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A B S T R A C T   

Ginger powder (GP) is a popular spice in the world. Duo to its nutritional value, GP is regarded as an attractive 
target for adulteration, which is not easily detected. In this study, chromaticity analysis and Fourier transform 
near-infrared (FT-NIR) spectroscopy combined with chemometrics were developed to identify and quantify of GP 
and its adulterants. The result showed that GPs and adulterated GPs cannot be completely distinguished by 
chromaticity analysis. While, the optimized NIR spectra could accurately distinguish the authentic GPs from 
those adulterated samples. Random forest and gradient boosting algorithms exhibited the highest accuracies 
(100%) in classification. Moreover, a quantitative model was successfully established to predict the adulteration 
level in GP. The optimal parameters of prediction to deviation were 8.92, 13.68, 14.61, and 4.30, for pure and 
adulterated GPs. Overall, FT-NIR spectroscopy is a promising tool, which can quickly identify potential adul-
teration in GP and track the types of adulterants.   

1. Introduction 

In recent years, the issue of food authenticity has been a common 
concern among consumers, which covers several aspects, including 
origin falsification, adulteration, variety mixing, and mislabeling (Bar-
reto, Cruz-Tirado, Siche, & Quevedo, 2018; Yu et al., 2022). With the 
globalization and complexity of the food supply chain, the phenomenon 
of food authenticity has spawned food fraud in production, 
manufacturing, processing and distribution segments for economic gain 
(Horn et al., 2021). Usually, food fraud occurs through partial substi-
tution, addition, tampering of food ingredients, and false labeling of 
geographical origins (Khodabakhshian et al., 2021). These phenomena 
not only pose potential health and safety problems to consumers, but 
also creates a credibility crisis for the food industry. 

As an important part of the food supply chain and human diet, spices 
have been widely present in food, beverages, medicines, cosmetics and 
other combinations (Yan et al., 2021). A set of statistic suggests that the 
global spices and herbs market is estimated at approximately US$ 79 

billion in 2022, and the global market for spices is likely to witness 
expanding its valuation to about US$ 126 billion by the end of 2023 
(https://www.statista.com/statistics/876234/global-seasoning-and-sp 
ices-market-size/). For ease of usability and portability, the current 
circulation of spices mostly appears in the form of powder, which gives 
the unscrupulous merchants some illegal ways to make profits. Adul-
teration with other similar powder and keeping the original spice in 
form, color and odor to reduce costs and increase revenue, are consid-
ered as the common instance of food fraud (Yu et al., 2022). In other 
words, mixing spices with any kind of substance is considered as food 
falsification and it has attracted great concern of the industries, gov-
ernments and standard-setting organizations (Jahanbakhshi et al., 
2021). 

Ginger (Zingiber officinale Roscoe) is a spicy condiment and is often 
eaten in fresh form or made into dried slices and powder for flavoring 
(Yu et al., 2022). Due to its unique flavor, high nutrition, and medicinal 
value, ginger is extensively consumed as a flavoring agent, dietary 
supplement, herbal medicine, and the raw materials of many desserts 
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and beverages, such as ginger tea, ginger candies and ginger beer (Sri-
nivasan, 2017). Brown sugar and ginger tea made by ginger slices or 
powder are widely consumed in traditional Chinese medicine to dispel 
the cold and improve the immunity. Modern studies found that gin-
gerols, shogaols, terpenes and sugars are the key bioactive constituents 
of ginger (Zhang et al., 2021). Moreover, these compounds were re-
ported to have beneficial effects to human health, including antioxidant, 
anti-inflammatory, antimicrobial activity and immune-modulatory ac-
tivity (Kiyama, 2020). China is the major ginger-producing and 
-exporting country in the world, where besides being sold as a fresh 
product, ginger is also processed into ginger powder (GP) in large 
quantities. According to the UN International Trade Database, the 
annual average export volumes of GP from China was 67,928 tons from 
2017 to 2021, which far exceeds other countries (https://comtrade.un. 
org/data/). With the substantial increase for GP on both domestic and 
international markets, adulteration is easy to achieve. Generally, the 
cheaper or lower quality of edible powder are widely used as adulter-
ants. Once adding, they cannot be identified by visual examination, 
which reduces the original nutrition and medicinal value of GP and 
subsequently poses a high risk to consumers and normal market activ-
ities. Hence, it is vital to establish a rapid and effective method to 
distinguish the authentic GPs from those adulterated ones. 

