Hox expression [73,75]. Crosstalk between MEIS and HOX is likely required for the
determination of PA identity. In zebrafish, the Meis–Pbx–Hox complex regulates chromatin
accessibility in hoxb1a and hoxb2a gene loci, thereby regulating their expression in the second
PA [76]. Correspondingly, the murine MEIS–HOXA2 complex regulates the identity of the
second PA by controlling the expression of second PA-specific genes [77]. The elimination
of Meis2 specifically in NCCs results in extensive craniofacial defects [78]. Furthermore,
NC-specific Meis2 embryonic mutants have elevated osteogenesis in the mandibular and
hyoid arch at the expense of disrupted tongue development [79]. Craniofacial defects in
the maxillary and mandibular processes of Meis2-deficient embryos thus reveal the Hox-
independent function of Meis2. Furthermore, altered osteogenesis within the hyoid arch
also results in various defects of the hyoid apparatus in Meis2-deficient embryos [78,79]. The
MEIS–PBX–HOX regulatory circuit seems to be evolutionary conserved. In a clinical setting,
human patients with heterozygous mutations in MEIS2 are afflicted by craniofacial and
cardiac defects, in addition to intellectual disabilities [80–85]. In both lamprey (cyclostomes)
and zebrafish (gnathostomes), the deletion of evolutionary conserved hoxa2 and hoxb2
enhancers results in loss of hox expression in the second migratory stream of NCCs, which
contains precursors of second PA cartilage [86]. Intriguingly, the targeted deletion of
conserved meis- and pbx-binding sites in these hox enhancers leads to the same result. The
combined knockdown of meis1 and meis2 leads to malformations of craniofacial cartilage,
e.g., a fusion of viscerocranial cartilages, demonstrating the importance of meis in cranial
NCCs [87]. This indicates the improper specification of PAs at the earliest stages, which
may affect subsequent steps of cartilage formation.

Zebrafish Pbx4, the functional equivalent of mammalian PBX1, cooperates with HOX
in PA segment setting, as pbx4 mutants exhibit hypoplastic jaws and the fusion of first and
second PA skeletal derivatives [88]. In contrast to zebrafish, murine Pbx1 is expressed in
the ectomesenchyme and ectoderm of the second arch, while maxillary and mandibular
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processes show much lower expression. Nonetheless, Pbx-null and Pbx2 heterozygous
mutants have been reported to exhibit mandibular hypoplasia [89]. Compound Pbx1/Pbx2
mutant mice show abnormal forebrain development, hindbrain segmentation, and hy-
poplasia of posterior PAs [90]. Mice with systemic elimination of Pbx1 have morphological
alternations of splanchnocranial cartilage derived from the second PA, which mimics the
homeotic transformation in Hoxa2-null mice. Both lesser horns of the hyoid and styloid
processes of the temporal bone develop elongated outgrowths that are fused together. This
newly formed cartilaginous structure is oddly reminiscent of the hyoid apparatus of certain
nonhuman mammals and of Eagle’s syndrome in humans. Additionally, Pbx1 mutants lack
stapes, another skeletal element derived from the second PA [91]. Elongation of the styloid
process or calcification of the stylohyoid ligament above a specific threshold is a medical
condition called Eagle’s syndrome. Alongside Hoxa2 and Pbx1-null mutants, calcification or
chondrification of the stylohyoid ligament resembling human Eagle’s syndrome can also be
observed in Meis2 and Prrx2 mutants [79,92]. Calcified stylohyoid ligament conspicuously
resembles the hyoid apparatus of some nonhuman mammals, in which it may consist of
more parts than in humans. It has been hypothesized that the elongated styloid process
in humans is evolutionary coded and represents a form of atavism of the bony hyoid
apparatus of our evolutionary ancestors. Clinically, the condition is characterized mostly
by pain in the head and neck due to compression of the surrounding structures either by
elongation or angulation of enlarged styloid process [93]. Multiple aetiologies of Eagle’s
syndrome have been suggested in the literature, ranging from genetic, developmental,
endocrine, traumatic, degenerative, and metaplastic. To summarize, the MEIS/PBX com-
plex regulates cell specification within the mandibular arch, whereas the trimeric complex
MEIS/PBX/HOX determines cell identity within the hyoid arch.

5. Endothelin–Dlx–Hand Gene Regulatory Network Controlling Anatomical Axes in
Mandibular and Hyoid Arches
5.1. Mouse

Already at the onset of PA formation, molecular signals determine the pattern and po-
larity of the respective arch. The mandibular arch contains Hox-free NCCs, so its molecular
determination is dependent on distinct signalling cascades, primarily on the Endothelin–
Dlx–Hand regulatory network. Endothelin1 (EDN1) is a peptide ligand that binds to G
protein-coupled receptor EDNRA and together with its downstream components, DLX
and HAND, governs the patterning of jaws [94–96]. Both EDN1 and its receptor EDNRA
are required for the induction of Dlx and Hand expression in the mandibular arch [97–99].
Edn1 is expressed in the epithelium, in the paraxial mesoderm, and in the aortic arch
vessel endothelium of the mandibular arch, whereas Endra is extensively expressed in the
ectomesenchyme of the head [100,101]. Edn1- and Ednra-null mouse embryos exhibit a
homeotic transformation of the lower jaw to an upper jaw identity [101,102]. Similarly,
ventral structures of the hyoid arch (lesser horns) appear more severely affected in com-
parison to the dorsal structures (stapes) in Edn1 mutant mice [103]. Moreover, Edn1-null
mouse mutants display the absence of the styloid process, and the hyoid bone is largely
deformed and fused to the pterygoid process. Conversely, ectopic activation of Ednra in
the cranial NCCs leads to homeotic transformation of the maxilla into the mandible-like
structure [104]. In line with this, misexpression of Edn1 in the maxilla induces the ectopic
dentary bone in the upper jaw region, again demonstrating the reversal of the molecular
switch [104]. Cranial NCCs within the mandibular arch are competent at forming both
maxilla and the mandible, and Edn1 is a molecular switch responsible for the choice of the
mandibular-specific morphogenetic program [104]. Intriguingly, even indirectly induced
ectopic Edn1 signalling in Six1-null mice present in the proximal end of the mandibular
arch leads to the formation of rod-shaped bone at the zygomatic arch with a cartilaginous
tip [105].

A close relationship among Edn1 and its downstream targets Dlx and Hand has
been proposed in several loss-of-function studies. The combined loss of Dlx5 and Dlx6
causes the homeotic transformation of the lower jaw into the maxilla-like structure, which
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essentially phenocopies Edn1 knockout [102,104,106]. Furthermore, misexpression of Hand2
in the Ednra domain of the cranial NCCs causes similar transformation to ectopic Ednra
activation [107]. Altogether, the EDN–DLX–HAND regulatory network is a prime regulator
of anterior–posterior (synonymous with ventral–dorsal in the zebrafish) patterning of the
mandibular arch and, in that sense, upper and lower jaw identity [104].

