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Abstract

Background: Lung adenocarcinoma is the most common type of lung cancers. Whole-genome sequencing studies
disclosed the genomic landscape of lung adenocarcinomas. however, it remains unclear if the genetic alternations
could guide prognosis prediction. Effective genetic markers and their based prediction models are also at a lack for
prognosis evaluation.

Methods: We obtained the somatic mutation data and clinical data for 371 lung adenocarcinoma cases from The
Cancer Genome Atlas. The cases were classified into two prognostic groups (3-year survival), and a comparison was
performed between the groups for the somatic mutation frequencies of genes, followed by development of
computational models to discrete the different prognosis.

Results: Genes were found with higher mutation rates in good (≥ 3-year survival) than in poor (< 3-year survival)
prognosis group of lung adenocarcinoma patients. Genes participating in cell-cell adhesion and motility were
significantly enriched in the top gene list with mutation rate difference between the good and poor prognosis
group. Support Vector Machine models with the gene somatic mutation features could well predict prognosis, and
the performance improved as feature size increased. An 85-gene model reached an average cross-validated
accuracy of 81% and an Area Under the Curve (AUC) of 0.896 for the Receiver Operating Characteristic (ROC)
curves. The model also exhibited good inter-stage prognosis prediction performance, with an average AUC of
0.846 for the ROC curves.

Conclusion: The prognosis of lung adenocarcinomas is related with somatic gene mutations. The genetic markers
could be used for prognosis prediction and furthermore provide guidance for personal medicine.

Keywords: Lung adenocarcinomas, Somatic mutational, Personal medicine, Support vector machine model,
Machine learning

Background
Lung cancer is the leading cause of cancer death in both
more and less developed countries, leading to more than
1,000,000 deaths per year globally [1, 2]. Non–small cell
lung cancer (NSCLC) is the most common type of lung
cancer while adenocarcinoma (LUAD) is its most

common subtype [3, 4]. Despite the dramatic improve-
ment for partial LUAD patients by molecule-targeting
therapies developed recently, the conventional chemo-
therapy remains the first choice for most cases, since
most LUADs lack an identifiable driver oncogene or mu-
tation [5–9]. To date, tumor-nodal-metastasis (TNM)
stage remains the most important indicator for chemo-
therapeutic prognosis of patients with LUADs [10]. For
more than 1/3 of the cases, however, prognosis could
not be correctly predicted by the TNM stage [11–13].
The wide mixture of histologic subtypes also limited the
clinical application of histologic classifications [14].
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Recently, molecular markers, such as EGFR, ERCC1,
RRM1, BRCA1, RET, etc., have been experimentally
identified and tested for prognostic prediction [15–17].
However, the number of known molecular markers is
still so small that even the combination of them could
only give a poor discrimination power generally.
As the sequencing technology advances and the costs

fall down, whole-genome sequencing (WGS) is turning
to be a cost-effective way to obtain the comprehensive
genetic information for tumors and other human com-
plex genetic diseases [18–22]. A list of LUAD related
somatic alterations have been identified through WGS
and other high-throughput studies [4, 23–25]. A number
of molecular makers and pathways have been discovered,
which are valuable for their potential actions on diagno-
sis and molecular classification, or serving as underlined
therapeutic targets. The comprehensive genomic and
case information appears also attractive for possible
prognosis prediction and therefore provide useful guid-
ance for personal medicine. However, it remains difficult
to find the most significant genetic features and build a
high-effective predictive model for treatment outcomes.
To confront the challenges, we collected the large-scale
LUAD case data with both genome and clinic informa-
tion (n = 371) from TCGA (The Cancer Genome Atlas)
(http://cancergenome.nih.gov), analyzed the somatic mu-
tation difference between the two groups categorized
based on the 3-year overall survival, and developed a
machine learning model to predict prognosis based on
the most significant genetic markers. Through the ana-
lysis, we identified a list of genes with different mutation
frequencies between different prognosis groups and
many were involved in cell-cell adhesion and motility; an
absolute majority of the genes showed higher mutation
frequencies in the good prognosis group. Support Vector
Machine (SVM) models were trained with the gene som-
atic mutation features, which could well predict the
prognosis, much better than the performance of the
conventional TNM staging system. The training datasets
and models for the treatment outcome prediction of
lung carcinoma are freely accessible through the website:
http://www.szu-bioinf.org/CPP/LUADpp.

