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Reconstructing the maize leaf regulatory network
using ChIP-seq data of 104 transcription factors
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The transcription regulatory network inside a eukaryotic cell is defined by the combinatorial

actions of transcription factors (TFs). However, TF binding studies in plants are too few in

number to produce a general picture of this complex network. In this study, we use large-

scale ChIP-seq to reconstruct it in the maize leaf, and train machine-learning models to

predict TF binding and co-localization. The resulting network covers 77% of the expressed

genes, and shows a scale-free topology and functional modularity like a real-world network.

TF binding sequence preferences are conserved within family, while co-binding could be key

for their binding specificity. Cross-species comparison shows that core network nodes at the

top of the transmission of information being more conserved than those at the bottom. This

study reveals the complex and redundant nature of the plant transcription regulatory net-

work, and sheds light on its architecture, organizing principle and evolutionary trajectory.
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For all living cells, a basic control task is to determine gene
expression throughout time and space during developmental
processes and in responses to stimuli1. The code that gov-

erns gene expression is stored in the noncoding region of the
genome. Sequence-specific DNA binding proteins known as
transcription factors (TFs) can read the code by binding to cis-
regulatory elements to activate or repress gene expression. Each
gene receives instructions from multiple TFs, and each TF targets
thousands of genes, forming a regulatory network, which controls
almost all biological processes inside the cell2. Hence, it is critical
to understand the mechanism, architecture and behavior, as well
as conservation and diversification of the regulatory network.

The budding yeast has probably the best mapped transcription
regulatory network and is a unicellular model for eukaryotes, with
~200 TF coding genes3,4. For multicellular organisms with large
genomes and thousands of TFs, complete network reconstruction
has proven to be a formidable task. For example, the ENCODE
consortium has mapped the binding of 88 TFs in 5 cell lines to
study its architecture and dynamics5, while a more complete
regulatory network was constructed in human colorectal cancer
cells with data from 112 TFs6. Similar efforts are seldom feasible
for individual laboratories, and have yet to be attempted in plants.

Maize is one of the best-studied and most tractable genetic
system among the cereal crops, making it an ideal model for
studying this group of important plants7. It has been shown that
the maize noncoding region is a major contributor to the
observable phenotypic differences and adaptation, between and
within species. For example, 70% of maize genome-wide asso-
ciation study (GWAS) hits are located in the noncoding regions
without functional annotation8. Sequence variations in the open
chromatin regions, which often harbor TF-binding sites, could
explain up to 40% of the phenotypic variations of key maize
agronomic traits9. However, it is difficult to assess their true
functions without knowing the precise locations of the cis-reg-
ulatory elements and the TFs that recognize them.

Despite TF-binding information being crucial for under-
standing how genes are regulated, ChIP-seq experiments in plants
are often limited by antibody availability and difficulties in
transforming crops to express the epitope fusion proteins. As a
result, ChIP-seq data is only available for a handful of maize TFs,
and even in the model species like Arabidopsis and rice, such
studies are too few in number to produce a general picture of the
plant transcription regulatory network.

In this study, we carry out ChIP-seq for 104 TFs that are
expressed in the maize leaf, reconstruct its transcription reg-
ulatory network, and train machine-learning models to predict
TF binding and co-localization. Our findings reveal the archi-
tecture, organizing principle and evolution of the plant tran-
scription regulatory network, and provide a valuable resource for
understanding how biological processes are regulated in leaf.

Results
Large-scale TF ChIP-seq using maize leaf protoplast. We have
developed an efficient protoplast isolation and transformation
system to express epitope tagged TFs for large-scale ChIP-seq
(Fig. 1 and Supplementary Method 1). We found that the high
mortality rate and low transformation efficiency associated with
the conventional methods are due to excessive wounding during
cell wall digestion. Instead of cutting the leaf, we peeled the lower
epidermis to allow the cell wall digestion enzymes to gently
penetrate the leaf and release the protoplasts. Using this method,
we could obtain ~107 intact mesophyll protoplasts from the leaves
of two 9-day-old seedlings, and achieve over 90% transformation
efficiency. In addition, we fused the TF coding sequence to the
Avi epitope tag, which can be biotinylated by the co-expressed

biotin ligase. The strong and specific interaction between biotin
and streptavidin magnetic beads enabled us to obtain high signal-
to-noise ratio in difficult ChIP-seq experiment with limited
starting materials. To reduce library construction cost, we gen-
erated a hyper-stable Tn5 transposase fused to the C-terminal of
the E. coli elongation factor Ts, which could be easily purified for
tagmentation ChIP-seq library preparation. To obtain large
quantities of DNA for transformation, we developed a plasmid
preparation protocol using low cost sand powder as binding
matrix and detergent to remove bacterial endotoxin without
expensive cation exchange resin.

Using the maize protoplast system, we have successfully
performed over 200 ChIP-seq experiments for 104 TFs that are
expressed in the developing section of the maize leaf, based on
previous RNA-seq data10 (Supplementary Data 1). We then
applied the ENCODE2 uniform pipeline to process the ChIP-seq
data11. In total, 217 ChIP-seq experiments have passed the quality
control with normalized strand cross-correlation and relative
strand cross-correlation no less than 1.05 and 0.8, respectively
(Supplementary Datas 2 and 3). After checking the reproduci-
bility between biological replicates (Pearson correlation ≥ 0.8,
Supplementary Fig. 1; Supplementary Data 4), peaks were then
called with the ENCODE2 statistical framework (irreproducible
discovery rate ≤ 0.01). We identified a total of 2,147,346
reproducible TF-binding peaks, and the number of peaks varies
between TFs, with a median value around 16,000 binding sites per
TF (IQR25–75: 7664–32,566).