Dlx genes are homeodomain transcription factors that control the intra-arch polarity
of pharyngeal arches and anterior–posterior and proximal–distal patterning [106]. In mice,
they are organized as three bigene pairs, namely Dlx1/Dlx2, Dlx3/Dlx4, and Dlx5/Dlx6,
in the proximity of Hox genes in the chromosomes [108,109]. In both mice and zebrafish,
there are six Dlx genes that are expressed in the ectomesenchyme of the mandibular and
hyoid arches. While Dlx1/Dlx2 are expressed almost throughout the entire first two arches,
Dlx3/Dlx4 and Dlx5/Dlx6 show more restricted domains [110]. Dlx5/Dlx6 are expressed
solely in the mandibular process and hyoid arch (see Figure 1), in the nested domains
within Dlx1/Dlx2 territory, whereas Dlx3/Dlx4 are expressed only in the most distal part
of the mandibular process and hyoid arch, within Dlx5/Dlx6 territory.
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Figure 1. Schematics of a frontal section through developing oral cavity of a mouse embryo at E12. Dlx5/Dlx6 are expressed
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Single and compound Dlx1/Dlx2 mouse mutants display malformations selectively
in the upper jaw and upper hinge region, with barely any effect in the lower jaw [110–112].
Many anterior first PA elements, such as alisphenoid and incus, are malformed in the Dlx2-
null mice, whereas Dlx1-null mutants exhibit a similar phenotype, although much milder.
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However, compound double-null Dlx1/Dlx2 mutants develop more severe defects that
are not present in either of the single-null mutants [111,112], suggesting their functional
redundancy for the development of maxilla. Furthermore, Dlx1/Dlx2 may be dispensable
for the development of the lower jaw, as there are barely any malformations in the lower
jaw associated with Dlx1/Dlx2 single or compound mutations. Single Dlx2 and compound
Dlx1/Dlx2 mouse mutants exhibit no abnormalities in the ventral region of the hyoid arch,
although they display cleft hyoid bodies and fusion of the greater horns to the superior
horns of the thyroid cartilage [110]. Interestingly, although the expression of Dlx2 is
unaltered in the mandibular process of Edn1 mutants, it is slightly diminished in the hyoid
arch [103]. On the other hand, mice with targeted deletion of Dlx5 have lower jaw defects,
particularly hypotrophy and dysmorphy of Meckel’s cartilage [113,114]. In double-null
Dlx5/Dlx6 mice, the shape of maxillary and mandibular processes is identical during
embryogenesis, and the lower jaw never develops Meckel‘s cartilage, but mouse whiskers
arise on its surface [110,115,116]. Concomitantly, compound Dlx5/Dlx6 mouse mutants
exhibit the truncated styloid process with an ectopic process extending towards it from the
hyoid bone and lesser horns projecting towards the neurocranial base [110]. The forced
expression of Dlx5 in NCCs in the maxillary process leads to upregulation of mandibular-
specific genes and appearance of several phenotypic hallmarks of the mandible in the
maxilla region [106]. This represents the aforementioned homeotic transformation of the
lower jaw into the upper jaw-like structure, which suggests that the default state of the
jaw is maxillary, and EDN–DLX–HAND is required to initiate the lower jaw development
programme. The specific function of Dlx3/Dlx4 during the development of the mandibular
arch remains elusive, since no craniofacial phenotype has been described in Dlx3-null mice,
and Dlx4-null mice have not been reported yet [117]. However, Dlx3/Dlx4 is induced by
Dlx5/Dlx6 [116,118], and their functional redundancy cannot be excluded. In summary,
combinatorial Dlx expression domains within PAs make up a prerequisite for intra-arch
identity of individual skeletal elements along the proximal–distal axis [37,110].

Hand basic helix-loop-helix transcription factors are expressed in the distal region
of the mandibular process, where they act to specify the so-called distal tip. Hand2 is
regulated by Dlx5/Dlx6, which are induced by EDN1 signalling (END–DLX–HAND),
therefore specifying the mandibular identity (see Figure 1). The view that Hand2 expression
is not compatible with maxillary development is further supported by Sato et al., who
show that ectopic Hand2 expression transforms the maxilla into the mandible [104]. Of
note, Dlx5/Dlx6 and Hand2 are severely reduced in the hypoplastic mandibular process
of Mef2c NC-specific mutants, which links Mef2c to the Edn–Dlx–Hand regulatory net-
work [119]. Contrary to Edn1 induced by the expression of Hand2, the expression of Hand1
requires BMP signalling. Moreover, HAND2 acts synergistically with BMP to regulate
the expression of Hand1 [120,121], since Hand1 expression is markedly downregulated in
Hand2 mutants. Hand1 and Hand2 are expressed in the distal tip domain of the mandibular
process and hyoid arch, which is mutually exclusive with the more proximal expression
domain of Dlx5/Dlx6. Tissue-specific inactivation of Hand2 in NCCs leads to ectopic
ossification in the distal tip of the mandible, heterotopic bone in the symphysis, and tongue
hypoplasia [120,122]. Similarly, the deletion of the branchial enhancer of Hand2 in the
mandibular arch leads to the hypoplasia of the mandible and cartilage malformations, such
as truncation of Meckel’s cartilage and abnormal projections of the malleus and lesser horns
of the hyoid [107]. Multiple defects of the hyoid apparatus have been reported to occur in
Hand mutants, including poor ossification of the hyoid bone and lesser horns, deformation
of the hyoid body in the midline, fusion of the hyoid body and thyroid cartilage in the
midline, fusion of lesser horns and palatine bones, and aberrant articulation of the styloid
process with greater horns [120,123–125]. Meis2 appears to act upstream of Hand2 because
NC-specific Meis2 mutants exhibit decreased Hand2 expression in the first and second PAs.
In Wnt1-Cre2-driven, tissue-specific deletion of either Meis2 or Hand2 in NCCs, mutant
mice show comparable tongue hypoplasia, mandibular retrognathia, and symphyseal
ossification [79,120]. The expression of Hand genes in the distal tip of the mandibular
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process thus restricts osteogenesis in the prospective tongue region, while Dlx genes ensure
the development of individual pharyngeal skeletal elements in the proximal region [121].
Altogether, BMP simultaneously with EDN1 acts to divide the nascent mandibular process
into the tongue-forming Hand-positive nested domain and the bone-forming Dlx-positive
nested domain.

5.2. Zebrafish

In the zebrafish, edn1 is expressed in the pharyngeal ectoderm, mesoderm, and en-
doderm. However, only ectodermal edn1 seems to control the fate of NCCs during the
formation of the intermediate-ventral region of PAs (see Figure 2). Thus, mutations in edn1
lead to hypoplasia of the Meckel’s cartilage and its fusion with the palatoquadrate carti-
lage [126]. In addition, both edn1 mutants and edn1 morphants have malformed intramem-
branous bones within the mandibular and hyoid arches [127]. The mutant phenotype is
also reflected in the alteration of the molecular imprint, as edn1 mutants have decreased
expression of hand2, dlx2a, msxE, and gsc, especially in the ventral region of PAs [128],
while nkx3.2 in the jaw hinge region is also reduced [129]. The essential role of edn1 during
patterning of the ventral region of PAs was confirmed by heat-shock experiments, resulting
in disrupted expression of edn1, the reduction of hand2, and the simultaneous expansion
of dlx3b, dlx5a, dlx6a, and nkx3.2 [130]. Unlike in the mouse, edn1 does not recognize one
but two paralogue receptors, Ednra1 and Ednra2. Ednra1 is expressed in the migratory and
early postmigratory NCCs within PAs, whereas endra2 is expressed in the late postmigra-
tory NCCs [126]. Ednra1 knockdowns display the fusion of joints in hinge regions of the
mandibular and hyoid arches, as well as retrognathia. Unlike ednra1, knockdown of ednra2
does not affect PA development. Moreover, ednra1/2 double knockdown mutants miss the
lower jaw and ceratohyal cartilage, similar to edn1 mutants [126]. Thus, Edn1 signalling
via Ednra1 and Ednra2 is important during development of the ventral region of PAs. [131].
Collectively, data from mice and zebrafish suggest the evolutionarily conserved function of
edn1 in postmigratory NCCs and during the development of ventral pharyngeal cartilages
in gnathostomes.
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The craniofacial phenotypes of edn1 and hand2 mutants appear to be similar. Hand2
zebrafish mutants lack the lower jaw and ventral set of second pharyngeal cartilages [129].
In fact, edn1 positively regulates hand2 during the development of ventral pharyngeal
cartilages. Upon the early NC migration, hand2 restricts cell proliferation during the
anterior-ventral protrusion of NCCs, which is under the control of edn1. However, at
later stages of development, the function of hand2 shifts, and it eventually promotes the
cell proliferation [131]. Additionally, hand2 also influences the cell movement within the
mandibular arch, but apparently independently of edn1 [131]. Nkx3.2 is expressed in ec-
tomesenchyme of the lower jaw primordium, and during the chondrification, its expression
becomes localized within and around the jaw joint. In keeping with this, hand2 regulates
development of the jaw joint via modulation of nkx3.2 expression [129,132]. Therefore,
nkx3.2 is involved in specification of the intermediate region of PAs, the hinge region, and
is expressed ventrally to dlx2a and dorsally to hand2 [129]. The expression of nkx3.2 in
the presumptive jaw hinge region is regulated by Hand2 via gsc and dlx3b/4b/5a. Hand2
activates the expression of gsc, which in turn represses nkx3.2. Meanwhile, dlx3b/4b/5a
repress gsc and activate nkx3.2 [132].