To date, multiple targeted methods, such as microscopic techniques 
(Kiani et al., 2019), liquid chromatography (Campmajó et al., 2021), 
mass spectrometry (Mohamed et al., 2021), and elemental fingerprint 
analysis (Fiamegos et al., 2021), have been successfully applied for 
identifying adulteration of spices or herbs. Despite its high precision and 
stability, these analytical methods are time-consuming, laborious, and 
environmentally unfriendly. As a common spectroscopic analysis tech-
nique, near-infrared spectroscopy (NIRs) has been widely used in quality 
control and origin tracing for foods and herbs (Chang et al., 2020). Due 
to its fast and non-destructive detection, NIRs usually gives special 
spectral information about the samples in a few seconds and reflects the 
information of chemical composition indirectly (Wu et al., 2022). With 
the development of chemometrics, NIRs coupled to multivariate statis-
tical analysis has been successfully applied for qualitative and quanti-
tative analyses in food, agricultural, and herbal medicine areas (Xue 
et al., 2021). Various studies have revealed the great potential of NIRs to 
distinguish spice adulteration, such as turmeric powder adulterated with 
corn flour (Kar et al., 2019), green banana flour adulterated with wheat 
flour (Ndlovu et al., 2021), and paprika powder mixed with potato 
starch and acacia gum (Oliveira et al., 2020). Comparing to Fourier 
transform-infrared spectroscopy (FT-IR), the quantitative performance 
of NIRs is even more prominent. Furthermore, the NIR region is domi-
nated by weak overtones resulting in lower molar absorption and deeper 
penetration of the NIR waves inside the samples, making it more suitable 
for the analysis of heterogeneous samples, such as adulterated powders 
(Nagy et al., 2022). 

Although a recent study revealed that the adulterated chickpeas in 
ginger powder can be successfully identified using image recognition 
technology (Jahanbakhshi et al., 2021), the research did not involve a 
quantitative model of the extents of GP adulteration. NIRs can achieve 
simultaneous characterization and quantification, which can fill the gap 
in the quantitative study of GP dopants. Moreover, there are few reports 
on the combination of NIR spectroscopy and machine learning algo-
rithms to discriminate GPs and its adulterants. 

Hence, the main objective of this study was to investigate the feasi-
bility of using NIR spectroscopy combined with chemometrics to iden-
tify and quantify the common adulterants of the starch of corn (Zea mays 
L.), and the flours of wheat (Triticum aestivum L.) and soybean (Glycine 
max (L.) Merr.) in GPs. The specific aims were to 1) establish classifi-
cation models using supervised and unsupervised pattern recognition 
methods to identified authentic and adulterated GP samples, and 2) 
develop and optimize a quantitative calibration model using partial least 
squares regression (PLSR) method based on NIR spectra to accomplish 
the prediction of the concentrations in GPs and its adulterants. 

2. Materials and methods 

2.1. Materials 

All fresh ginger samples were collected from Luoping county of 
Yunnan Province in China, and these samples were identified as the 
fresh rhizomes of Zingiber officinale Roscoe by Prof. Jin-ao Duan from 
Nanjing University of Chinese Medicine. For the market sale and brand 
value, GPs produced in Yunnan Province has the highest market share, 
which is often counterfeited by partial adulteration. The corn starch 
(CS), soybean flour (SF) and wheat flour (WF) used as the adulterants in 
GPs were purchased from Qingdao Wugu-kang Food and Nutrition 
Technology Co., ltd., Qingdao, China, and they all passed the food 
quality detection to ensure their authenticity and reliability. 

2.2. Preparation of adulterated samples 

Fresh ginger samples were washed, sliced, and dried at a constant 
temperature of 55 ◦C for 24 h in an electric thermostatic drying oven 
(DHA-9070A, Shanghai Jinghong Experimental Equipment Co., ltd., 
Shanghai, China). After drying, the dried ginger samples were crushed 
into powder by a high-speed grinder (FW-80, Tianjin Taisite Instrument 
Co., Tianjin, China), and the powder was all passed through 50 mesh 
sieves (355 μm ± 13 μm). Then, the adulterated GPs were prepared by 
adding the above CS, SF, and WF to pure GPs with five concentrations of 
10 %, 20 %, 30 %, 40 %, and 50 %, respectively, and beyond this per-
centage, adulteration becomes obvious and can be typically identified 
by the naked eyes or taste. All samples were put into centrifuge tubes 
and mixed uniformly for 3 min using a vortex shaker. For each level, 6 
samples were prepared, hence a total of 90 adulterated samples were 
gathered and the representative adulterants were shown in Fig. 1A. In 
addition, control samples for pure ginger powder (GP, n = 12), pure corn 
starch (PCS, n = 3), pure soybean flour (PSF, n = 3), and pure wheat 
flour (PWF, n = 3) were also used for comparative study with those 
adulterants. 

2.3. Color measurements 

The color characteristics of the different adulterated GPs and pure 
powder were measured by a chroma analyzer (CM-5, KONICA MIN-
OLTA, Tokyo, Japan). The spectrophotometer was calibrated by a white 
plate, and the powder was evenly flat in the special dish, which kept the 
same weight and thickness of all samples. According to the CIELAB color 
space theory of the International Commission on Illumination, the pa-
rameters of L*, a*, and b* values were collected (Biancolillo et al., 2022). 
The total color variation (ΔE) was used to describe the color change of 
different adulteration levels with the following equation: 

ΔE =
[
(L* − L0*)2

+ (a* − a0*)2
+ (b* − b0*)2 ]1/2 

The values of L0*, a0*, and b0* were measured by pure ginger 
powder. 