Methods
Datasets, stratification, and mutation frequency
comparison
The clinical data for the patients with lung adenocarcin-
omas (LUADs) were downloaded from TCGA (The
Cancer Genome Atlas) website. The somatic mutation
data between tumor-normal pairs of each LUAD were
also downloaded. The mutations causing codon changes,
frame-shifts, and premature translational terminations
were retrieved for further analysis. For prognosis, the
cases were removed that received targeting therapy.

Furthermore, only the ones with somatic mutation data
and corresponding prognostic follow-up information
were recruited. The cases were classified into two cat-
egories according to prognosis (‘good’ or ‘poor’) [25].
The ‘good’ prognosis group included the patients surviv-
ing through the preset follow-up period while the ‘poor’
group indicated the patients died within the observed
period. TNM (tumor-nodal-metastasis) staging system
was used for stratification, and for convenience of binary
classification, two categories were predefined, ‘early’
(Stage I) and ‘later’ (Other stages). To compare the som-
atic gene mutation frequency between prognosis groups,
a matrix was prepared to record the mutations of all the
genes for each case, followed by counting the number of
cases with mutations for each gene in each group. A
genome-wide rate comparison test (EBT) proposed re-
cently that could balance statistic power and precision
was adopted to compare the gene mutation rates [26].

Feature representation and model training
The top n genes with most significant mutation
frequency difference were used as the genetic features.
For each case Pj (j = 1, 2, …,mi) belonging to a certain
category Ci, where i equaled to 1 or 0, and mi repre-
sented the total number of cases of the category Ci, the
genetic features were represented as a binary vector Fj
(g1,g2,…,gn) in which gk (k = 1, 2, …, n) represented the
kth genetic feature, taking the value of 1 if the corre-
sponding gene was mutated and 0 otherwise. There was
an mi*n matrix for category Ci. When stage was used as
an additional feature, the size of matrix was enlarged to
mi*(n + 1), and the stage feature was also represented in
a binary form in the additional column, for which 1 and
0 represented ‘early’ and ‘later’, respectively.
An R package, ‘e1071’, was used for training SVM

models using each training dataset (http://cran.r-project.
org). During training stage, all four kernels, ‘Radial Base
Function (RBF)’, ‘linear’, ‘polynomial’ and ‘sigmoid’, were
tested and the parameters were optimized based on a
10-fold cross-validation grid search. The best kernel with
optimized parameters was selected for further model
training.

Model performance assessment
A 5-fold cross validation strategy was used in this study.
The original feature-represented matrix for each cat-
egory was randomly split into five parts with identical
size. Every four parts of each category were combined
and served as a training dataset while the rest one of
each category was used for testing and performance
evaluation.
Receiver Operating Characteristic (ROC) curve, the

area under ROC curve (AUC), Accuracy, Sensitivity and
Specificity were utilized to assess the predictive
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performance. In the following formula, Accuracy
denotes the percentage of both positive instances (‘good
prognosis’) and negative instances (‘poor prognosis’) cor-
rectly predicted. Specificity and Sensitivity represent the
true negative and true positive rate respectively, while
the default threshold value from ‘e1070’ (0.0) was used
to define the Sensitivity and Specificity in the research.
An ROC curve is a plot of Sensitivity versus (1 - Specifi-
city) and is generated by shifting the decision threshold.
AUC gives a measure of classifier performance.

Accuracy = (TP + TN)/(TP + FP + TN + FN),
Specificity = TN/(TN + FP), Sensitivity = TP/(TP + FN).

Survival analysis
The follow-up survival information of LUAD cases was
annotated. To evaluate the survival of prediction results of
each model, all the 5-fold cross-validation testing results
were collected and grouped, followed by the survival
analysis for each predicted group. Kaplan-Meier overall
survival analysis was performed with R survival package
(https://cran.r-project.org/). Gehan-Breslow-Wilcoxon
test was used to compare the difference of overall survival
curves, and the significance level was set as 0.05.