We anticipated that plant TF binding might form dense
clusters and frequently locate within open chromatin regions
based on previous mammalian studies6. To test this, we merged
all TF-binding peaks in the genome and found that they indeed
clustered into 144,890 non-overlapping loci, covering ~2% of the
genome (Supplementary Data 5). Similar saturation of TF-
binding clusters was observed when sufficiently large number of
TFs were examined in colorectal cancer cells6. Next, we measured
chromatin accessibility in the same tissue using ATAC-seq, and
found that the TF-binding loci and open chromatin regions
showed similar genome-wide distributions, frequently proximal
to gene bodies (±2.5 kb), with preferences for the 5′ end (Fig. 1b,
c). The distance between TF-binding site and gene, after
excluding regions that overlap with the gene body, is bimodal.
Despite the larger space available for distal regulation, we
observed that regions between 10 and 100 kb constitute ~15%
of the TF-binding loci, and ~17% of the open chromatin regions
(Fig. 1c). Layering ATAC-seq and ChIP-seq data showed that TF-
binding loci and open chromatin overlap (Supplementary Fig. 1d;
P value < 10−5). On average, ~74% of the peaks for a given TF
(IQR25–75: 64–87%) intersect with open chromatin regions
confirming the relevance of the identified TF-binding sites within
the chromatin context (Supplementary Fig. 1e). Collectively, 98%
of the open chromatin regions overlap with TF peaks (Fig. 1d),
with a mode of 5, and a median of 19 distinct TFs for each region,
suggesting there are a large number of possible TF combinations
that coregulate transcription, in contrast to the classic view of a
singular or few regulators that control the expression of a gene.

As none of the 104 TFs have been previously examined by
ChIP-seq, and most of them have not been functionally
characterized, we used GO-term and MAPMAN functional
category enrichment analysis to classify them based on their
target genes (Fig. 1e and Supplementary Data 6). The majority of
the TFs are grouped into signaling, hormone, photosynthesis, and
metabolism categories, which are the core biological functions of
the leaf. For example, target genes of the maize ZIM TFs show
enrichment in the GO-terms response to wounding and jasmonic
acid metabolism, consistent with the role of their homologs in
other plant species12. ZmMYB38 is a known regulator of the
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flavonoid pathway, and can directly bind to the ZmCOMT1
gene13. As expected, the targets of ZmMYB38 were associated
with terms such as regulation of flavonoid biosynthetic process
and phenylpropanoid biosynthetic process, and were assigned to
the metabolic group.

Previous studies showed that the high TF occupancy regions in
the genome are often associated with important functions14,15.
We identified 2037 open chromatin regions in the top 5% of the
TF occupancy distribution, and their surrounding genes are
indeed enriched for regulatory GO-terms (Supplementary Data 7).
Notably, we observed that a distal regulatory region Vgt1, an
important QTL for flowering time16, is a high TF occupancy
region bound by 76 TFs. This region is located at a distance of
~72 kb from the ZmRAP2.7, whose expression is regulated by
Vgt1 (Fig. 2a). Six of the TFs bound to this distal region (i.e.,
PRR5, ELF3, COL3, COL7, COL18, and DOF3/PBF1) have been
previously linked to flowering time variations through genetic
studies17,18. Although over half of the TF binding sites are located
at the gene 5′ proximal region (Fig. 1b), distal ones such as Vgt1
also show similar chromatin signatures and could play an
important role in regulating transcription (Fig. 2; Supplementary
Fig. 2).

Sequence conservation and functional enrichment in TF-
binding loci. If the identified TF-binding loci are key to tran-
scriptional regulation, and purifying selection is effective in these
regions, they should exhibit low sequence diversity. We examined
the conservation of the TF-binding sites by assessing the overall
nucleotide diversity represented in the maize HapMap19 while
controlling for overall single-nucleotide polymorphism (SNP)
density in function to the distance of TF’s peak summit (Fig. 3a).
The result confirmed that sequence variation in these regions is,

in fact, reduced, suggesting that they could have important reg-
ulatory functions.

While binding of most TFs is constrained, TFs and their
binding sites are also key to local adaptation or domestication.
For example, ZmTB1 has been shown to play an important role in
maize domestication20. Hence, we predict that TF-binding loci
could be enriched for common SNP variations controlling gene
expression and downstream traits. This was firstly tested in a
panel of 282 inbred breeding lines for their effect on mRNA
expression using common and likely adaptive variants21. We
found twofold enrichment of TF-binding loci (95% credible
interval: 2.26–2.46), similar to the enrichment around 5′ and 3′
UTRs (Fig. 3b). Distal and proximal TF binding loci were also
enriched when examined separately (Supplementary Fig. 3a). The
enrichment pattern is ubiquitous across the 104 TFs that we
studied (Supplementary Fig. 3b and Supplementary Data 8).
Overall, these results support our hypothesis that common
variation in mRNA expression is controlled by both proximal and
distal TF-binding site variations.

We also tested the overlap of TF-binding sites with functional
variations associated with agricultural traits other than gene
expression. To this end, we calculated the enrichment in GWAS
hits for seven traits related to metabolites22, leaf architecture23,
and photoperiodicity24 measured in the US NAM population
(Supplementary Data 9). Overall, TF-binding loci are enriched for
four of the traits (Fig. 3c). We noticed that simple traits, such as
metabolites, showed few TFs enriched for GWAS hits (e.g.,
malate and nitrate). In contrast, many TF-binding sites overlap
with GWAS hits for complex traits, which are known to be
polygenic and influenced by a large number of genetic variants
(e.g., days after silking and days after anthesis; Fig. 3d and
Supplementary Fig. 3c). A further look at TFs enriched in GWAS
hits for photoperiodicity revealed that 51% of the TFs enriched in
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days after anthesis, and 35% in days after silking, also bound to
the Vgt1/ZmRAP2.7 region, suggesting that they could be
potential regulators of maize flowering time.