2.4. Acquisition of FT-NIR spectra 

An Antaris™ II FT-NIR spectrophotometer (Thermo Fisher Scientific 
Co., USA), equipping with a rotating sample-cup spinner, extended 
InGaAs detector, and a tungsten halogen lamp as light source, was used 
to collected NIR spectra for adulterated GP samples. Result Software 
(Antaris™ II System, Thermo Fisher Scientific Co., USA) was used for the 
acquisition of NIRs data. The spectral data were acquired using the 
average of 32 scans in the range of 10000–4000 cm− 1, and the spectra 
collected at a resolution of 8 cm− 1. All the analyses were performed at a 
room temperature of 18–25 ◦C and the relative humidity of 30 %. To 
keep the instrument dry and improve the reliability of NIR spectra, a 
special desiccant was used to eliminate the effect of moisture. Each NIR 

D.-x. Yu et al.                                                                                                                                                                                                                                   

https://comtrade.un.org/data/
https://comtrade.un.org/data/


Food Chemistry: X 15 (2022) 100450

3

spectra were recorded in triplicate, and the average spectrum was used 
for further analysis. 

2.5. FT-NIR spectra processing 

All the adulterated GPs and pure powders were separated into cali-
bration set and prediction set in a 2:1 ratio using the SPXY algorithm for 
the model development and performance prediction, respectively. To 
further remove chemical information irrelevant to NIR spectroscopy, 
including baseline drifts, instrument background noise and light scat-
tering effects, several preprocessing methods were employed. The 
standard normal variate transformation (SNV) and multiplicative scatter 
correction (MSC) approaches were adopted to deal with the in-
terferences of the light scatter and particle size. The first and second 
derivative (1st Der and 2nd Der) methods were used to eliminate the 
baseline drifts, and separate the broad and overlapping NIR bands. 
Moreover, Savitzky–Golay algorithm with 11 points of smoothing was 
performed to reduce the instrument background noise (Oliveira, Cruz- 
Tirado, Roque, Teófilo, & Barbin, 2020; Zhang et al., 2021). Twelve 

different pretreatments, including 1st Der, 1st Der + SG, 2nd Der, 2nd 
Der + SG, MSC + 1st Der, MSC + 1st Der + SG, MSC + 2nd Der, MSC +
2nd Der + SG, SNV + 1st Der, SNV + 1st Der + SG, SNV + 2nd Der, and 
SNV + 2nd Der + SG, were developed and compared based on the raw 
NIR spectra. These preprocessing methods were coupled to filter the 
most suitable combinations for further modeling analyses. 

2.6. Chemometrics 

2.6.1. The classification models 
Chemometrics, including unsupervised and supervised pattern 

recognition methods, were used to identify the adulterants in GP sam-
ples. Principal component analysis (PCA), an unsupervised model based 
on data dimensionality reduction (Yan et al., 2021), was used to visu-
alize the distribution trends of the pure GP and adulterated GP samples. 
Supervised discriminative models suiting for classification were devel-
oped, including partial least squares-discriminant analysis (PLS-DA) and 
some machine learning algorithms: support vector machine (SVM), 
gradient boosting (GB), and random forest (RF), which were mainly 

Fig. 1. Ginger powder samples (A) with different adulteration levels (10%, 20%, 30%, 40%, and 50%), A-CS: adulterated with corn starch, A-SF: adulterated with 
soybean flour, A-WF: adulterated with wheat flour, GP: pure ginger powder, PSF: pure soybean flour, PWF: pure wheat flour, PCS: pure corn starch; The L* values (B), 
a* values (C), b* values (D), and ΔE values (E) with different adulteration levels (10%, 20%, 30%, 40%, and 50%) by chromaticity analysis; Score plots of the PCA 
model of pure GP and adulterated GPs (F). 
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applied in the precise discrimination between GP and adulterated GP 
samples. 

2.6.2. The quantitative models 
PLSR was applied in the quantification of adulteration contents in 

different GP samples. Linear mathematical correlation between inde-
pendent variables X (concentration of adulterants) and dependent var-
iable Y (spectral data) can be observed by multivariate calibration 
analysis through PLSR model. To assess the success of data preprocess-
ing and model performance, the following parameters were calculated: 
coefficient of determination for calibration (R2

C), coefficient of deter-
mination for prediction (R2

P), coefficient of determination for cross- 
validation (R2

CV), root mean square error of estimation (RMSEC), root 
mean square error of prediction (RMSEP), root mean square error of 
cross-validation (RMSECV), and the values of prediction to deviation 
(RPD, the ratio of stander deviation to RMSEP). A good calibration 
model should have high values of R2

C and R2
P, and with low values of 

RMSEC and RMSEP (Ndlovu et al., 2021; Ye et al., 2018). RMSECV was 
the result by 7-fold cross-validation procedure and mainly used to assess 
the modeling performance of the PLSR models. The RPD values reflect 
the overall predictive capability of the PLSR models and the perfor-
mance indicates excellent when the RPD values are greater than 3 
(Ndlovu et al., 2021). 