Results
Somatic mutation difference between groups with
different prognosis
Survival analysis was performed to the LUAD cases with
both genome sequencing information and clinical
follow-up data (Fig. 1a). The 3-year survival rate was
close to 50%, making the cases evenly distributed in two
different groups: good (> = 3 years) and poor (< 3 years)
prognosis (Fig. 1a, b; Additional file 1: Table S1). Each
3-year group contained not too few samples as in 1-year
or 5-year bins, improving the power of further statistical
comparisons (Fig. 1b).
To observe the possible association of somatic muta-

tions with LUAD prognosis, gene mutation rate was
compared between the two prognostic groups. A newly
developed genome-wide rate comparison method, EBT,
was adopted to make the comparison instead of
multi-test correction based Chi-square or binomial tests,
since EBT could improve the statistical power strikingly
without apparent loss in precision [26]. The comparison
results were shown in Additional file 1: Table S2. Only
two genes, ADAMTS5 and PTPRC were found with sig-
nificant mutation rate difference (EBT, P < 0.05). Both
genes were with higher mutation rate in good prognosis
group (9/64 vs. 0/66 for both). The significance level was
relaxed so as to make a further observation of the
possible atypical associations of genetics and LUAD
prognosis. Interestingly, the good prognostic group
always showed much more genes with higher somatic

mutation rates (Fig. 1c). Functional enrichment further
disclosed that a significant portion of the genes
participated in cell-cell adhesion (EBT_P < 0.15 gene set:
FDR = 0.03; EBT_P < 0.20 gene set: FDR = 0.02) and cell
motility (EBT_P < 0.20 gene set: FDR = 0.02) (Fig. 1d;
Additional file 1: Table S2). The cell-cell adhesion and
cell motility genes were strikingly enriched in the good
prognostic group (Fig. 1D; Additional file 1: Table S2).

Prognosis prediction of LUAD with somatic gene
mutation features
It is interesting to observe if the genetic variation
difference between the prognostic groups could be used
for prediction of LUAD treatment outcomes. We
adopted a SVM method with different kernels to predict
treatment outcomes based on the genetic variance fea-
tures. As shown in Fig. 2a-c, with the 7 gene features
with EBT p value < 0.1 between prognosis groups for
somatic mutation rate difference, the SVM model
(EBT_0.10) reached an average AUC of 0.71 for the
5-fold cross-validated ROC curves. The average accur-
acy, specificity and sensitivity reached 73.6, 93.8 and
51.7%, respectively (Fig. 2b-c). Survival analysis on the
two categories of LUAD cases classified by the model sug-
gested significantly different prognosis between the groups
(Fig. 2d, left; Gehan-Breslow-Wilcoxon test, p = 1.24e-7).
Two other models (EBT_0.15 and EBT_0.20) were

trained with 28 and 85 genes whose mutation rates were
significantly different between the good and poor
prognostic groups at significance level of EBT p < 0.15
and 0.20, respectively. The two models appeared to out-
perform EBT_0.10 strikingly and model performance
was improved when more features (mutated genes) were
included (Fig. 2a). The AUC of ROC curve of EBT_0.20
was significantly higher than that of EBT_0.15 (0.896 vs.
0.810, Students’ T test, p = 0.044), while the latter model
also outperformed EBT_0.10 significantly (0.810 vs.
0.711, p = 0.049) (Fig. 2b). EBT_0.20 also showed the
highest accuracy (80.0%), specificity (98.5%) and sensitiv-
ity (60%) (Fig. 2b-c). The survival curves of cases within
either predicted groups of the corresponding model
were always differentiated significantly for prognosis,
with a strikingly increase of the difference significance
for EBT_0.10, EBT_0.15 to EBT_0.20 (Fig. 2d).
The results together suggested an association between

the prognosis of LUAD and somatic gene mutations,
and the genetic variance could be useful for prognosis
prediction.

Better performance of LUAD prognosis prediction model
based on somatic gene mutation features than that
based on clinical staging information
TNM-based clinical staging system was widely used for
LUAD prognosis assessment. The TCGA LUAD cases

Yu et al. BMC Cancer          (2019) 19:263 Page 3 of 10

https://cran.r-project.org/


with staging information were also evaluated for the rela-
tionship between stage and prognosis (Additional file 1:
Table S3). A significant association was observed, with
more poorly prognostic cases at later stages (II and later)
(Fig. 3a; Chi-square test, p = 0.003). An SVM model was
trained only based on stage information, by which the
cases were classified into two groups with significantly dif-
ferent prognosis (Fig. 3B, left; Gehan-Breslow-Wilcoxon
test, p = 7.75e-5). The significance, however, was not com-
parable to the gene-based models, i.e., EBT_0.10,
EBT_0.15 and EBT_0.20 (Fig. 2d). A mixed model was
built with combined features of 85 genes (EBT_0.20) and
the stage information, and it could also classify the cases
into two prognostic groups with higher significance than
that of the pure stage model (Fig. 3b, right; p = 5.53e-10).