Dlx genes are under the control of Edn1 and Bmp signalling [133]. The genome
of zebrafish contains four bigene dlx pairs—dlx1a/dlx2a, dlx3b/dlx4b, dlx5a/dlx6a, and
dlx2b/dlx4a [134]. Along the dorsoventral axis of PAs, dlx3b/dlx4b and dlx4a can be detected
in the intermediate region. While dlx2a is expressed in the dorsal region of PAs, dlx5a/dlx6a
are found in the ventral region and the intermediate region of PAs (see Figure 2). The
expression of dlx2b is excluded from the first two PAs. In the ventral region of PAs, dlx
genes are repressed by hand2 [132]. Double knockdown of dlx1a/dlx2a causes defects in
the dorsal pharyngeal cartilages (palatoquadrate and hyosymplectic cartilages), bearing
similarities to murine Dlx1/Dlx2 mutants [110–112]. The patterning of mandibular and
hyoid arch hinge regions, the opercle, and branchiostegal rays is influenced by dlx5a, dlx3b,
and dlx4b. Interestingly, single knockdown of dlx5a, dlx3b, or dlx4b does not produce any
changes in the pattern of expression. Conversely, simultaneously knocking down all of
them leads to the loss of hinge region joints and fusion of the opercle with branchiostegal
rays [132]. Taken together, dlx1a and dlx2a control the patterning of the dorsal region in
the mandibular and hyoid arches, whereas both dlx3b/dlx4b and dlx5a/dlx6a regulate the
development of intermediate region. The expression of dlx genes in the zebrafish is in
accordance with the mouse, as Dlx1/Dlx2 govern morphogenesis in the dorsal region of PAs,
which equals the upper jaw region, the styloid process, and the stapes, whilst Dlx3/Dlx4
and Dlx5/Dlx6 establish the intermediate and ventral region of PAs, which comprises the
presumptive lower jaw and lesser horns of the hyoid. Therefore, the patterning along the
anterior–posterior and dorsal–ventral axes in mice and zebrafish is under the control of a
common regulatory cascade, EDN–HAND–DLX (see Figures 1 and 2).

6. Combinatorial Action of FGF8, BMP4, and SHH Signalling Pathways during
Morphogenesis of Mandibular and Hyoid Arches
6.1. Mouse

Alongside transcription factors, numerous protein ligands also serve essential func-
tions during the patterning of mandibular and hyoid arches. Ffg8 is expressed in the
oral epithelium from which it diffuses into the underlying ectomesenchyme. Fgf8 is a
key survival factor of the NC because its ablation in the oral ectoderm leads to massive
apoptosis in the mandibular arch, as well as to complete loss of the proximal mandibular
structures [135]. Moreover, Fgf8 determines the rostral–caudal axis of the mandibular arch.
The expression of Fgf8 in the oral surface ectoderm induces the expression of transcription
factors Lhx6/Lhx8 in the rostral mandibular mesenchyme. Concomitantly, this results in the
restriction of Goosecoid (Gsc) expression in the caudal mandibular mesenchyme, therefore
establishing the subdivision of the mandibular process into the rostral and caudal domain
(see Figures 3 and 4) [136]. At the same time, FGF8 acts together with BMP4 to specify the
proximal–distal axis by regulating the expression of specific homeodomain-containing tran-
scription factors in the ectomesenchyme, which subsequently defines the positional identity
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of individual teeth. Barx1 induced by FGF8 in the proximal region determines the molar
identity, whereas BMP4-regulated Msx1 in the distal aboral region specifies the prospective
incisors. Intriguingly, early mandibular epithelium can organize dental mesenchyme and
dental papilla in the mouse hyoid arch, indicating a common regulatory circuit between
the mandibular and hyoid arches during the early stages of PA development [137]. In the
mandibular process, maintenance of Fgf8 expression is ensured by transcription factor
PITX2, which simultaneously represses Bmp4 expression. Consistently, the expression of
Fgf8 and its target genes, such as Barx1 and Pitx1, is severely reduced in Pitx2-null mutants,
whereas the expression of Gsc in the mandibular process is expanded rostrally. Moreover,
since high doses of Pitx2 are required for repression of BMP signalling, the expression
of Bmp4, Msx1, and Msx2 is expanded as well. As a result, disrupted signalling in the
mandibular arch due to the mutation in either Pitx1 or Pitx2 leads to a severe micrognathia,
while single Pitx1 mutants also suffer from the bifurcation of the tongue and a novel bone
deposition around Meckel’s cartilage [138–140].
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Figure 3. Schematics of a mid-sagittal section through the mandibular and hyoid arches of a mouse embryo at E12. Bmp4 is
expressed in the distal mandibular epithelium, at the site of presumptive incisors, while Msx1 is expressed in the distal
mandibular ectomesenchyme, surrounding the incisor primordia. Shh is expressed in the vestibular lamina and dental
epithelium, as well as in the lingual epithelium, while Foxf1/Foxf2 are expressed in ectomesenchyme in the medial region
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not highlighted in the figure.
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The rostral–caudal axis, which is defined by the complementary expression of Lhx6/Lhx8
and Gsc, is actually distinct from the oral–aboral axis (see Figures 3 and 4) [141]. Correspond-
ing to the expression pattern of Sonic hedgehog (Shh) in the oropharyngeal epithelium,
the downstream targets and mediators of Hedgehog (HH) signalling, Foxf1 and Foxf2
are expressed in the subjacent mandibular mesenchyme [141,142]. Complementary to
the expression of Shh on the oral side of the mandibular arch, Bmp4 is expressed in the
complementary subdomain on the aboral side (the same domain that is important for the
development of incisors) [141,143]. The expression of Foxf1/Foxf2 genes in the mandibular
mesenchyme antagonizes the expression of Msx1/Msx2 induced by BMP4, thereby pre-
venting the osteogenesis in the prospective tongue region. Upon ablation of either Smo or
Foxf1/Foxf2 in NCCs via Wnt1-Cre2 recombination, the Bmp4 expression domain expands
to the oral side of the mandibular arch, which leads to the formation of heterotopic bone
on the oral side of the mandible [141]. Altogether, this shows that HH signalling in the
mandibular arch is required for patterning the oral–aboral axis of the mandible.

Transcription factor MEIS2 modulates SHH activity in the mandibular process and
determines its medial–lateral axis [79]. The targeted deletion of Meis2 in the NC using
Wnt1-Cre2 driver leads to the downregulation of Shh and Ptc1 expression on the oral side
of the mandibular process. Furthermore, the expression of Hand1/Hand2 in the distal tip
of the medial region of mandibular and hyoid arches is reduced, while the gradient of
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Dlx5 and Barx1 expands from the lateral to medial regions. This patterning shift along
the medial–lateral axis leads to the loss of molecular identity of NCCs in the prospective
tongue. When Meis2 is deleted within NCCs in Wnt1-Cre2; Meis2 fl/fl mutants, the levels
of PAX3 around the alveolingual sulcus (anatomical boundary between dentary bone and
tongue) are markedly reduced and replaced with RUNX2, which subsequently leads to the
formation of ectopic bone in the same region. As a result, the tongue is severely hypoplastic
and its lateral edges are invaded by heterotopic bone. Altogether, the determination of
the oral–aboral and medial–lateral axes in the mandibular process by the coordinated
interaction of SHH, BMP, and the EDN–DLX–HAND regulatory cascade may be linked to
the MEIS2 regulatory network, since its ablation in the NCCs leads to the downregulation
of both Shh and Hand2.

Shortly after the colonization of PAs by NCCs, Shh is expressed in the oropharyngeal
epithelium, from which it maintains the survival, proliferation, and patterning of the under-
lying mandibular mesenchyme. Both epithelial and mesenchymal cells in the mandibular
arch express receptors Smo and Ptch1 and are therefore able to respond to SHH ligand. As
development of the mandibular arch proceeds, spatially restricted centres of Shh induce the
formation of numerous oral structures, including tongue, teeth, palate, and salivary glands
(see Figures 1, 3 and 4) [144,145]. The elimination of SHH activity in either oropharyngeal
epithelium via Nkx2.1-Cre,Shhflox or SHH responsiveness in the ectomesenchyme using
Wnt1-Cre2;Smoflox causes extensive apoptosis of NCCs and results in mandible and tongue
defects [141,142,146–148]. At the midline of the mandibular process, the expression of
Shh specifies NCCs in the tongue primordium, thereby establishing the oral–aboral and
medial–lateral axes. Moreover, Shh in this region allows the invading myogenic progenitors
to permeate the nascent tongue primordium, thereby promoting the tongue development
and preventing osteogenic differentiation in the midline [79,141]. Thus far, Shh has not
been reported to exert any patterning activity in the second PA [149,150].