2.7. Software 

The raw NIR spectra were optimized by TQ Analyst 9.0 software 
(Thermo Fisher Scientific Co., USA). PCA, PLS-DA and PLSR were per-
formed in SIMCA-P software (Version 14.1, Umetrics, Sweden). Machine 
learning algorithms, including SVM, GB, and RF, were realized in Py-
thon (version 3.8, Python Software Foundation, Delaware, USA) lan-
guage with machine learning library scikit-learn (version1.0.2) and 
programming tool Jupyter Notebook. The indices of the area under the 
curve (AUC), precision, recall, and F1-scores, were obtained by the 
confusion matrix display function in the sklearn.metrics module to 
evaluate identification performance. The SPXY algorithm were also 
realized in Python. ORIGIN 2021 pro (Northampton, MA, USA) was used 
for drawing folding line charts. 

3. Results and discussion 

3.1. Color analysis 

3.1.1. The appearance and color characteristics between GPs and 
adulterants 

The appearance characteristics of GP, adulterated GPs, PCS, PSF, and 
PWF are shown in Fig. 1A. It is obvious that the color between GP and 
PCS, PWF and PSF is significantly different through visual observation. 
In terms of the authentic and adulterated powders, the color charac-
teristics between authentic GP and the GPs with different adulteration 
levels (10 %, 20 %, 30 %, 40 %, and 50 %) are very similar and cannot be 
distinguished by naked eyes. For another perspective, at low levels of 
adulteration, the color of GP tends to mask the color profiles of the 
adulterants, which makes it difficult to identify the adulterated GPs by 
visual inspection. 

To further investigate the color changes of GP dopants, the main 
color information of pure and adulterated powder was determined by 
chromaticity analysis technique, and the quantification and character-
ization of the color properties in different powder were achieved ac-
cording to CIELAB chromaticity space theory. The chroma data 
including L*, a*, b*, and ΔE values are listed in Table S1. Generally, the 
L*, a*, b* values represent the lightness, redness to greenness, yellow-
ness to blueness of the powder samples, respectively. For L* values, all 
the adulterated GP samples are higher than pure GP, which indicates 
that the brightness of adulterated samples are increase to some extent. 
With the adding of adulterated proportions, the L* values of GP 

adulterants gradually increase, but the magnitude of change is not sig-
nificant (Fig. 1B). For a* and b* values, the color trends of the adulter-
ated samples are similar with the rise of adulterated percentages 
(Fig. 1C-D), as shown by the increase of GP adulterated with CS and the 
decrease of GP adulterated with SF and WF. Compared to GP, the b* 
values of the adulterated GP samples are all reduced, suggesting that the 
color of adulterated samples was far from the original yellow of pure 
ginger powder. The ΔE is an important indicator used to measure the 
color changes of GP before and after adulterating. As shown in Fig. 1E, 
the ΔE values of the GP adulterated with CS and SF varied less relative to 
pure GP, and the GP adulterated with WF varied more compared to pure 
GP, indicating that the color profiles of GP adulterants with WF changed 
significantly. It may be attributed to the remarkable differences between 
pure GP and adulterants (PCS, PSF, and PWF) in a*and b* parameters. 

3.1.2. PCA model between the pure and adulterated GPs 
To further visualize the difference between authentic and adulter-

ated GPs based on chromaticity analysis, PCA model was established. As 
an unsupervised pattern recognition method in multivariate statistical 
analysis, PCA can reduce the dimensionality of complex data by pro-
jecting the variables of the dataset into the first few components and 
offer the objective classification among samples. In this study, the total 
values of the first two PCs were 50.4 % and 39.3 %, with R2X = 0.897 
and Q2 (cum) = 0.616, indicating that the total variation could be better 
explained and predicted, respectively. As shown in the score plots 
(Fig. 1F), the GPs could be significantly distinguished from three pure 
adulterants (PCS, PSF, and PWF), indicating that different types of pure 
powder were remarkably differed in color properties. The adulterated 
GP samples and pure GP were categorized into a close cluster in PCA 
model. In addition, there was no significantly difference between some 
adulterated GPs and pure GP (Table S1), suggesting that GPs after 
adulterating cannot be completely identified from authentic powder 
based on chromaticity measurement. However, color digitization can 
reflect the accurate and objective information of adulterants and pro-
vide a better classification compared to traditional observation by naked 
eyes. 