Overall, we found that TF-binding sites are conserved and
frequently overlap with sequence variations associated with
phenotypic changes. The general trend for GWAS enrichment
in these regions also supports our hypothesis that noncoding
region variations related to complex traits are mediated by TFs.
Furthermore, our finding highlighted the potential of using TF
ChIP-seq data to connect sequence variation in cis to trans
regulators to highlight the molecular mechanism implicated in
complex phenotypes.

A scale-free transcription regulatory network with TF genes as
hubs. Next, we constructed a gene regulatory network using the
ENCODE TIP probabilistic framework, which identifies TF-target
genes based on high-confidence proximal interactions5,11,25. To
assess the feasibility of using our data to pinpoint true regulatory
relationships, we overlaid our result with those inferred by pre-
vious co-expression analysis, and found that TF and its target
gene identified by ChIP-seq have higher co-expression correlation
than the control (P value < 2.2e−16). Using this TIP model, we
produced a network with 272,627 edges and 20,179 nodes (~45%
of the annotated genes and ~77% of the leaf expressed genes,
Supplementary Data 10).

Real-world networks, such as the internet, social networks, and
protein–protein interaction networks, frequently exhibit a scale-
free topology with a power-law degree distribution26. In our maize
transcription regulatory network, in-dgree of each node repre-
sents the number of TFs that could bind to, and potentially
regulate this gene. We evaluated the in-degree distribution and
found it followed a linear trend in the log-scale (R2= 0.882,
P value < 2.2e−16), as expected for power-law distribution
(goodness of fit P value= 0.67), which is a landmark of scale-
free networks (Fig. 4b).

In a scale-free network, nodes that appear more connected
than others are called hubs, and they are critical for information
flow26. We defined hub genes in our network as target nodes in
the top percentile of the in-degree distribution (99th percentile,
for a total of 206 genes). Interestingly, we found half of the hub
genes were located nearby the TF highly occupied regions
(Supplementary Data 7). Similar to those highly occupied regions,
GO enrichment analysis showed that hub genes are enriched for
regulatory functions, and many of them are TFs, consistent with
the expected role for a hub node in the transcription regulatory
network.

Structural and functional modularity of the network. Biological
networks often exhibit topological and/or functional modularity27,28.
We tested for this predicted property by contrasting the maximum
modularity in the network to a null distribution from an ensemble
of random rewired graphs (H0: 1000 rewired graphs)29. The result
confirmed that the network exhibits a significant increase in mod-
ularity (P value < 0.05, Fig. 4c). Next, we applied a partitioning
algorithm (Gephi version 0.92) to determine relationships between
subsets of network elements, and found that the network can be
divided into seven modules (resolution 1.0). Each module contains
~27 to ~5% of the total nodes (Supplementary Data 11). These
modules are not isolated and we found ~40% of the total edges
occurring within each module, suggesting that TFs can regulate
genes outside their own modules, and there are large information
flows between modules (Fig. 4d).

Next, we test whether topological modularity could be related
to function in known biological processes. We performed GO-
term and MapMan functional category enrichment analyses for
genes in each module, and found that they were indeed enriched
for specific functions (Fig. 4e). For example, we found that
module 4 (Fig. 4a, light green) is associated with photosynthesis
related GO-terms, and it is enriched in targets of GLK1/GLK2,
which are known regulators of photosynthesis30.
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However, each module contains thousands of genes of different
functions and is too large to be assessed as a whole. We
hypothesize that as the network can already provide clues to
biological function at this scale, potential regulators of a smaller
pathway might be identified based on connectivity at a local scale.
We first tested this in the conserved chlorophyll biosynthesis
pathway, which is known to be regulated by GLK TFs, as their
mutations could disrupt the expression of photosynthesis
genes30,31. To infer the contribution of each TF to a given
pathway, we calculated the sum of the log transformed p-values
that the ENCODE TIP probabilistic model generated for each TF-
target interaction, based on binding intensity and proximity
(Fig. 5a). We found that the top regulators of the chlorophyll
biosynthesis pathway are indeed the two GLKs and an unknown
MYBR26. Although the function of MYBR26 has not yet been
studied in maize, its Arabidopsis homologs are involved in
circadian regulation, further confirming our hypothesis32.

Next, we used this strategy to examine the maize C4
photosynthesis pathway, which lacks predefined regulators. It
turns out that the top five TFs in connectivity ranking are
CONSTANS-LIKE (COL) TFs (Fig. 5b, c). Previous studies of
COLs in other plant species have shown that they play an
important role in the regulation of flowering and photoperiod33.
Since there are no maize COL mutants, we searched different
maize CRISPR/Cas9 populations and found one line with a
frame-shift deletion in the first exon of COL8 (Supplementary
Fig. 4). The homozygous mutant has a pale-green and seedling
lethality phenotype, supporting our hypothesis that the COL TFs

are important for photosynthesis (Fig. 5d). Interestingly, for key
C4 photosynthesis genes that are expressed specifically in either
mesophyll or bundle sheath cells, we found that their gene loci are
associated with cell-specific H3K27me3 marks, suggesting that
they are regulated not just by a complex TF network, but also at
the epigenome level (Fig. 5e).

Conservation of TF-binding sequence preferences. To model
TF binding from sequence, we applied a bag-of-k-mers machine-
learning model34 to discriminate TF-binding regions from other
regions in the genome, which resulted in reliable models for all
the TFs (fivefold cross-validation, average accuracy for each TF >
70%) (Fig. 6 and Supplementary Datas 12 and 13). Using average
k-mer weights from the models, we derived a distance matrix
among TFs, and summarized TFs relationships (Supplementary
Data 13). After removal of singleton families, we observed that for
85% of the TFs families, most of their members (≥50%) cluster
into the same group in a dendrogram (Fig. 6a and Supplementary
Fig. 5).