A direct comparison of the three models (stage, EBT_0.20
and mixed model) suggested that there was no perform-
ance difference between the genetic (EBT_0.20) model
and the mixed model, but both outperformed the only
stage-based model in terms of ROC-AUC and accuracy
(Fig. 3c-d).

Inter-stage prognosis prediction of the LUAD somatic
gene mutation models
It is interesting to observe the gene mutation rate
difference between different prognostic LUAD cases at
different clinical stages. However, the small size of total
samples limited the resolution of stage stratification.
Here, the LUAD cases were only stratified into two
groups according to their stages, with the ones at Stage I

A D

B

C

Fig. 1 Survival analysis of LUAD cases and comparison of gene somatic mutation rates between different prognosis groups. a. Overall survival
of LUAD cases. The median survival time was indicated with red dashes. b. The survived and dead LUAD cases within 1, 3 and 5 years. c. The
number of genes with significant mutation rate difference between good and poor prognosis groups at different significance levels. The genes
with higher mutation rates in good and poor prognosis groups were shown in red and grey, respectively. d. Gene Ontology (GO) biological
process enrichment of genes with significant mutation rates between prognosis groups at EBT p value < 0.15 and 0.20, respectively. The
significantly enriched function clusters were shown in orange background (cell-cell adhesion) or in red (cell motility), respectively (Fisher’s Exact
with FDR multiple test correction)
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into the early group and the others into the later group
(Additional file 1: Table S3). Such a simplified stratifica-
tion separated all the cases into two groups with nearly
identical size (early – 63, later – 67; Fig. 3a). The gene
mutation rates were compared between sub-groups with
good (≥ 3 years) and poor (< 3 years) prognosis in either
early or later group (Additional file 1: Table S4-S5).
The small size of samples in each group and sub-group

led to the much lower statistic power, and much more
fewer significant genes were detected at the same signifi-
cance cutoff as selected for the non-stage-stratified ‘all’
cases. Consequently, a similar number of top genes of
smallest p values with EBT_0.20 for ‘all’ cases were

identified for either group, and compared between each
other as well as those for the ‘all’ cases (EBT_0.20). As
shown in Fig. 4a, the early group shared 24 genes while
the later group shared the similar number of genes (19)
with EBT_0.20 for ‘all’ cases. However, only 3 genes were
shared between the early and later groups (Fig. 4a). The
low consistence of genes with mutation rate difference be-
tween prognosis groups could mainly be attributed to the
low statistic power and lack of robustness caused by small
sample size. Shared by the significant gene sets identified
from early, later and ‘all’ group, the only gene, ADAMTS5,
could represent an important and stable prognosis factor
(Fig. 4a).

A

C

D

B

Fig. 2 Model performance on prediction of LUAD prognosis based on somatic mutation features. a. The ROC curves of SVM models based on
different sizes of somatic mutation features. The curves were based on the prediction results of 5-fold cross-validation testing datasets. b.
Performance comparison of different genetic models. The 5-fold cross-validation results were compared for AUCs of ROC curves (ROC_AUC),
Accuracy, Specificity and Sensitivity. Students’ pairwise t tests were performed. Stars represented being significant: * p < 0.05. c. Performance of
different genetic models. The values for each performance measurement was represented as ‘mean ± standard deviation’. d. Survival curves of
sub-groups of cases classified with different genetic models. The curves were based on the prediction results of 5-fold cross-validation testing
datasets, and the standard deviations were shown in error bars. Gehan-Breslow-Wilcoxon test p values on the overall survival difference between
sub-groups were indicated
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Models with the same gene features (EBT_0.20) were
also trained and tested with the samples at either stage
group. Compared with the EBT_0.20 model, both the
early and later models were slightly inferior to
EBT_0.20, the model for cases without stage stratifica-
tion (Fig. 4b). However, the performance difference was
not significant (Fig. 4c). The average prognosis predic-
tion accuracy of the early model was even higher than
that of EBT_0.20 (Fig. 4c).
To further demonstrate the potential inter-stage

application of the 85-gene model, a model was
trained with the early cases and used to classify the
later cases. Similarly, another model was trained with
later cases and classified the early ones. As shown in
Fig. 4d, the performance of either model appeared no
apparent difference with that of EBT_0.20. The pre-
dicted two groups of later cases with early model or
those of early cases with later model still showed
significant or marginally significant different prognosis
(Fig. 4e).