In the early pharyngula, signalling centres expressing Fgf8 and Shh are set up by Islet1
(ISL1). Isl1 is a member of the Lhx family that encodes transcription factors containing
two LIM domains and a homeodomain. In the PA development, ISL1 acts as an epithelial
ligand expressed in the oral ectoderm of the first PA and the endoderm of other arches [151].
Loss of Isl1 in β-catenin expressing cells leads to agnathia, a complete absence of the lower
jaw [151]. When Isl1 is inactivated in the mandibular epithelium, specifically in Shh-
expressing cells, the aberrant bony fusion of the distal tip of the dentary bone occurs,
similar to Hand2 and Meis2 mouse mutants [79,123]. Both Fgf8 and Shh are missing in the
oropharyngeal epithelium of the early pharyngula in Isl1 mutants [151,152]. Canonical
WNT signalling is known to be upstream of Fgf8 in the first PA epithelium, and WNT
signalling is disrupted in the first PA of Isl1 mutants, indicating a regulatory circuit of Isl1-
Wnt-Fgf8 [151,153]. ISL1 may activate epithelial β-catenin signalling via repression of WNT
antagonist. Intriguingly, reactivation of β-catenin in the mandibular epithelium of Isl1
mutants rescued the mandibular morphogenesis through SHH signalling to the mandibular
ectomesenchyme. Furthermore, overexpression of Shh in the first PA epithelium partially
restored the morphologic defect in Isl1 mutants and led to successful outgrowth of the
dentary bone [154].

6.2. Zebrafish

In the zebrafish, fgf8 in concert with fgf3 establishes the segmentation of the pharyngeal
endoderm within PAs during the early pharyngula stage [155]. Together, fgf8 and fgf3
control the survival of NCCs during the formation of pharyngeal cartilages. Therefore, loss
of fgf8 leads to hypoplasia of the mandibular cartilage [2,155]. Furthermore, fgf3 knockdown
results in misshapen ceratohyal and lack of ceratobranchial cartilages. The complementary
function of fgf8 and fgf3 is strongly supported by severe pharyngeal malformations in
compound fgf8 and fgf3 knockdown mutants, which results in loss of all ceratobranchial
and hyoid arch cartilages, accompanied by significant size reduction of mandibular arch
cartilages [155]. Later in development, fgf8 is essential for the proper expression of the
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osteogenic genes runx2 and sp7 during the craniofacial ossification [2]. Together with Bmp,
Fgf signalling controls the expression of barx1. Barx1 is expressed in migratory NCCs and
also later in the ectomesenchyme within PAs, where it maintains the chondrogenic cell fate
and negatively regulates the development of the jaw joint, and its loss initiates osteogenic
differentiation within chondrocytes [156].

In conjunction with Edn1, Bmp signalling patterns the dorsal–ventral axis of PAs
(see Figure 2) [130,133]. Lack of Bmp signalling in PAs leads to either reduction or even
loss of ventral pharyngeal cartilages, such as Meckel’s cartilage and ceratohyal cartilage,
and intermediate pharyngeal cartilages, such as joints, interhyal cartilage, and the ventral
part of symplectic cartilage [133]. Conversely, bmp overexpression transforms and fuses
hyosymplectic cartilage into a structure reminiscent of ceratohyal cartilage, and joints
within mandibular, hyoid arches, as well as the ventral part of hyosymplectic cartilage, are
lost. Moreover, palatoquadrate cartilage is also transformed into a structure resembling
Meckel’s cartilage [130]. Akin to the loss of Bmp signalling, edn1 overexpression results in
similar defects in dorsal pharyngeal cartilages of the mandibular and hyoid arches, except
for the joints.

In the early pharyngula, the inhibition of Bmp signalling causes the downregulation
of Edn1 signalling, as well as downregulation of hand2 and dlx6a in ventral pharyngeal
cartilages [133]. At first, Bmp induces Edn1 signalling and restricts the expression of jag1b
in the dorsal region of nascent PAs. In addition, the joint action of Bmp and Edn1 activates
hand2 via dlx5a/dlx6a in the ventral region of PAs. After the NC migration, Bmp controls
the ventral fate of PAs in an independent manner, whereas Edn1 regulates the intermediate
region of PAs. During this stage, hand2 in the ventral region is under the exclusive control
of Bmp. Furthermore, Hand2 represses intermediate-region-specific genes, such as nkx3.2,
as well as ventral-region-specific dlx3b/dlx4b/dlx5a [130,133]. The restriction of bmp in
the ventral region of PAs is mediated by the dorsal-intermedial expression of grem2, an
antagonist of Bmp signalling, induced by edn1 and jag1b (see Figure 2). In the ventral
region of PAs, Bmp inhibits grem2 expression [130], whereas the intermediate region of
PAs is established by the collective action of dlx3b, msxe, and nkx3.2 [133]. While msxe
expression is coregulated by both Bmp and Edn1, dlx3b expression is driven solely by
Edn1. To sum up, the grem2-mediated repression of bmp restricts hand2 to the ventral region
of PAs, where Hand2 acts to inhibit the expression of dlx3b, dlx5a, dlx6a, and nkx3.2 (see
Figure 2) [130,133]. Thus, during pharyngeal chondrogenesis, Bmp signalling governs the
specification of ventral cartilages, whereas Edn1 regulates the development of intermediate
cartilages [130,133].

In contrast to zebrafish, FGF, BMP, and SHH set up the position of the prospective
tongue and teeth within the murine oral cavity. In zebrafish, these molecules do not play
a complementary role, as teeth in zebrafish grow inside the pharynx, not within the oral
cavity, and they are not heterogenous, meaning they do not have incisor/molar identity.
Moreover, a tongue-like structure in zebrafish is not homologous with the muscular tongue
of tetrapods, so SHH signalling at the midline of murine embryos is not readily comparable
to that in the zebrafish [157]. However, in both mice and zebrafish, Bmp signalling controls
the development of the ventral pharyngeal region, as loss of bmp in the zebrafish leads
to the lack of ventral pharyngeal cartilages, and ectopic expression of Bmp in the mouse
results in the duplication of the dentary bone.

7. Molecular Regulation of Osteochondrogenesis in the Mandibular and Hyoid Arches
7.1. Mouse

During the morphogenesis of PA-derived skeletal elements, the differentiation of os-
teoblasts and chondroblasts from a common osteochondral progenitor represents a critical
step towards the formation of bone and cartilage. In regions of prospective cartilage and
bone, these osteochondral progenitors aggregate and condense. Both intramembranous
and endochondral ossification start from mesenchymal condensations, but the processes
themselves are different: during intramembranous ossification, mesenchymal progenitors
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can differentiate exclusively into osteoblasts, whereas endochondral ossification encom-
passes the differentiation of both osteoblasts and chondroblasts. The key difference is that
chondroblast differentiation precedes the formation of endochondral bone. Osteochondrob-
lastic differentiation and maturation are regulated by three master transcription factors,
SOX9, RUNX2, and SP7 (also known as Osterix, OSX). Osteochondral progenitors in early
mesenchymal condensation have dual differentiation potential, as they coexpress Sox9 and
Runx2 [158–161].

During skeletogenic differentiation, WNT signalling is a key regulator of chondroblast
versus osteoblast cell fate choice in NCCs. The tissue-specific conditional deletion of
β-catenin (Ctnnb1), the effector of canonical WNT signalling, results in the complete
agenesis of cranial bones [162]. Concomitantly with WNT signalling the inactivation and
agenesis of cranial bone, osteogenic progenitors are diverted into the chondrogenic fate,
and an ectopic cartilage forms [163,164]. An alternative hypothesis is that RUNX2 and
SP7 are intrinsic factors which are not only required for the determination of osteoblastic
cell type, but they also play a role in suppressing the differentiation program that leads
to chondroblastic cell fate. Cell fate at early stages of differentiation is seemingly still
flexible because Runx2-expressing osteoblasts still maintain some cell fate plasticity. Full
differentiation along the osteoblast lineage is likely ensured by Sp7, since in mouse mutants
with inactivated Sp7, ectopic chondrocytes form at the expense of osteoblasts in some areas
where intramembranous bone should form [165].