This observation prompted us to evaluate whether TF sequence
preferences have persisted across angiosperm evolution, as TF
protein families are frequently well conserved in plants. Using the
top 1% of the predictive k-mers for each TF, we examined their
similarity to a large collection of Arabidopsis TF in vitro binding
position weight matrices (PWMs)35. After removal of families
that did not have a counterpart (or were poorly represented), we
found that 50 out of 81 (61%) of the evaluated TFs preferentially
matched PWMs to their corresponding family in Arabidopsis
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(P value < 0.001, Fig. 6c). Overall, our finding suggests a strong
constraint over more than 150 million years, which also agrees
with the reduced SNP variation at the TF-binding loci (Fig. 3a).

TF co-binding is context specific. Any given TF with an average
recognition site of 6.8 bp could have affinity for roughly a third of
a million locations across the maize genome34,35, while on aver-
age, they could only bind to 20,000 sites. In addition, members in
the same TF family could target different genes despite having

similar sequence preferences. Hence, achieving the observed TF
binding specificity would likely require extra cues. It has been
shown for human TFs that co-binding and combinatorial
recognition of cis-elements are key for specificity5. To test this, we
created machine-learning models based on co-localization infor-
mation to learn nonlinear dependencies among TFs using the
ENCODE pipeline5. To fit a model for each TF (i.e., focus TF or
context), we built a co-localization matrix, by overlapping peaks
for the focus-TF with peaks of all remaining TFs (i.e., partner TF).
The co-localization model was aimed to discriminate between the
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true co-localization matrix and a randomized version of the
same36. The output of each model is a set of combinatorial rules
that can predict TF binding. For each TF, the average of 10
models with independent randomized matrices have an area
under the receiver operating curve >0.9 (Supplementary Data 14).
This high performance supports the hypothesis that TF co-
localization has vast information content to determine binding
specificity in the maize genome.

Using the rules derived from the co-localization models, we
scored the relative importance (RI) of each partner TF for the
joint distribution of the set of peaks for a given context (Fig. 6d).
In this way, the co-localization models allow us to examine the
importance of a partner TF to be predictive (in a quantitative
fashion) of the binding of a context, and not from simple co-
occupancy. To obtain a global view from the model results, we

calculated the average RI of a TF across all focus TFs. We
observed that the whole set shows a trend toward medium-to-low
average RI values (i.e., ≤60 RI, more context specific), with fewer
TFs being predictive for a large number of focus TFs (i.e., >60 RI,
high-combinatorial potential, Supplementary Fig. 6). For exam-
ple, among the 104 TFs, LATE ELONGATED HYPOCOTYL
(LHY) is the most highly expressed one in the differentiating leaf
section10. LHY encodes a MYB TF that is a central oscillator in
the plant circadian clock37, and the top three predicted partner
TFs based on RI are ZIM18, bHLH172, and COL7 (Fig. 6e).
Although their functions have yet to be characterized in maize,
their Arabidopsis homologs are involved in jasmonic acid
signaling, iron homeostasis, and flowering time regulation,
respectively, all of which are tightly coupled to the circadian
clock38.
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Clustering according to the RI values revealed a group of TFs
that have large RI across many focus TFs (Fig. 6d). The large RI
score means that a TF is highly predictive of the binding in a
specific context. Interestingly, some of them are homologs to
Arabidopsis TFs involved in hormone signaling (e.g., ZIM TFs in
JA signaling). Some belong to families that are known for
protein–protein interactions, such as the MYB-bHLHs and the
ZIM-MYB-bHLHs TFs39–41, suggesting that these high-RI factors
could function to integrate multiple inputs to coordinate
transcriptional output.

In summary, our finding confirms that co-binding could be the
key to explain how TFs with similar sequence preferences could
target different genes and control different biological functions.
The co-localization model also revealed a large combinatorial
space for TF-binding sites that likely favors the occurrence of
specific combinations, which could facilitate rapid diversification
of the regulatory network during speciation.

Conservation of the TF regulatory interactions among grasses.
Next, we used the machine-learning models to investigate how
the transcription regulatory network evolved in grasses. To do so
we performed ATAC-seq in sorghum and rice, and obtained open
chromatin sequences of their syntenic maize genes. We then
inferred network edge conservation based on whether the model
of maize TFs could predict binding in the open chromatin of the
synteny target genes in sorghum and rice (Fig. 7a). For example,
we found predicted TF-binding events in 68% of the syntenic
open chromatin regions in sorghum. Looking at the pre-
dicted network edges from syntenic TF to syntenic genes, we
inferred that ~28% of the edges in the maize network were
conserved in sorghum, and ~19% were conserved in rice (Fig. 7b).

Comparative studies of animal regulatory networks have
shown that the core network, which consists of TF-to-TF
connections, are frequently more conserved than the rest42. If
the same is true in plants, we would expect TF genes to be
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enriched in the set of conserved targets. Hence, we conducted GO
enrichment analysis and the results agreed with our expectation,
with target nodes enriched for transcription regulatory roles
(Fig. 7c). In addition, we also examined the ratio of conserved
edges, and found that the TF-to-TF edges were over-represented
compared to TF-to-non-TF edges in both sorghum and rice
(Fig. 7b).

Data from modENCODE revealed a strong correlation between
the human and mouse homologous TF recognition sites, and the
prevalence of TF recognition sites in their open chromatin is
under selection43. To test these in plants, we calculated the
number of matches of each TF model in the open chromatin
regions of maize, sorghum, and rice, and found that they are
indeed correlated (Fig. 7d). In addition, for each maize TF, the
numbers of conserved targets found in rice and sorghum are also
correlated (Fig. 7e), suggesting similar selection pressure during
plant and animal evolution.