3.2. Qualitative analyses based on FT-NIR spectroscopy 

3.2.1. NIR spectra and optimal pretreatment 
The raw NIR (10000 cm− 1 – 4000 cm− 1) spectra of GP, the adul-

terated GPs with different levels, PCS, PSF and PWF are shown in 
Fig. 2A. The spectral variations of the samples were similar in the 
wavelength of 10000–6000 cm− 1, and showed significantly different in 
the range of 6000–4000 cm− 1. These average NIR spectra reflects the 
valuable chemical information of authentic and adulterated powders. 
The common absorption peaks can be clearly seen around 8350 cm− 1, 
6930 cm− 1, 6352 cm− 1, 5762 cm− 1, 5179 cm− 1, 4381 cm− 1, and 4312 
cm− 1 in GP and adulterated GPs. Generally, the peaks around 8350 cm− 1 

and 5762 cm− 1 are induced by the first and second overtones of C–H 
stretching, and the peaks at 6930 cm− 1 and 6352 cm− 1 are assigned to 
O–H or N–H stretching vibrations in the first overtone (Hong et al., 
2019). The band at 5762 cm− 1 is related to the first overtone of C–H 
stretching vibrations (Zhao et al., 2020), and the 5179 cm− 1 belongs to 
the combination of O–H and C–O stretching (Zhang et al., 2021). As 
shown in Fig. 2B, the spectral signature of GP, PCS, and PWF are similar 
in absorption bonds. However, the absorption bonds of GP and PSF are 
different, which specifically reflects in the remarkable absorption peaks 
at 4751 cm− 1, 4852 cm− 1, and 4605 cm− 1 in PSF. The vibrational dif-
ferences of the NIRs absorption peaks may be important factors for 
discrimination of authentic and adulterated powders. 

Although the spectral characteristics between GP and pure adulter-
ants are different, the spectral discrepancy between GP and adulterated 
GP samples are subtle (Fig. S1) and cannot be identified by visual 
observation, especially in the low level of adulterations. Therefore, it is 
necessary to preprocess the spectra of adulterated samples to improve 
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the accuracy of discrimination. The dataset of NIR spectra includes 68 
calibration samples and 34 prediction samples. Then, a total of 19 
reprocessing methods of NIR spectra were compared in TQ Analyst 9.0 
software, and the prediction accuracy and performance index were used 
to evaluate the quality of the model. Generally, the highest prediction 
accuracy and performance index indicate the best pretreatment method. 
As shown in Table S2, the combination of MSC + 1st Der + SG has the 
best prediction accuracy (100 %) and performance index (93.0), which 
can be used for modeling analysis for further identification. The opti-
mized NIR spectra are shown in Fig. 2C-D. 

3.2.2. Discriminant analyses by PCA and PLS-DA model 
An unsupervised PCA model was established between GP and adul-

terated GPs based on NIRs information. All NIR spectra were pre-
processed by optimal combination of MSC + 1st Der + SG. In this model, 
twelve principal components were fitted, and the 49.0 % and 34.5 % of 
all data variance were illustrated by PC1 and PC2, respectively. As 
shown in Fig. 3A, GP samples were obviously separated from three pure 
adulterants, suggesting that the chemical composition of GP and pure 
adulterants may be significantly different. The score points of the 
adulterated GP samples were closed to pure GP and far away from pure 
adulterants, which indicated that the adulterated GP samples were 
similar to those of GP samples in spectral profile. It is obvious that GPs 
adulterated with SF are classified into one cluster, and GPs adulterated 
with CS and WF are partially overlapped in the same quadrant (Fig. 3B). 
Recently, many studies reported that gingerols, shogaols, terpenes are 
the main constituents in ginger, which are also considered as the ma-
terial basis of its flavor ( Yu et al., 2022; Zhang et al., 2021). These 
components consist of C–H, O–H and N–H groups with strong mul-
tiplicative and synchrotron absorption in the NIR regions (7000 cm− 1 

–4000 cm− 1) (Nagy et al., 2022). However, CS, WF and SF do not 

contain these characteristic components, which may be the main reason 
for discrimination of GPs from its adulterations. Although GP and 
adulterated GPs shared similar bands in the spectrogram, the involve-
ment of classification algorithms amplified the discrepancy and realized 
the visualization of the classification. In addition, the distribution of GPs 
adulterated with CS, SF, and WF was according to the different con-
centration of adulteration, specifically showing that the samples with 
low percentage of adulteration were close to GP, and the samples with 
high percentage of adulteration were far from GP, which still need to be 
validated by further quantitative analyses. These results indicated that 
the authentic and adulterated GPs can be effectively distinguished by 
optimized NIR spectral information. 

Compared to PCA model, the supervised PLS-DA model was further 
conducted for discrimination of GP and its adulteration. The main pa-
rameters of R2X and Q2 (cum) were 0.894 and 0.820, respectively, 
indicating that the model has a strong explanatory and prediction in 
classification of GP samples from different adulterants. To determine 
whether the model was overfitting, 200 times of permutation tests were 
conducted. As shown in Fig. 3C, the intercepts of R2 and Q2 were less 
than 0.3 and 0.05, respectively. This result enhanced the robustness and 
persuasiveness of the PLS-DA model. Fig. 3D shows the scatter plot of 
PLS-DA and exhibited a similar distinction to PCA model. Although pure 
GP can be discriminated from adulterated GPs, the adulterated samples 
with different types of adulterants and different levels of concentration 
were not clearly distinguished, for example, 10 % − 30 % CS and 10 % −
50 % SF were significantly overlapped on both PCA and PLS-DA models, 
which may be attributed to the limitations in the processing of spectral 
information of PCA and PLS-DA models. 