Transcription factor SOX9 is a master regulator of chondrogenesis, and its expression
in NCCs is necessary for the formation of craniofacial cartilage. SOX9 probably regulates
chondrogenesis by upregulating the expression of Col2a1 and Col11a2, types of collagen
found predominantly in the cartilage [158,166]. The tissue-specific deletion of Sox9 in
the NCCs results in loss of all cartilage elements derived from the cranial neural crest.
Intriguingly, although the dentary is smaller in Sox9-deficient mice, the gross morphology
and bone formation are not severely affected [167]. Furthermore, inactivation of Sox9 in
cranial NCCs also results in upregulation of osteoblast marker genes such as Runx2, Sp7,
and Col1a1 [167]. This further supports the notion that the osteoblastic differentiation
programme plays a role in suppressing chondroblastic cell fate, and vice versa. When it
comes to the hyoid arch, the specifier of second arch fate HOXA2 regulates the expression
of Sox9. Under normal circumstances, HOXA2 prevents chondrogenesis in the second
PA by suppressing the expression of Sox9 [66]. When HOXA2 is absent, chondrogenesis
is activated ectopically and a duplicated set of first PA cartilages appear in the Hoxa2
expression domain of the hyoid arch. Thus, the expression of Sox9 in NCCs is required for
the differentiation of common osteochondrogenic progenitors into chondroblasts and for
the formation of all craniofacial cartilages.

RUNX2 is a transcription factor that controls the differentiation of mesenchymal
progenitors (preosteoblasts) into osteoblasts and is expressed in early osteoblasts, hyper-
trophic Meckel’s cartilage, and mineralized bone [168]. RUNX2 is also a positive regulator
of hypertrophic differentiation, as Runx2-null mice lack hypertrophic cartilage whatsoever.
Systemic deletion of Runx2 in mice shows that it is important for both intramembranous
and endochondral ossification [169]. Loss of Runx2 in mice leads to total agenesis of
bone and a complete loss of expression of osteocalcin and osteopontin, two major non-
collagenous proteins in the bone matrix [169]. In the absence of Runx2 solely in the neural
crest, loss of frontal, zygomatic, squamous temporal bone occurs, whereas the dentary,
maxilla, premaxilla, and nasal bones are severely hypoplastic and hypomineralized [170].
However, deficiency of Runx2 in mice not only affects bone but also both the primary and
secondary cartilage, as mutant mice lack the condylar cartilage and have deformed Meckel’s
cartilage [171]. Runx2 is controlled by DLX5 and both are essential in driving the differen-
tiation of mesenchymal precursors into osteoblasts. In the prospective tongue region in
the mandibular arch, Hand2 plays a major role in establishing a negative feedback loop in
the DLX5/DLX6-RUNX2 circuit. Furthermore, ossification defects in Runx2-deficient mice
reach beyond the mandibular arch, as the mineralization of the hyoid body is impaired
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as well. The transition of preosteoblasts into mature osteoblasts is regulated by SP7, a
major downstream target of RUNX2. All osteoblasts and even hypertrophic chondrocytes
express Sp7. Although deficiency of Sp7 in mice leads to the loss of dentary bone, the
development of Meckel’s cartilage is seemingly not affected at all [165]. Interestingly, when
Sp7 is lost exclusively in the neural crest, the dentary bone forms but ends up tiny and
rudimentary [172]. To summarize, Runx2 expression within PAs gives NCCs the potency
to form bone, while Sp7 is required for full commitment to osteoblastic lineage.

Muscle segment homeobox transcription factors (Msx1 and Msx2) are initially ex-
pressed together with Sox9 in the migrating cranial NCCs. Upon complete colonization
of PAs, expression domains of Msx and Sox9 become separate [173]. Until cranial NCC
migration within the mandibular process is completed, MSX2 inhibits chondrogenic differ-
entiation of Sox9-positive NCCs. In mice and humans, both single Msx2 and compound
Msx1 and Msx2 mutations lead to cleidocranial dysplasia with enlarged parietal foram-
ina [174]. This rare genetic condition is characterized by disrupted osteoblast differentiation
that clinically presents with hypoplasia of jaw and tooth abnormalities, among many other
symptoms. Loss of Tbx1 specifically in murine NCCs induces a similar phenotype to
cleidocranial dysplasia and results in a lack of the hyoid body and fusion to the thyroid
cartilage [175]. Generally, the genetic cause of classical cleidocranial dysplasia in humans
is heterozygous loss of RUNX2, not MSX2. However, the hyoid phenotypes of Runx2+/−

and Tbx1−/− are different, indicating that Tbx1 might have a primary role in early pattern-
ing and perichondral ossification in the hyoid bone [175]. As mentioned before, hyoid
anomalies occur in human patients with 22q11.2 deletion syndrome, the clinical picture
of which is thought to be caused by loss of the TBX1 gene. Alongside the cleidocranial
dysplasia, a mutation of the MSX2 gene in humans can cause craniosynostosis and enlarged
parietal foramina, whereas haploinsufficiency can lead to midline cranial defects [176–178].
On the other hand, mutations in MSX1 are connected predominantly with dental abnor-
malities in humans, such as Witkop syndrome and tooth agenesis [179]. Mutations of
Msx genes in mice also encompass a wide variety of first and second arch malformations.
Overexpression of either wild-type or mutant human MSX2 in transgenic mice causes
mandibular hypoplasia, cleft palate, and decreased ossification of the hyoid, etc. [180].
Single Msx1-null mouse mutants display an anomalous malleus, loss of alveolar dentary
bone and maxilla, and failure of tooth development. [181]. The combined loss of Msx1 and
Msx2 in mice results in severe defects such as cleft palate, truncated mandibular process,
and decreased volume of trigeminal ganglia [182]. To summarize, during early craniofacial
development, Msx genes influence the suppression of chondrogenesis and later control
the skeletogenic differentiation, as overexpression, misexpression, or deficiency of Msx
impedes the osteoblastic differentiation and results in craniofacial bone, cartilage, and
tooth defects.

PAX3 is a transcription factor that is robustly expressed in cranial NCCs that make
up the entire palatal, lingual, and mandibular mesenchyme, where it possibly keeps mes-
enchymal NCCs in an undifferentiated state [183]. Later in development, the mesenchymal
expression localizes to the distal tip of tongue and the mandible [79,183]. Pax3 mutants
with persistent Pax3 overexpression in the entire mandibular arch, including the tongue,
display defects in osteogenesis. In NCCs, PAX3 directly regulates the expression of a
soluble inhibitor Sotdc1, which diminishes responsiveness to BMP and decreases the ex-
pression of Runx2 [183]. In Meis2 NC-specific conditional mutants, the expression domain
of Pax3 in the tongue is dramatically reduced, whereas the Runx2 expression domain is
expanded in the medial mandibular region, which leads to heterotopic ossification in the
lingual mesenchyme [79]. In Pax3-deficient Splotch mice, the hyoid bone is often split
and partially fused to the thyroid cartilage [184]. In NCCs, Pax3 seems to be colocalized
with Goosecoid (Gsc) in the postotic NC, frontonasal prominence, mandibular arch, and
hyomandibular cleft [185]. Gsc encodes a highly conserved homeodomain transcription
factor. During cranial morphogenesis, Gsc is initially expressed in the undifferentiated
tissue of first and second PAs. During PA formation in mouse, Gsc expression persists in the
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nascent lower jaw and tongue, as well as in the hyomandibular cleft [186]. Among many
skeletal malformations, Gsc-null mice exhibit malformations of malleus, palatine, maxillary,
alisphenoid, pterygoid, coronoid, and angular processes [187,188]. Since Gsc is also ex-
pressed in the hyomandibular cleft, its inactivation results in auditory canal atresia and loss
of tympanic rings. In humans, heterozygous loss of GSC results in SAMS syndrome (short
stature, auditory canal atresia, mandibular hypoplasia, and skeletal abnormalities), which
further confirms the role of Gsc in craniofacial and joint development. Gsc is possibly a
downstream effector gene of regulatory networks that defines the specification and cell fate
of neural crest and mesodermal lineages. Therefore, dysregulation of GSC-mediated gene
expression in the connective tissue results in pathological differentiation and adaptation of
new cartilaginous or osseous fate [185].