Taken together, our findings suggest that plants and animals
might have adopted a similar strategy to evolve transcription
regulatory network, and the rewiring of the network occurs in a
hierarchical fashion, with the core network nodes at the top of the
transmission of information being more conserved than those at
the bottom.

Discussion
Previous studies on plant transcription regulation have often been
limited to individual TFs or a small number of TFs that have been
previously linked to the biological process in question. These

approaches could underestimate true regulators that act in a
redundant or additive manner, and often result in an over-
simplified linear or hierarchical regulatory graph. To overcome
this, we attempted to reconstruct the whole transcription reg-
ulatory network without bias, by using large-scale ChIP-seq to
systematically profile TFs binding (Fig. 1). By doing so, we
obtained a network that covers over 77% of the leaf genes, with
272,627 edges and 20,179 nodes, which means a gene could
receive redundant regulatory inputs from dozens of TFs.
Although it might be new to plants, such regulatory complexity
and redundancy are well recognized in animal models3–6, and
these could be of evolutionary advantage, such as resistance to
random perturbations, and serving as a reservoir of stored neutral
mutations for future usage. In order to understand complex and
redundant systems, a bottom-up study toward a systems biology
approach is most suited, and we need to study the transcription
regulatory network as a whole, not just the individual
components.

One interesting feature of the maize transcription regulatory
network is its scale-free topology (Fig. 4). It lacks a single char-
acteristic node in-degree, and is dominated by a small number of
highly connected hubs. A key advantage of the scale-free topology
is the increased tolerance to random failures26. However, the hubs
could become the vulnerabilities, if they are not redundant. Using
chlorophyll biosynthesis and C4 photosynthesis as examples
(Fig. 5), we showed that mutations of highly connected TFs could
disrupt plant growth and development. More importantly, it
demonstrated how network connectivity data could be used to
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predict biological functions and identify potential regulators. In
addition, the observed structural and functional split of the net-
work indicates how complicated gene expression is fine tuned.
For example, the presence of multiple TFs across modules to
regulate genes in the same pathway suggests intricate modes of
actions to coordinate transcription, in contrast to the classic view
of one single or few master regulators controlling a biological
process or pathway.

Despite more than one billion years of evolution and lack of
detectable sequence conservation, we found that the plant and
animal regulatory codes display striking similarity2,5. For exam-
ple, we found that maize TF co-binding could be key for speci-
ficity, and it is considered as the most important mechanism of
gene regulation in mammalian cells. Co-binding could be bene-
ficial for rapid diversification of the regulatory code. This is
because, from an information standpoint, it enables a large variety
of transcriptional outputs using synergistic and combinatorial
inputs of a small number of TFs. For instance, taking sets of five
distinct TFs (i.e., the mode of distinct TF-binding sites in maize
open chromatin regions) from the 104 TF repertoire could gen-
erate millions of possible combinations. In addition, high-
combinatorial factors, such as MAX and P300, play key roles in
transcription regulation in mammalian cells43,44, while those in
plant have yet been characterized in detailed, and deserve further
attention.

Most of the important crop genomes have now been
sequenced, and numerous GWAS studies have been carried out to
associate agricultural traits to QTLs. However, functional inter-
pretation of the genome noncoding regions remains a challenge.
In this study, we generated extensive and non-biased TF-binding
data that could connect sequence variations in QTLs to trans-
regulators, to highlight the molecular mechanism underlying
complex phenotypes, and should greatly facilitate future func-
tional genomic analysis. Without knowing the precise location
and function of these cis-regulatory elements in the open chro-
matin regions, crop genome editing often randomly targets the 5′
upstream region of genes to generate expression variations, which
is rather like looking for a needle in a haystack. With the
extensive TF-binding information, re-sequencing data, and TF-
binding and co-binding machine-learning models, we could now
begin to establish pipelines to predict effects of noncoding var-
iants, both common and rare, on TF binding, to pinpoint causal
sites. Not to mention the possibility of being able to predict and
generate novel variations not seen in nature could fundamentally
change future plant breeding.

Methods
Plant materials and growth conditions. Seeds of maize (Zea mays B73), sorghum
(Sorghum bicolor BTx623), and rice (Oryza sativa Nipponbare) were germinated on
wet paper in petri dish at 28 °C for 2 days. On the third day, plants were transferred
to compose with vermiculite in a plant growth incubator under the conditions of
12:12 Light/Dark, 30 °C Light/22 °C Dark and 70% relative humidity. Nine-day-old
seedlings of maize and sorghum, and 14-day-old rice seedlings were used for the
experiments.

ChIP-seq using maize leaf protoplast. We have developed an efficient protoplast
isolation and transformation method to express maize TF constructs for ChIP-seq
(Supplementary Method 1). Short videos showing the critical steps can be viewed
online (https://space.bilibili.com/511150037/).

Preparation of hyper-stable Tn5. Transposase Tn5 tagmentation is one of the
most convenient library preparation methods available. However, homebrew Tn5
tends to lose activity rapidly due to protein aggregation. To improve the repro-
ducibility, we fused the Tn5 to the C-terminal of the E. coli elongation factor Ts,
which is often used as N-terminal tag in the purification of aggregation prone
proteins45. This hyper-stable TS–Tn5 transposase enabled us to improve the
consistency and reduce the cost of ChIP-seq library construction (Supplementary
Method 1). All plasmids could be obtained from Addgene (accession #127916).

RNA-seq, histone ChIP-seq, and ATAC-seq. Illumina TruSeq RNA sequencing
libraries, tagmentation-based H3K27me3 ChIP-seq libraries and ATAC-seq
libraries were constructed using maize, sorghum, and rice seedling tissues as pre-
viously described46,47 (Supplementary Methods 2–4).