3.2.3. Discriminant analyses by machine learning algorithms 
To verify the accuracy and reliability of the above results and obtain 

Fig. 2. Average raw NIR spectra of all powder samples (A) and independent pure powder (B); Optimized NIR spectra after MSC + 1st Der + SG pretreatment of all 
powder samples (C) and independent pure powder (D). 
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more accurate classification between authentic and adulterated GPs, 
three pattern recognition algorithms, including SVM, RF, and GB, were 
developed for in-depth analysis. Generally, SVM is used to classify data 
sets by maximizing their distance (maximum margin) between data 
points (support vectors) or finding a separating hyperplane with the best 
classification (Amirvaresi & Parastar, 2021). RF and GB are two 

ensemble algorithms based on decision trees which reduce the impact of 
outliers and the possibility of model overfitting, thus improving the 
accuracy of discrimination (Han et al., 2021; Sun et al., 2021). All the 
algorithmic models were established based on the optimal NIR spectra 
processed by MSC + 1st Der + SG. The receiver operating characteristic 
(ROC) curves and area under the curve (AUC) were used to evaluate the 

Fig. 3. Score plots of PCA Model (A) of GP, three pure adulterants and adulterated GPs with different adulteration levels (10%, 20%, 30%, 40%, and 50%); score 
plots of PCA Model (B) of the authentic and adulterated GPs, A-CS: adulterated with corn starch, A-SF: adulterated with soybean flour, A-WF: adulterated with wheat 
flour; cross-validation results with 200 times of calculations using a permutation test (C); score plots of PLS-DA Model (D) of the authentic and adulterated GPs. 

Fig. 4. The confusion matrices for SVM, RF, and GB classifiers (A); The algorithm evaluation metrics (precision, recall, and F1-scores) for SVM, RF, and GB clas-
sifiers (B). 
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reliability of these models. The ROC curves and AUC values of three 
algorithms are shown in Fig. S2. Specifically, the AUC values of SVM, 
RF, and GB models all reached 1.00. For an ideal classifier, the AUC 
value is usually close to 1.00 (Lyu et al., 2021), indicating that three 
models (SVM, RF, and GB) attained optimal operation in this work. 
Accuracy is another metric used to evaluate the performance of these 
models, usually, 20–30 % of the total samples are selected as the test 
samples to validate the training set and derive the discriminative ac-
curacy. In this study, the predictive accuracies of, SVM, RF, and GB 
models were 87 %, 100 %, and 100 %, respectively, which indicated that 
three classifiers successfully resolved the differences between authentic 
and adulterated spectra and exhibited powerful explanatory ability. 
Confusion matrix diagrams of three algorithms are shown in Fig. 4A. It is 
clearly visible that GP and adulterated GP samples in RF and GB clas-
sifiers were not misclassified. However, GPs adulterated with CS and SF 
were misjudged to those adulterated with WF in SVM classifier. 

Precision and recall are two metrics used to assess the accuracy of 
different algorithms. F1-scores are the combined index of precision and 
recall, and usually, the best result is close to 1. For the RF and GB 
classifiers, all recognition rates were 1.000 (Fig. 4B), suggesting the high 
adaptability of these models. Our results indicated that NIRs combined 
with machine learning algorithms showed better performance in clas-
sification when compared to other models (like PCA and PLS-DA 
models), and similar results were obtained in the previous research re-
ports (Santana et al., 2019; Li et al., 2021). In summary, machine 
learning algorithms were successfully developed to identify the 
authentic and adulterated GPs in this study, and RF and GB classifiers 
exhibited the best performance. 

Table 1 
Parameters of PLSR models for the determination of the concentrations of adulterations (SF, WF, and CS) and the purity of ginger powder using FT-NIR based on 
different pretreated methods.  

Adulteration Scenario Processing methods LVa R2
c RMSEC R2

p RMSEP R2
cv RMSECV RPD 

Adulterated with SF RAW 2  0.9584  0.0404  0.9780  0.0324  0.9793  0.0481  4.60 
1st Der 1  0.9971  0.0108  0.9971  0.0110  0.9933  0.0250  13.55 
1st Der + SG 1  0.9971  0.0108  0.9971  0.0110  0.9933  0.0279  13.55 
2nd Der 1  0.9997  0.0033  0.9967  0.0130  0.9078  0.1160  11.47 
2nd Der þ SG 1  0.9966  0.0116  0.9971  0.0109  0.9937  0.0307  13.68 
MSC + 1st Der 1  0.9960  0.0126  0.9958  0.0133  0.9908  0.0333  11.21 
MSC + 1st Der + SG 1  0.9960  0.0126  0.9958  0.0133  0.9909  0.0369  11.21 
MSC + 2nd Der 2  0.9995  0.0043  0.9955  0.0152  0.8583  0.1210  9.81 
MSC + 2nd Der + SG 1  0.9956  0.0133  0.9961  0.0126  0.9902  0.0337  11.83 
SNV + 1st Der 1  0.9960  0.0126  0.9958  0.0133  0.9908  0.0331  11.21 
SNV + 1st Der + SG 1  0.9960  0.0126  0.9958  0.0133  0.9909  0.0367  11.21 
SNV + 2nd Der 2  0.9995  0.0043  0.9955  0.0152  0.8580  0.1210  9.81 
SNV + 2nd Der + SG 1  0.9956  0.0133  0.9961  0.0126  0.9902  0.0337  11.83 