Skeletogenesis in the medial region of the mandibular process is regulated by Prrx
transcription factors. Prrx1 and Prrx2 are expressed in overlapping domains throughout
the ectomesenchyme of PAs, with the strongest expression in the mandibular and hyoid
arches [189,190]. Of note, the domains of Prrx1 expression in the ventral regions of the
mandibular and hyoid arches are similar to the expression domains of Hand2. Single Prrx1
knockout mice display extensive malformations of the viscerocranium derived from the
mandibular and hyoid arches, including fusion of the incus to palatoquadratum and fusion
of the stapes to Reichert’s cartilage [191]. Single Prrx2 knockout does not result in any
discernible abnormalities in the craniofacial skeleton, suggesting that Prrx1 compensates for
the loss of Prrx2. However, compound Prrx1 and Prrx2 knockout mice have amplification
of the craniofacial phenotype found in single Prrx1 mutants [192]. As a result, the lower jaw
is micrognathic, fused at its anterior tip and often has only a single incisor in the midline.
The cause of this defect may have several explanations [193]. Firstly, the downregulation
of Shh in the oral epithelium of compound Prrx1/Prrx2 mutants can lead to reduced
cell proliferation, resulting in the mandibular hypoplasia. Secondly, Prrx1/Prrx2 double
mutants contain a large population of Runx2-positive cells in the middle and rostral
region, indicating precocious or accelerated osteogenesis in the mandibular process. Only
remnants of Meckel’s cartilage in the rostral region of the mandibular process are preserved
in Prrx1/Prrx2 double mutants. Loss of the main body of Meckel’s cartilage and increased
osteogenesis may be related to changes in the mesenchymal precursors from chondrogenic
to osteogenic fate. Thirdly, the expanded domain of Runx2 expression in mutants may be a
result of increased proliferation or decreased apoptosis of osteogenic mesenchyme and/or
the recruitment of additional osteoprogenitor cells to compensate for the loss of Meckel’s
cartilage. Unlikely, but still possible, the expanded domain of expression of Runx2 may
reflect the fusion of multiple osteogenic condensations. Similar to mice, the homozygous
or dominant heterozygous loss of PRRX1 in humans has been associated with loss of the
lower jaw [194–198]. Prrx1/Prrx2 mouse mutants also display abnormalities in the dorsal
hyoid arch. The stylohyoid ligament is not formed completely in the Prrx1-null mutant,
and a part of it develops as a cartilaginous element [191]. In contrast, in compound Prrx1
and Prrx2 mutants, the entire stylohyoid ligament chondrifies and forms a continuous
structure stretching from the stapes and styloid process to the lesser horns of the hyoid bone.
Moreover, the chondrification of the stylohyoid ligament also occurs in Prrx1+/− Prrx2−/−

mice [92]. The accelerated osteogenesis in the Prrx1/Prrx2 double mutants results in similar
abnormalities as those in the Hand compound mutants and abnormalities in mice with the
deletion of PA-specific enhancer dHand (Hand2), which also exhibited accelerated osteoblast
differentiation [122,123]. Of note, the expanded Dlx5- and Runx2-positive domains and
downregulation of Shh in the medial and oral region of the mandibular process are also
found in Meis2 NC-specific mutants [79]. The second PA phenotype of Prrx1/Prrx2 double
null mice is astoundingly similar to the hyoid abnormalities in Meis2-null mice, which
suggests that there might be a link between Prrx1/Prrx2 and Meis2 during the hyoid arch
development [92]

During the pharyngula stage, Shh influences the development of Meckel’s cartilage.
Tissue-specific inactivation of Shh in the oropharyngeal epithelium in Nkx2.1-Cre; Shhflox
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leads to a complete lack of Meckel’s cartilage formation in the mouse embryos. In contrast,
when SHH responsiveness is deleted from the ectomesenchyme using Wnt1-Cre2; Smoflox,
Meckel’s cartilage still develops, albeit truncated. Either SHH acts through an SMO-
independent mechanism or its effect on Meckel’s cartilage is indirect through another
signalling molecule, such as FGF8.

Another member of the Hedgehog family, Indian Hedgehog (IHH), is a signalling
molecule widely recognized as a regulator of skeletal development that is expressed in
the prehypetrophic chondrocytes and early hypertrophic chondrocytes. In craniofacial
morphogenesis, the expression of Ihh has traditionally been associated with the secondary
cartilage—the mandibular symphysis, angular, coronoid, and condylar processes. In
Ihh-null mice, the development of mandibular symphysis is defective due to precocious
chondrocyte maturation and reduced proliferation of the chondroblast progenitors. How-
ever, this phenotype can be rescued upon ablation of Gli3, which thus acts as a negative
regulator of symphyseal development [199,200]. Furthermore, IHH signalling during
embryogenesis promotes the expression of parathyroid hormone-related protein (Pthrp)
at the apical end of the presumptive condylar cartilage, thereby increasing numbers of
presumptive chondroprogenitor cells. In keeping with this, the articular disc and temporo-
mandibular joint are absent in Ihh-null mice, and the condylar process directly opposes
the glenoid fossa. Interestingly, the disc phenotype of Ihh-null mice is not rescued in the
concurrent absence of Gli3 [199]. Conversely, tissue-specific augmentation of Ihh expression
in the NCCs leads to severe craniofacial abnormalities, including a complete loss of the
glenoid fossa [201]. In mice, IHH signalling via PTC1 controls the proliferation and dif-
ferentiation of mesenchymal cells into chondrocytes during growth of the mesial alveolar
process of dentary bone. Furthermore, Ihh-null newborn mice have the overall length of
the mandibular body reduced by as much as a third, including secondary cartilages [202].
Likewise, in humans, patients carrying a mutation in GLI2 exhibit a range of facial defects,
including mandibular hypoplasia [203]. To summarize, IHH regulates a myriad of pro-
cesses during craniofacial morphogenesis—including the proliferation and maturation rate
of chondrocytes, endochondral ossification, the expression of Pthrp in periarticular tissue,
articular disc formation, and synovial cavity formation.

Transforming growth factor beta (TGF-β) is a protein ligand that acts as a stimulant
in cranial NCCs, increasing the proliferation of chondrocytes and the production of car-
tilage extracellular matrix [204]. Tissue-specific loss of Tgfbr1 in NCCs causes delayed
tooth initiation and mandibular defects, particularly in the proximal region, including
loss of secondary mandibular cartilages [205]. Moreover, Tgfbr1 mutants also exhibit
a lack of the stapes and severe malformations of second PA cartilage with differentia-
tion of multiple novel ectopic elements derived from the NC. Viscerocranial phenotypes
of NC-specific Tgfbr2 mouse mutants are less severe but comparable to those in Tgfbr1
mutants [205,206]. Tissue-specific deletion of Tgfbr2 in NCCs particularly affects the lower
jaw and palate [207–209]. Explicitly, the elimination of Tgfbr2 causes micrognathia and loss
of secondary mandibular cartilages.

Signalling proteins from the BMP subfamily are major factors influencing the devel-
opment of dentary bone, as ectopic expression of Bmp on the oral side of the mandibular
process results in the formation of mirror-image dentary bone. The absence of two dedi-
cated BMP4 antagonists, Chordin and Noggin, in the distal mandibular epithelium during
the mandibular process patterning results in elevated levels of BMP4 at the expense of
FGF8, increasing cell death and leading to the spectrum of mandibular hypoplasia, culmi-
nating in almost total agnathia [210]. In contrast, the absence of a single allele of BMP4
antagonist Noggin leads to significantly thicker cartilage along with increased pSmad1/5/8
expression, leading to ossification rather than degeneration of Meckel’s cartilage [211]. Sim-
ilarly, in mutant mice with a complete lack of Noggin, the hyoid body is greatly enlarged,
and its shape changes due to significantly shorter and wider horns [212]. Ectopic Bmp4
expression in NCCs leads to bony fusion of the dentary and maxilla, which is reminiscent
of the syngnathia birth defect in humans [213]. Upon ablation of Bmp2 specifically in NCCs,
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the expression of Sox9 is downregulated in both the mandibular process and Meckel’s
cartilage, which results in micrognathia and cleft palate, characteristic features of Pierre
Robin malformation sequence [214]. Compound loss of Bmp2 and Bmp4 in NCCs results in
more severe shortening of mandible then in either of single mutants [215]. In mice with
homozygous mutation in Bmp5, loss of the lesser horns and shortening of the greater horns
of the hyoid occurs [216]. Mice with a deficiency of Bmp7 exhibit shortening of maxilla and
mandible, as well as a failure of Meckel’s cartilage fusion at the anterior tip [217].