Alignment of ChIP-seq and ATAC-seq reads. Reads were mapped to the
unmasked maize genome (B73 RefGen_v4) using Bowtie 2 (version 2.2.5) under
the default parameters with −3 100 trimming option. Next, unmapped reads were
filtered using SAMTools view (version 1.3) with options -F 4 and -q 10, and
duplicated reads were removed using SAMTools rmdup.

Quality control for TF ChIP-seq. To assess the reproducibility between biological
replicates, we used deepTools (version 3.2.0) multiBamSummary to calculate their
Pearson correlation. Biological replicates with Pearson correlation coefficient ≥ 0.8
were retained for further analyses. Next, we used the PhantomPeakQualTools
(version 1.14) to assess the signal-to-noise ratios based on normalized strand cross-
correlation coefficient (NSC ≥ 1.05) and relative strand cross-correlation coefficient
(RSC ≥ 0.8) of the individual alignment files. Pairwise replicates that passed the
quality control were used to call peaks with the SPP peak caller using relaxed
parameters (-npeak= 300,000), with corresponding input as control. Before
reproducible peak calling, we subtracted a list of genome blacklist regions, together
with peaks located to mitochondria/chloroplast produced from SPP using the
BEDTools (version 2.27.1). It should be noted that the TF construct in the form of
plasmid DNA was transformed into protoplasts. Reads originated from the plasmid
could also be detected in the ChIP-seq library, and part of them could be mapped
to the exons of the TF gene itself. Hence, for each TF ChIP-seq, we subtracted the
peaks located in its own gene locus using BEDTools. Reproducible peak calls were
obtained with the IDR statistical framework (version 2.0.3), as implemented in the
PhantomPeakQualTools package, using 1% IDR as the threshold. The BigWig and
peak files generated have been deposited in NCBI GEO (GSE137972) and could
also be viewed online at www.epigenome.cuhk.edu.hk/C3C4.html.

Analysis of TF peaks and open chromatin. For each TF, we obtained a set of
reproducible peaks. Peaks were merged based on summit positions at around twice
the distance of a nucleosome (300 bp) with BEDTools merge -d 300 for a total of
144,890 TF-binding loci located in chromosomes 1 to 10 (Supplementary Data 5).
To assess the statistical relation between a TF-binding loci and open chromatin
regions we used a permutation test (a randomization-based approach) that is
implicitly considered genome complexity, as implemented in the regioneR package
(version 1.14.0). The association between open chromatin regions (ATAC-seq
peaks) and TF-binding loci was tested using a per chromosome randomization of
TF-binding loci (the number of overlaps as the evaluation function and 10,000
permutations). The observed value appears far from the limit of the threshold
(P value < 0.01) of the random distribution.

Sequence conservation in TF-binding regions. We used the SNPs from the maize
haplotype (HapMap version 3.2.1)19 to calculate the SNP density over 100 bp
(nonoverlapping) windows through VCFtools (version 0.1.17) using the
option SNP density 100. Next, we calculate the distances between the midpoint of
each SNP density bin and the TF peak summits, to a maximum considered distance
of 1 kb. The mean SNP density was calculated at each distance value, and a sliding
window of 100 positions was used to average the mean SNP count to plot a
smooth line.

TF binding and eQTL. We obtained the maize eQTLs from a previous study21, to
test whether there is significant relationship between TF-binding region (all TF-
binding loci and independently for each TF) and nucleotides identified as genetic
regulators of gene expression acting in cis (i.e., eQTLs around 1Mb of the gene
with which was associated). First, we used the union set (individual occurrences) of
eQTLs in foliar tissue, with higher effect and lowest P value for each gene in the
maize genome across leaf tissues. The set of all SNPs, were obtained from the maize
HapMap 3.2.1 for all taxa in the RNA-seq, using a minimum read count= 5 (the
same filtering criteria applied in order to run the eQTL analysis). We quantified the
enrichment of best cis-eQTL hits (relative to all SNPs) within TF-binding loci vs.
control regions. Control regions are located ≥5 kb from the nearest TF-binding
region, with half the size of the respective TF-binding region flanking each side. In
order to control for the possible confounding effects of distance to the nearest gene,
we run the analysis separately for regions proximal (<2 kb) and distal (>2 kb) from
genes (Supplementary Data 8). Finally, we plot the posterior distribution of cis-
eQTLs SNP frequency, relative to all SNPs, using a beta-binomial distribution with
a Beta (1,1) prior. To calculate the enrichment of eQTLs on TF-binding regions vs.
control regions, we found the ratio between the two beta-binomial distributions
and determine the 95% confidence interval, as the percentile 2.5 and percentile
97.5. The same analysis was repeated for Exons, Introns, 5′ UTR and 3′ UTR to
provide a contrast for TF-binding regions.

TF binding and GWAS hits. To test for a significant relationship between TF-
binding region (all TF-binding loci and independently for each TF) and
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quantitative traits, we quantified the identified SNPs for an assortment of traits
measured in the US NAM population. First, we run GWAS for traits that represent
the diverse levels of complexities, and which could have been influenced by the
regulatory action of the measured TFs. The phenotypic data we used, includes
metabolites48, leaf architecture23, and photoperiodicity24. Variants (SNPs) con-
sidered for input correspond to imputed NAM SNPs (HapMap 3.2.1) with MAF ≥
0.025. Following the construction of a kinship matrix, we used Gemma (v0.98.1) to
fit a linear mixed model –lmm 1, and flowering time (days after anthesis) as a
covariate for metabolites and leaf architecture. After running Gemma, we con-
sidered GWAS hits, as those variants with significant association, after applying a
high-confidence threshold (false-discovery rate (FDR) 5%). We quantified the
enrichment of GWAS hits relative to all SNPs (within TF-binding region vs.
control regions). Control regions are located ≥5 kb from the nearest TF-binding
region, with half the size of the respective TF-binding region flanking each side. In
order to control for the possible confounding effects of distance to the nearest gene,
we rerun the analysis separately for regions proximal (<2 kb) and distal (>2 kb)
from genes (Supplementary Data 9).