Taking together, the results suggested that the 85-gene
model (EBT_0.20) could be applied to LUAD prognosis
prediction independent of clinic stage.

Discussion
In this study, we made a genome-wide somatic mutation
profile comparison between different prognosis of LUAD
patients. A batch of genes was identified for which the
mutation frequencies were strikingly different between
prognosis groups. Interestingly, most genes showed
higher mutation frequency in the better prognostic
group (Fig. 1c and d), indicating the mutations could be
benign and beneficial for prognosis. Recently, high
tumor mutation burden (TMB) was found associated
with better immunotherapy prognosis and was used as
an important screening marker for immunotherapy
guidance [27, 28]. Gastric cancer genome studies also
classified the cases with high gene mutation rates as a
major molecular subtype, which often showed better
prognosis [29, 30]. More mutations could generate more

A

C D

B

Fig. 3 Performance comparison of the prognosis prediction models based on somatic mutation features and clinical stage information. a.
Correlation between clinical TNM stages and LUAD prognosis. The bars represented different clinical stages while the height of bars represented
corresponding case numbers. For each stage, the good and poor prognosis subgroups were shown in different colors. b. Survival curves of
sub-groups of cases classified with SVM models based on stage (left) or combined stage and somatic mutation features (right). The curves were
based on the prediction results of 5-fold cross-validation testing datasets. c. The ROC curves of SVM models based on stage, somatic mutation
features and the combined features. The curves were based on the prediction results of 5-fold cross-validation testing datasets. d. Performance
comparison of different genetic models. The 5-fold cross-validation results were compared for ROC_AUC and Accuracy, and the standard
deviations were shown in error bars. Students’ pairwise t tests were performed. ** and **** represented p < 0.01 and p < 0.001, respectively
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neo-antigens, which would activate patients’ immune
system and consequently increase survival [31, 32].
Functional enrichment analysis suggested that a substan-
tial subset of the mutated genes were related with cell--
cell adhesion or cell motility (Fig. 1d). Both adhesion
and cell motility are closely related with metastasis
[33, 34]. However, further bioinformatic and experi-
mental investigations are needed to confirm whether
the genes are associated with tumor prognosis,
whether the gene mutations are functional and inter-
acting, and how the mutations could improve
prognosis.
Machine-learning models using gene mutation features

could well predict LUAD prognosis. Model performance
turned better as more genes were included. Even the
7-gene model appeared superior to clinical TNM staging
system in prognosis prediction while the 85-gene model
performed much better (Figs. 2 and 3). Combination of
clinical stage information did not improve the perform-
ance of gene models, indicating the independence of

somatic gene mutations and clinical stage contributing
to LUAD prognosis. However, the genes with most ap-
parent mutation rate difference between good and poor
prognosis sub-group showed very few overlaps between
early and later cases (Fig. 4a). The extreme sparseness of
cases in most of the sub-groups could have led to the
low statistic power, precision and therefore the inconsist-
ency. With the 85 featured genes that were identified as
the most significant features for non-stage-stratified all
samples, models were re-trained only with either early
or later cases, and both 5-fold cross validations and
inter-stage evaluations suggested the good perform-
ance of genetic models independent of clinical stages
(Fig. 4b-e). There was one gene consistently identified
as one of the genes with most significantly different
mutation rates between prognostic (sub)groups,
ADAMTS5, whose expression was reported to be
correlated with the invasiveness or patient survival of
lung and colorectal cancers [35, 36]. As the size of
sample increases, more stage-independent genes