Even though mutations in Fgfs and genes coding FGF receptors (FGFRs) are usually as-
sociated with craniosynostoses, these signalling molecules exert their influence over PAs as
well. Fgfr1 is expressed in the pharyngeal epithelium and is necessary to create a permissive
environment for the immigration of NCCs. Mice homozygous for a hypomorphic allele of
Fgfr1 display reduced Fgf3 expression in the pharyngeal epithelium, which prevents NCCs
from entering the second PA and induces apoptosis instead [218]. In Ffgr1 hypomorphs,
craniofacial skeletal malformations occur mainly within the second PA and include a defi-
cient or missing stapes and a missing proximal part of the styloid process. In general, the
abnormalities in pharyngeal development in embryos in which FGF signalling has been
disrupted are strikingly similar to each other, with the most consistent phenotypic feature
being the hyoid arch hypoplasia [218–222]. Elimination of Fgfr1 specifically in NCCs causes
orofacial dysformation, tooth bud defects, and micrognathia [223]. One diagnostic feature
of craniosynostosis syndromes in humans is mandibular dysgenesis. Gain-of-function mu-
tation in Fgfr2 leads to Ffgr2-related craniosynostosis and mandibular dysmorphogenesis,
demonstrating that Fgfr2 influences cartilage and intramembranous bone formation [224].
Additionally, in a mouse model of achondroplasia, gain-of-function mutation in Fgfr3 leads
to structural anomalies of Meckel’s cartilage and secondary mandibular cartilages, result-
ing in mandibular hypoplasia and dysmorphogenesis [225]. The formation of Meckel’s
cartilage is critically dependent on the FGF8 molecule. Exogenous FGF8 is able to rescue
Meckel’s cartilage in mouse mandibular explant cultures treated with the antagonist of
HH signalling [226]. In the chick mandibular process, implanting SHH-soaked beads into
the tissue leads to the development of supernumerary Meckel’s cartilage and an ectopic
expression of Fgf8. Conversely, a significant reduction of Fgf8 in the proximal region of
the mandibular process is seen in mouse mutants with tissue-specific ablation of Shh in
the oropharyngeal epithelium, which lack Meckel’s cartilage altogether [146]. Intriguingly,
overexpression of Fgf8 in NCCs leads to severe craniofacial malformations, including
exencephaly, maxilla, and dentary bone agenesis [227]. In Fgf8 hypomorphic mutants, both
the mandibular and hyoid arches are obviously smaller, showing a reduction in total size.
Moreover, these mutants have either absent or severely hypoplastic Meckel’s cartilage,
absent malleus and incus; severely defective dentary bone and tympanic ring; and reduced
or absent alisphenoid, presphenoid, squamous temporal bone, pterygoid, palatine, and ala
temporalis bone. In Fgf8 hypomorphic embryos, the stapes is normal or slightly smaller, the
styloid process is thickened and/or shortened, and in a subset of mutants, the hyoid bone is
mildly defective, which is surprising given the severity of defects noted in the early hyoid
arch development [228]. Fgf10 modulates the early morphogenesis of Meckel’s cartilage
by controlling cell differentiation in the mandibular process. Overexpression of Fgf10
in rat mandibular explants results in deformation of Meckel’s cartilage and a significant
increase in its size, whilst also inducing the upregulation of cartilage specific genes, such
as Col2a1 and Sox9 [229]. Accordingly, genetic polymorphism in FGF10 has been linked
with mandibular prognathism in humans [230]. The FGF pathway is overreactive in mice
with mutations of Sprouty genes (Spry), which encode for inhibitors of receptor tyrosine
kinases that are crucial for regulation of FGF downstream signalling. NC-specific deletion
of Spry1 results in malformed and incomplete maxilla, as well as a smaller mandible.
Single Spry4 loss or simultaneous loss of both Spry2 and Spry4 leads to micrognathia and
growth retardation of the mandible, as well as incisor anomalies [231]. In summary, the
combined action of the TGB-β, BMP, and FGF signalling pathways collectively controls
the proliferation, maintenance, and cell fate specification of ectomesenchymal cells during
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osteogenic and chondrogenic differentiation. Furthermore, several mouse mutants with
anomalies in the mandibular and hyoid arches have supernumerary pharyngeal skeletal
elements, indicating that the ectomesenchyme in the head indeed retains an ability to form
a spectrum of novel structures in response to either loss of cell signalling or ectopic cell
signalling. These novel structures may represent skeletal atavisms and could be caused by
a reactivation of a dormant developmental programme.

7.2. Zebrafish

Similar to the mouse, Wnt signalling is important for chondrogenic cell fate dur-
ing craniofacial development in the zebrafish. The Wnt–Frizzled (Frz) complex modu-
lates the jaw and ethmoid plate development [232]. Knockdown of frzb and frzd7a in
zebrafish morphants results in lack of the lower jaw and ceratobranchial cartilage, as well
as the loss of chondrocytes within the ethmoid plate. Altogether, the interaction between
Wnt9a/Frzb/Frzd7a is crucial for the chondrogenic proliferation and cell fate within the
ethmoid plate. Moreover, Wnt9/Frzb/Frzd7 also drive the development of the lower jaw.
Ergo, Wnt–Frz complex regulates both canonical and planar-cell-polarity pathways during
craniofacial chondrogenesis [233].

Wnt9a drives the expression of orthologue sox9a during early chondrogenic differ-
entiation. Zebrafish sox9a mutants lack almost the entire set of cranial cartilage, except
for the ceratohyal cartilage, which eventually leads to a reduction in a number of cranial
intramembranous bones, including the dentary bone, maxilla, and the opercle [234,235]. On
the other hand, sox9b knockdowns reveal a mild reduction of cartilages within mandibular
and hyoid arches of morphants, which is in striking comparison with sox9a mutants [235].
Furthermore, sox9b knockdown mutants lack nearly all cranial bones, including most
intramembranous bones, except for the cleithrum and the opercle [235]. However, the
craniofacial phenotype remains unaffected in sox9b-null mutants [234]. All in all, analysis
of sox9a zebrafish knockout mutants shows that sox9a is important during chondrogenic
differentiation [235,236].

Two runx2 orthologues, runx2a and runx2b, can be found within the zebrafish
genome [236]. Runx2b is expressed throughout the mesenchyme of presumptive pha-
ryngeal cartilages even before chondrogenic differentiation [236,237]. In contrast to murine
Runx2, runx2b in zebrafish is expressed in all chondrocytes and is downregulated in sox9b
mutants but remains unaffected in sox9a mutants [235]. Runx2a is expressed predominantly
in the mandibular arch, while being expressed only weakly in the hyoid cartilages [236,237].
While runx2b morphants lack all pharyngeal cartilage, runx2a knockdown has barely any
effect on pharyngeal chondrogenesis. Indeed, runx2b can possibly compensate for the lack
of runx2a during pharyngeal skeletogenesis [237]. In contrast with mice, the expression
of runx2a/runx2b is not affected by canonical Wnt and Fgf signalling during the early
osteogenic differentiation [238]. Rather, Runx2b is induced by Runx3 emanating from the
endoderm [237]. Following the induction of Runx3, Egr1 is activated in the endoderm,
which in turn downregulates the expression of sox9b and follistatin A (fsta). Together,
Runx3/Egr1/Sox9b/Fsta enable Bmp signalling during cranial cartilage development via
inhibition of Bmp antagonists [239]. In addition, both Sox9 and Runx2 are affected by Foxe1
during osteochondrogenesis. Foxe1 suppresses Fgfr2, which in turn enables development
of the cartilage within PAs [240]. Taken together, Wnt signalling and SOX9/Sox9a transcrip-
tion factors are master regulators of chondrogenesis in both mice and zebrafish. Moreover,
Runx2 participates in chondrogenesis in both species. However, the key difference is that
cartilage within PAs cannot form without runx2b in zebrafish, whilst in mice, it can form
even when the expression of Runx2 is lost.

In contrast with runx2, sp7 expression in zebrafish is regulated by canonical Wnt
signalling, which acts in concert with Fgf to modulate osteogenic differentiation [238].
Further support for Wnt-mediated control of osteogenesis during craniofacial development
in zebrafish can be found within developing intramembranous bones, which express a
mediator of canonical Wnt signalling, tcf7 [241]. Delayed ossification of maxilla occurs in



Int. J. Mol. Sci. 2021, 22, 7529 23 of 34

sp7 mutants, while other cranial intramembranous bones (cleithrum, brachiostegal rays,
opercle, parasphenoid) are misshapen. In general, intramembranous bones of sp7 mutants
show reduced ossification, whereas the cartilage development appears unchanged, as
the expression of chondrocyte differentiation markers sox9a, sox9b, runx2a, and runx2b
is unaltered. However, the expression of osteogenesis-related markers, such as bglap,
spp1, col1a1a, and col1a1b, is decreased. Of note, sp7 is a driver of col10a1a expression in
osteoblasts, and the role of col10a1a during osteoblastogenesis has only been described in
zebrafish so far [241–243].