Adulterated with WF RAW 2  0.9623  0.0358  0.9657  0.0453  0.8829  0.0879  3.29 
1st Der 2  0.9984  0.0078  0.9961  0.0135  0.9958  0.0363  11.04 
1st Der þ SG 3  0.9993  0.0053  0.9975  0.0102  0.9978  0.0215  14.61 
2nd Der 1  0.9895  0.0205  0.9168  0.1010  0.8444  0.2080  1.48 
2nd Der + SG 2  0.9982  0.0085  0.9973  0.0120  0.9869  0.0702  12.42 
MSC + 1st Der 1  0.9984  0.0078  0.9971  0.0111  0.9969  0.0324  13.43 
MSC + 1st Der + SG 1  0.9985  0.0078  0.9971  0.0109  0.9981  0.0153  13.68 
MSC + 2nd Der 1  0.9874  0.0224  0.9234  0.1030  0.8434  0.2470  1.45 
MSC + 2nd Der + SG 1  0.9976  0.0098  0.9975  0.0113  0.9886  0.0667  13.19 
SNV + 1st Der 1  0.9984  0.0078  0.9971  0.0111  0.9969  0.0324  13.43 
SNV + 1st Der + SG 1  0.9985  0.0078  0.9971  0.0109  0.9981  0.0153  13.68 
SNV + 2nd Der 1  0.9874  0.0224  0.9234  0.1030  0.8434  0.2470  1.45 
SNV + 2nd Der + SG 1  0.9976  0.0098  0.9975  0.0112  0.9886  0.0667  13.31 

Adulterated with CS RAW 2  0.9623  0.0385  0.9617  0.0392  0.9508  0.0753  3.80 
1st Der 2  0.9938  0.0157  0.9641  0.0397  0.9873  0.0595  3.75 
1st Der + SG 3  0.9989  0.0067  0.9521  0.0455  0.9929  0.0272  3.28 
2nd Der 2  0.9980  0.0089  0.9238  0.0579  0.4579  0.1750  2.57 
2nd Der + SG 3  0.9986  0.0073  0.9723  0.0351  0.9756  0.0826  4.25 
MSC + 1st Der 2  0.9983  0.0081  0.9666  0.0405  0.9939  0.0222  3.68 
MSC + 1st Der + SG 1  0.9904  0.0154  0.9696  0.0369  0.9905  0.0460  4.04 
MSC + 2nd Der 1  0.9205  0.0552  0.8928  0.0653  0.4183  0.1390  2.28 
MSC + 2nd Der + SG 2  0.9973  0.0104  0.9760  0.0348  0.9815  0.0664  4.28 
SNV + 1st Der 2  0.9984  0.0081  0.9666  0.0404  0.9938  0.0224  3.69 
SNV + 1st Der + SG 2  0.9940  0.0154  0.9696  0.0369  0.9903  0.0468  4.04 
SNV + 2nd Der 1  0.9204  0.0553  0.8927  0.0653  0.4164  0.1390  2.28 
SNV þ 2nd Der þ SG 3  0.9974  0.0103  0.9759  0.0347  0.9810  0.0672  4.30 

GP proportion RAW 4  0.8923  0.0742  0.8917  0.0748  0.8555  0.0857  2.23 
1st Der 4  0.9959  0.0148  0.9888  0.0247  0.9806  0.0325  6.75 
1st Der + SG 4  0.9965  0.0137  0.9921  0.0210  0.9894  0.0250  7.94 
2nd Der 3  0.9752  0.0364  0.9656  0.0610  0.7939  0.1210  2.73 
2nd Der + SG 3  0.9879  0.0225  0.9904  0.0251  0.9669  0.0425  6.64 
MSC + 1st Der 5  0.9974  0.0119  0.9908  0.0225  0.9911  0.0222  7.41 
MSC + 1st Der + SG 4  0.9967  0.0134  0.9917  0.0215  0.9934  0.0196  7.76 
MSC + 2nd Der 4  0.9988  0.0082  0.9893  0.0519  0.7432  0.126  3.21 
MSC þ 2nd Der þ SG 4  0.9969  0.0130  0.9939  0.0187  0.9945  0.0176  8.92 
SNV + 1st Der 5  0.9974  0.0119  0.9908  0.0225  0.9909  0.0224  7.41 
SNV + 1st Der + SG 4  0.9966  0.0135  0.9918  0.0214  0.9934  0.0196  7.79 
SNV + 2nd Der 4  0.9987  0.0082  0.9893  0.0519  0.7439  0.1260  3.21 
SNV + 2nd Der + SG 4  0.9968  0.0130  0.9939  0.0187  0.9945  0.0177  8.92 