Inference of a transcription regulatory network. To identify the target genes of
each TF, we used a probabilistic model called TIP25, designed to quantitatively
measuring the regulatory relationships between TFs and genes. Briefly, for each TF,
TIP builds a characteristic profile of binding surrounding the start coordinate of
genes. Next, the binding profile is used to weigh the TF binding (peaks) associated
with a given gene. To identify the most confident targets of a TF, we employed a
stringent threshold with a false-discovery rate of 5% (FDR= 0.05). We build a
directed graph (i.e., the 104 TFs as source nodes target genes as target nodes) from
the interactions passing the threshold and used the −log10(P value) as weight
(Supplementary Data 10).

TF network analyses. To determine if the node in-degree follows a power-law
degree distribution (i.e., scale-free networks) the in-degree distribution was con-
verted to a QQ-plot, and fit to a linear regression (R2= 0.882, P value < 2e−16),
which is paramount of a power-law distribution49. To confirm our result, we
further investigated the goodness of fit with bootstrapping (no_of_sims= 1000)
using the poweRlaw R package (version 0.70.2). The goodness of fit (i.e.,
Kolmogorov–Smirnov test) analysis resulted in a P value of 0.692, which does not
allow the rejection of the null hypothesis that claims that the distribution is a
power-law.

Gene Ontology term analysis was performed in a set of candidate target hubs at
the extreme of the in-degree distribution (i.e., nodes in the 99th percentile). PLAZA
(v4.0 Monocots) was used for GO annotations and GO enrichment analysis. All the
genes in our graph were supplied as a background.

To test for topological modularity, we built a null distribution from an ensemble
of random rewired graphs (H0: 1000 rewired graphs), while maintaining the
number of nodes and number of edges per node, calculating for each a maximum
modularity parameter. This analysis shows statistically significant differences in
modularity, which was large in our graph (P value < 0.05) vs. the null distribution.
It should be noted that current algorithms for the estimation of modularity have a
resolution limit that can fail to detect small communities. To explore the number of
modules in the filtered graph, we determined modularity across several resolutions
using Gephi (version 0.9.2) with resolution limits between 0.7 and 1.2
(Supplementary Data 11). At resolution 1.2 one single module includes 64% of the
TFs, and at 1.1 one single module includes 45% of them. We decided to explore
modules at resolution equal or less than 1.0, as any single module include more
than 30% of the TFs, for further analysis. We tested if the structural modularity was
related to a functional modularity by evaluating each module for enrichment in GO
terms and MapMan functional categories (Fig. 4e).

TF recognition site sequence model. To study the sequence preferences of each
TF, we fit a bag-of-k-mers model to discriminate between TF-binding regions, from
sequence with similar GC% content34. In brief, each set of peaks and its control
regions correspond to a collection of individual sequences, labeled with a list of
sequence labels (i.e., y) (1 for peaks and 0 for control regions). Next, the sequences
are represented as a x matrix of tokens corresponding to collapsed k-mers (k= 7)
filled with a weighted version of the token frequencies. The tokens weights cor-
respond to the TF*IDF, or the product of the token frequency in each sequence,
and its inverse collection frequency. The bag-of-k-mers model results from fitting a
regression curve, y= f(x) (i.e., a regularized logistic regression). Logistic regression
as used with the bag-of-k-mers correspond to the implementation of the python
library scikit-learn (version 0.19.0).

We fit a model for each of the TFs (fivefolds cross-validation), and averaged the
obtained k-mer weights obtained from the five models (Supplementary Data 12).
The averaged weights of the scored k-mer vocabularies were further used to
systematically contrast the binding profiles between TF. First we calculated the
‘spearman’ correlation between TFs, and used as input for the “hclust” function
from the fastcluster R package (version 1.1.25) with method “ward.D”. We used a
dynamic tree cut method to the result form the “hclust” function we identified 10
clusters, in which most of the TFs clusters with members of the family to which
belong (Supplementary Data 13).

Occlusion and saturation mutagenesis maps of TF-binding regions. To reveal
regions that are responsible for the prediction of a “bag-of-k-mers” model we
calculated importance scores for each of the nucleotides in a given sequence. First,
we calculated nucleotide occlusion score from subtracting the probability obtained
for label 1 with a sequence of interest, and the probability obtained when a given
position is replaced by an N in the same sequence of interest. This method
decreases the frequency of the k-mer that includes the given position without any
other change in the input matrix. The rationale behind this analysis is that posi-
tions that are important for the TF binding should decrease the probability scored
by the model. Second, we calculated nucleotide mutagenesis scores from sub-
tracting the probability obtained for label 1 with a sequence of interest (original
score), and the probability when a given position is replaced by each of other
nucleotide in the same sequence of interest (i.e., change A by C, G, or T). Using this
method, the frequency of the k-mers that includes the given position is replaced
with counts for different k-mers. The use of nucleotide occlusion score and
nucleotide mutagenesis scores provide a fine resolution to determine the potential
of a mutation to affect the TF binding, which could guide future experiments and
variant interpretation (Supplementary Fig. 5).