In the zebrafish neurula, Shh signalling radiates from the ventral brain primordium
into the presumptive stomodeal area. When NCCs colonize the mandibular arch, a signal
from the stomodeum diffuses into anterior NCCs, initiating the mesenchymal condensation
and giving rise to the pterygoid process of palatoquadrate cartilage and the neurocranium.
Double knockdown of shh and twhh, two members of the hh family, leads to the loss of
ectomesenchymal condensations and the prospective anterior cranial skeleton [244]. In
addition, Hh signalling influences development of the jaw joint via regulation of nkx3.2
and gd5 [245].

Later in the craniofacial development, Hh signalling via Ptc1 and Ptc2 plays a role
during the differentiation of osteoblasts in the perichondrium of ceratohyal and hyosym-
plectic cartilages [246]. In ihha-null zebrafish, reduced proliferation of chondrocytes is
reflected in the loss of mineralized endochondral bones in the cranium. Depending on
the concentration, ihha regulates chondrogenic and osteogenic proliferation via Gli1 and
Gli3 transcription factors [247]. In addition, Hh signalling drives the proliferation of pre-
osteoblasts during the intramembranous osteogenesis [248]. During the endochondral
bone formation, Hh signalling influences the expression of runx2a, runx2b, sp7, and colX in
ossification centres [246]. Not unlike ihh, shh also plays a role during the ossification and
mineralization, as it upregulates the expression of bmp2, sp7, and col10a1a. Moreover, Hh
signalling has also been discovered to downregulate autophagy during osteoblastogene-
sis [249].

In contrast with mice, Meckel’s cartilage is affected only mildly in zebrafish prrx1a/prrx1b
mutants, whereas dorsal pharyngeal cartilages are affected more significantly. During the
chondrogenic differentiation, prrx1a/prrx1b are negatively regulated by Edn1 in ventral
pharyngeal cartilages. Conversely, Jag1b-Notch signalling in concert with Prrx1a/Prrx1b
sets up dorsal pharyngeal cartilages via inhibition of barx1 [250]. Intriguingly, both ze-
brafish and mice exhibit ectopic and abnormal cartilage in the dorsal region of mandibular
and hyoid arches; however, loss of prrx1a and prrx1b in the zebrafish produces very minor
defects in ventral cartilages. In contrast, knockout of Prrx1 in mice produces extensive
malformations within the mandibular process and both ventral and dorsal hyoid arches.

Knockdown of tgfbr2 in zebrafish causes the shortening of jaws and misshapen
palate [251], which is similar to findings in mouse mutants. In the zebrafish, tgfβ-3 governs
the generation and survival of the cranial NC from premigratory to migratory stages,
and its inhibition leads to the increased apoptosis of NCCs, resulting in malformations of
the palatoquadrate and other cranial cartilages [252]. Zebrafish fgfr3 knockout mutants
display malformations of the mandible and delayed ossification of the craniofacial skeleton.
Both early stage osteoblast markers, such as col10a1a, and late-stage osteoblast markers,
such as spp1, osn, and col1a2, exhibit decreased expression. Additionally, upregulation of
the chondrogenic proliferation and irregular directional orientation of chondrocytes can
be observed in fgfr3 mutant fish, accompanied by an upregulation of Ihh and canonical
Wnt signalling [3]. Thus, fgfr3 downregulates Wnt/ß-catenin and Ihh signalling. The
importance of Fgf signalling during zebrafish chondrogenesis is further supported by
knockdown experiments of fgf10a, which cause the reduction of Meckel’s cartilage and
deformation of the palatoquadrate cartilage [251]. Bmp is another signalling pathway that
is crucial for ossification of the cranial skeleton in the zebrafish. It is mediated via the
production of nitric oxide [253] Knockdown of zebrafish orthologues msxB, msxC, and
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msxE leads to the loss of jaws, including other ventral pharyngeal cartilages, as a result of
arch ventralization [254].

8. Conclusions

The pharyngeal apparatus is one of the hallmarks of gnathostome embryogenesis
and evolution. The neural crest gives rise to most of the tissue within PA-derived skele-
tal elements, which collectively form the viscerocranium. The expression of Hox genes
in the hindbrain and NCCs specifies the identity of individual PAs. Cell identity in the
mandibular arch is regulated by the MEIS/PBX complex, whereas in the hyoid arch, a
trimeric complex of HOX/MEIS/PBX specifies the second PA fate. The skeletal polar-
ity within the individual PA is governed by the EDN–DLX–HAND regulatory cascade.
Numerous signalling pathways operating within PAs, including FGF, BMP, and SHH,
pattern the nascent arch and thus ensure the genesis of heterogenous structures, including
teeth, skeletal components, and the tongue. In this review, we have discussed the role of
transcription factors SOX9, RUNX2, SP7, PAX3, GSC, MSX, and PRRX and the signalling
pathways WNT and HH during mandibular and hyoid arch skeletogenesis. Within the
PAs, these molecules influence chondrogenic and osteoblastic differentiation, the transition
from chondroblastic to osteoblastic fate, and the choice between osteoblastic and chon-
droblastic cell fate. In addition, multiple ligands from the TGF-β, BMP, and FGF families
control the proliferation, maintenance, and differentiation of NCCs in conjunction with
the aforementioned transcription factors. Disruption of these signalling pathways in the
ectomesenchyme within the mandibular and hyoid arches results in malformations and
dysmorphies of the viscerocranium.

In contrast with zebrafish, the hyoid arch is rarely a subject of interest in mice and
humans. Certainly, one reason for this is a scarcity of patients with hyoid arch abnormalities
in a clinical setting. As the mandibular arch has a much larger impact on development of
the viscerocranium than the hyoid arch, morphogenesis of the hyoid arch has naturally
been less studied by researchers. Nonetheless, malformations in the mandibular arch
often co-occur with hyoid arch malformations in mouse genetic mutants. Although hyoid
abnormalities have not been casually reported in human patients with first arch syndromes,
they have been described to co-occur with Pierre Robins sequence, 22q11.2 deletion syn-
drome, and cleft lip/cleft palate, which highlights the importance of the management of
hyoid abnormalities in patients with first arch anomalies. In a clinical setting, symptomatic
anatomical variants of the hyoid–larynx complex can often be overlooked by physicians.
Nonetheless, it seems plausible that the first arch anomalies are often accompanied with
hyoid anomalies in humans but remain unnoticed or underreported.

It is important to note that signalling molecules and transcription factors governing PA
development are similar between the mandibular and hyoid arches, which is in fact already
known from studies in zebrafish. In both mice and zebrafish, the Edn1, Dlx5/Dlx6, and
Hand2 genes control cell fate in the ventral regions of the mandibular and hyoid arches—the
mandibular process and the ventral hyoid arch—and, accordingly, a mutation in any of
them results in malformations particularly in the lower jaw and lesser horns of the hyoid.
Dlx1/Dlx2 specify dorsal regions of the mandibular and hyoid arches, and their absence
does not result in malformations of the ventral PA derivatives. In mice, the expression of
the Meis and Pbx genes in the mandibular and hyoid arches largely overlaps with Hand2,
and both Meis and Pbx mutants display malformations of the mandibular process and the
hyoid bone. Therefore, Meis, Pbx, Hand2, and Prrx1 share similar temporospatial patterns
of expression in PAs—weak expression in lateral regions, while being abundant in medial
regions. This pattern of expression in medial domains of the mandibular and hyoid arches
suggests a tight link between the medial structures of first two PAs. Although meis and
pbx govern both mandibular and hyoid arches, the precise link between pbx/meis and
hand is not well studied in zebrafish. In both zebrafish and mice, Prrx1 is involved in
the specification of the dorsal fate of the mandibular and hyoid arches, whereas in mice,
Prrx1 participates in the specification of both ventral and dorsal fates of the mandibular
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and hyoid arches. In conclusion, we presume that the development of mandibular and
hyoid arches involves a common regulatory network involving MEIS, PBX, EDN1, DLX5/6,
HAND2, and PRRX1 that is shared among gnathostomes.
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