A

D E

B C

Fig. 4 Inter-stage prediction of LUAD prognosis with the genetic models based on somatic mutation features. a. Overlap of the top genes with
mutation rate difference between good and poor sub-groups for patients diagnosed at all, early and later stages. The name was shown for the
gene shared by all the three stratifications. b. The ROC curves of SVM models based on different sizes of somatic mutation features. The curves
were based on the prediction results of 5-fold cross-validation testing datasets. c. Performance comparison of different genetic models. The 5-fold
cross-validation results were compared for ROC_AUC and Accuracy, and the standard deviations were shown in error bars. Students’ pairwise t
tests were performed. d. The inter-stage predictive ROC curves of genetic models. The ‘early -> later’ represented prediction of later patients with
the model trained with early cases while the ‘later -> early’ represented prediction of early patients with the model trained with later cases.
e. Survival curves of sub-groups of cases classified with different inter-stage models
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associated with LUAD prognosis could be identified,
and the prognosis prediction would be further
improved.
Currently, TNM staging system still plays a central

role in LUAD prognosis, though there have been several
panels of molecular markers identified for higher prog-
nosis prediction accuracy [37–40]. Recent researches
mainly identified markers at the transcription level,
including mRNAs, microRNAs or lncRNAs [37, 38].
One of the best-performing panels used 31 lncRNAs and
reached 0.881 for the AUC of ROC curves [37]. Our
model with genetic markers reached similar or slightly
higher AUC (0.896). Compared with RNA (or possibly
protein) markers, genetic mutations are qualitative
rather than quantitative features and therefore more
stable, sensitive, easily and objectively detected. During
the revision stage of our manuscript, Cho et al.
published a similar study that identified six genetic
polymorphism signatures being associated with LUAD
prognosis [41]. The authors used classification-oriented
feature selection methods to identify most informative
mutated genes. Prognosis association analysis was
performed to individual genes that were selected as the
most relevant features. The best model was reported
with ~ 0.88 accuracy, but the ROC curves and AUCs
were unknown. None of the feature gene list, procedure
for stratification on raw data and optimization strategies
for machine learning algorithms was provided, and we
could not make a direct comparison. The prognosis pre-
diction effect (accuracy, precision, etc.) was not evalu-
ated on the six genes associated with LUAD prognosis.
Among the six genes, MMRN2 was also used as one fea-
ture gene in our model (P = 0.13, EBT), yet the remained
five genes did not show apparent mutation rate differ-
ence between prognosis groups in our study (Additional
file 1: Table S2). However, Cho et al. and our current
study both found the association of genetic mutations
and LUAD prognosis independently, and suggested the
possible application of these genetic features in clinical
guidance of LUAD prognosis.
There are still a couple of drawbacks impeding the

application of current prognosis markers. First, larger
size of samples with both sequenced genomes and
detailed survival follow-up data were needed for refine-
ment of the panels. Secondly, more independent datasets
including larger size of patients at different stages are in
need to further evaluate the generalization performance
of the models. Moreover, for each panel, the tumor tis-
sue will be the major examined material. In practice,
however, blood samples could be feasible and convenient
to be collected in a noninvasive way. Technique ad-
vances in capture and enrichment of circulating tumor
cells (CTC) and circulating tumor DNA (ctDNA) makes
the blood tests of the prognosis genes promising [42].

Conclusions
In this research, the somatic gene mutations and
prognostic data of TCGA LUAD patients were analyzed.
Genes were found with higher mutation rates in good
(≥ 3-year survival) than in poor (< 3-year survival)
prognosis group. Genes participating in cell-cell adhe-
sion and motility were significantly enriched in the
top gene list with mutation rate difference between
the good and poor prognosis group of LUAD cases.
Machine-learning models with the gene somatic mutation
features could well predict LUAD prognosis, and the per-
formance improved as feature size increased. The 85-gene
model reached a 5-fold cross-validated ROC-AUC of
0.896, much higher than the widely adopted TNM staging
system. The model also exhibited good inter-stage prog-
nosis prediction performance. The genetic features could
be used as biomarkers for effective LUAD prognosis
prediction.

Additional file

Additional file 1: Table S1. 3-year survival data and classification.
Table S2. Comparison of gene somatic mutation rates between good
and poor prognosis groups. Table S3. TNM staging information of LUAD
cases with both survival and genome data. Table S4. Comparison of
gene somatic mutation rates between good and poor prognosis sub-
groups of LUAD cases diagnosed at early stage. Table S5. Comparison of
gene somatic mutation rates between good and poor prognosis
sub-groups of LUAD cases diagnosed at later stage. (XLSX 912 kb)
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