Notes: LVa: Latent Variable. 
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3.3. Quantitative analyses based on FT-NIR spectroscopy 

3.3.1. Spectral pretreatment based on PLSR model 
The existence of soybean flour, corn starch and wheat flour in the 

adulterated GPs was successfully identified and accurately differentiated 
by PCA, PLS-DA and machine learning algorithms. Subsequently, a 
quantitative calibration model by PLSR was developed to further predict 
the concentration of the adulterants in GP samples. Similarly, the 
spectral preprocessing methods were optimized to improve the capa-
bilities of PLSR model. The quantitative models were constructed to 
realize the prediction of the additive ratio of adulterants (CS, SF, and 
WF) and the concentration of pure GP. 

As shown in Table 1, the best quantitative pretreatment has been 
marked in bold by comparing of different metrics. Regarding the pre-
diction of adulterated proportion, the combinations including 2nd Der 
+ SG, 1st Der + SG, and SNV + 2nd Der + SG exhibited the higher RPD 
values of 13.68, 14.61 and 4.30, and yielded lower RMSEP values of 
0.0109, 0.0102 and 0.0347 in the validation for models of SF, WF and 
CS, respectively. These results indicate that the PLSR model has the best 
predictive effect after preprocessing. In addition, the coefficients of 
determination obtained during calibration (R2

C), prediction (R2
P), and 

cross-validation (R2
CV) are close to each other, which indicates that the 

established models are not underfitted and overfitted (Pandiselvam 
et al., 2022). Hence, the above preprocessing methods were selected to 
construct the calibration model for three adulterants. Meanwhile, we 
also carried out the prediction of the true concentration of pure GP in 
different adulterated GPs. Although the pretreatment method of MSC +
2nd Der + SG and SNV + 2nd Der + SG exhibited the same RPD (8.92) 
and R2

p (0.9939), the RMSECV value of MSC + 2nd Der + SG (0.0176) 
performed a little better than SNV + 2nd Der + SG (0.0177). Thus, the 
NIR spectra processed by MSC + 2nd Der + SG were effective in the 

prediction of pure GP. Furthermore, the RPD values of the quantitative 
models established after spectral pretreatment were higher than those 
quantitative models without preprocessing. Overall, the spectral pre-
treatment methods screened in this study improved the performance of 
the PLSR model for quantitative analysis of the concentrations in GPs 
and adulterants. 

3.3.2. Regression curves building 
Based on the above pretreatment methods, the optimized spectra of 

GP samples were obtained, and the quantitative regression curves were 
constructed by combining the real contents of GPs and adulterants. The 
regression curves of PLSR models for adulteration of SF, WF, and CS are 
shown in Fig. 5. Generally, the regression line represents the most 
desirable result in a quantitative model, and that the scatter points close 
to this line indicates the model is excellent (Sun et al., 2021; Yang et al., 
2017). In this study, all the data points in calibration set and prediction 
set are tightly clustered around the diagonal lines, suggesting that the 
established PLSR models have perfect performance in content prediction 
of adulterants. Moreover, Fig. 5 also shows the successful prediction of 
the quantitative model for actual concentration of GP, which further 
validates the reliability of the PLSR model for content prediction base on 
NIR spectra. 

4. Conclusion 

In the present study, NIR spectroscopy combined with chemometrics 
were first used to identify and quantify adulterated GPs with three types 
of adulterants. The chromaticity analysis results showed that the color 
properties could not realize a complete identification between adulter-
ated and non-adulterated GPs. Further analysis was performed using 
NIR spectroscopy. Both PCA and PLS-DA models could realize initial 

Fig. 5. Regression curves of actual and predicted adulteration levels of SF, WF and CS, and the real concentration of GP by PLSR model.  
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division between pure GP and adulterated GPs. Several deep learning 
algorithms (SVM, RF, and GB) could realize the better classification 
among GP adulteration, and RF and GB algorithms led to the highest 
accuracy of 100 %. Subsequently, the PLSR models were built to further 
determine the adulterated levels of GP adulteration. Four content pre-
diction models, including pure GP and GPs adulterated with SF, WF and 
CS, were fitted based on the optimal pretreatment methods (MSC + 2nd 
Der + SG, 2nd Der + SG, 1st Der + SG, and SNV + 2nd Der + SG), with 
RPD values of 8.92, 13.68, 14.61, and 4.30, respectively. The regression 
curves also showed that four quantitative models of PLSR exhibited good 
linearity and precision with low RMSECV (0.0176, 0.0307, 0.0215, and 
0.0672). Overall, NIR spectroscopy combined with chemometrics were 
found to be a useful tool for classification and quantification between GP 
and its adulterants. This method can quickly track the adulteration of 
GP, which ensure the authenticity of the GP and maintain the stability of 
the consumer market. 
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