Comparison with Arabidopsis TF. To determine the similarity in sequence
binding preferences between maize TFs and Arabidopsis TFs, we contrasted the top
1% k-mers to the collection of DAP-seq PWMs using TOMTOM from the MEME
suite (version 5.0.5) and a collection of TF-binding PWMs derived from in vitro
binding profiles of a large number of Arabidopsis TFs35. To a given maize TF we
determined the most similar Arabidopsis TF (PWM) the one to which the largest
number of k-mers hit (Fig. 6c). We considered a hit between a k-mer and a PWM
as positive with a P value of less than 1e−4, and a PWM scores greater than 13.28
bits. This parameter has been defined as a gold-standard to determine positive
PWMs hits previously50.

TF co-localization model. We implemented the co-localization model that has
been used to study the combinatorial binding of human TFs, in the context of the
binding preferences of specific TFs5. In brief, we fit machine-learning models to
capture quantitative dependencies between TF-binding profiles, across different
genomic contexts. Hereafter, genomic context can be defined as a collection of
genomic locations or intervals that correspond to a common annotation. For our
purposes each context corresponds to genomic locations of peaks for a particular
TF (focus TF). For each TF, we computed normalized ranks to represent each
binding event with a value between 0 and 1. The normalized rank of a peak is given
by (R− r)/(R− 1); where r is the rank of the set of R peaks when sorted
numerically by signal value. The absence of overlap between a partner TF and the
focus TFs correspond to 0. After rank normalization, we overlapped the peaks of a
focus TF with the summit of the peaks of all partners TFs (all the other TFs) to
obtain a co-localization matrix for the focus TF. The co-localization matrix was
randomized (n= 10 times), to generate negative sets that served as input for a
discriminative machine-learning algorithm RuleFit336. The overall goal of the
models is to capture quantitative dependencies between TF-binding profiles that
are enriched in the true co-localization matrix vs. the randomized version.

TF co-localization rule learning. We used the RuleFit3 algorithm to learn TF co-
localization rules. First, a random forest learns ensembles of decision trees that
discriminate the true co-localization matrix from the randomized version. The
learned decision trees are them used as a repository of rules with discriminative
power. Such repository constitutes a smaller space of combinatorial rules than all
the possible combinations of partner TFs. Second, the algorithm uses the repository
of rules as inputs to learn a final nonredundant set of discriminative rules. A typical
rule can consist in one, or a combination of TFs, for instance, TFA, TFB, and TFC,
could be quantitatively associated in the following rule (0.4 < TFA ≤ 1) AND (0.6 <
TFB ≤ 1) AND (0.3 ≤ TFC ≤ 1), to explain the binding profile of TFD (focus TF).
The set of final rules represent combinations of partner TFs with nonrandom
relationships between them, within a single genomic context (i.e., enriched in the
true co-localization matrix compared to the randomized version). To ensure the
robustness of our approach, we evaluated the discriminative power of the learned
models by training several models for each focus TF, contrasting the true co-
localization matrix to multiple randomized (n= 10) control versions. To obtain
robust metrics, we obtained averages and medians of accuracy, and other model-
based scores over the multiple models.

Relative and differential importance scores. In brief, the co-localization model
allows us to compute a RI score (i.e., the RI, their relative contribution to the
discriminative performance of the model) of each partner TF in a single genomic
context. The RI score of a TF ranges from 0 to 100, and each RI value represents a
partner TF-focus-TF relationship that mathematically corresponds to the relative
contribution of a TF to the performance of a model trained to distinguish the joint
distribution of all binding profiles in a single genomic context from an equivalent
randomized control5. Intuitively, we can expect that TFs that co-localize with
several other TFs across a single genomic context (i.e., a significant fraction of the
peaks of a focus TF), will have a high RI in that context. The summary of all the
models is a matrix, in which each context is represented as a row, and each cell
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contains the RI values of each TF organized in columns. We clustered indepen-
dently rows and columns (hierarchical clustering, Euclidean distance, and Ward
linkage) to show similar RI pattern across similar contexts (column clustering), and
similar dependencies of partner TFs (row clustering) (Supplementary Fig. 6a). The
averaged RI values, across the columns of the matrix, can be seen as the overall
combinatorial potential of each TF. The distribution of the averaged RI values
identified a few TFs that are important across many contexts (i.e., average RI > 60).
However, we found that more frequently, TFs are only important for a subset of
contexts (Supplementary Fig. 6b). We derived a differential importance (DI) score
for each TF, that describe how the RI changes between subsets of peaks (i.e., genic
proximal and distal), and calculated the average DI to score genome-wide bias. The
average DI score can be seen as the overall localization bias, with some TFs pre-
ferentially important to predict in the proximal contexts, while others are impor-
tant in the distal context. The stack of DIs for all focus TFs (Supplementary Fig. 7a)
as well as the distribution of the average DI (Supplementary Fig. 7b) show TFs with
differences in the RI between proximal and distal regions. It should be noted that
the co-localization model is a multivariate analysis which have to be fit each time
that a new TF binding profile is available. As our data represent a sample of all the
TFs present at a given time in the tissue, the RI of a TF in a context can change on
the light of new information.

Infer regulatory interaction using co-expression. To construct a gene regulatory
network based on published maize RNA-seq data51–53, we used GEne Network
Inference with Ensemble of trees (GENIE3) to predict gene regulatory relation-
ships54. Next, we extracted the GENEI3 co-expression weight of the 104 TFs to
their target genes, and compared to those of TF to non-target genes.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data supporting the findings of this work are available within the paper and its
Supplementary Information files. A reporting summary for this article is available as a
Supplementary Information file. The datasets generated and analyzed during the current
study are available from the corresponding author upon request. Sequencing data that
support the finding of this study have been deposited in the NCBI SRA database under
the accession number PRJNA518749. Processed data have been deposited in the NCBI
GEO database under the accession number GSE137972. Source data are provided with
this paper.

Code availability
Code to reproduce analyses is available at https://bitbucket.org/bucklerlab/
p_transcriptionfactors/src/master/.
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