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ABSTRACT: Ube2T is the E2 ubiquitin-conjugating enzyme of the Fanconi anemia DNA
repair pathway and it is overexpressed in several cancers, representing an attractive target for
the development of inhibitors. Despite the extensive efforts in targeting the ubiquitin
system, very few E2 binders have currently been discovered. Herein we report the
identification of a new allosteric pocket on Ube2T through a fragment screening using
biophysical methods. Several fragments binding to this site inhibit ubiquitin conjugation in
vitro.

■ INTRODUCTION

Ubiquitination is a post-translational modification of proteins
that regulates many cellular processes, from protein degradation
to cell cycle progression and DNA repair.1,2 Ubiquitin
conjugation to substrate proteins is catalyzed by the sequential
action of three enzymes: E1 (ubiquitin-activating enzyme), E2
(ubiquitin-conjugating enzyme), and E3 (ubiquitin ligase).3

There are approximately 40 known E2s in humans that regulate
diverse biological processes, making them attractive drug
targets.4,5 Structural information is available for many E2s,
but the lack of deep active site clefts and the need to target the
protein surface have led to E2s being considered challenging
targets to small molecules.5,6 Indeed, to date, the possibility of
targeting E2s with small molecules has been largely unexplored
and very few inhibitors are known.7−10

Ube2T is the E2 enzyme of the Fanconi anemia (FA)
pathway,11 which is essential for the repair of DNA interstrand
cross-links. Together with FANCL (the E3 ligase), Ube2T
catalyzes the monoubiquitination of the heterodimeric FANCI/
FANCD2 complex, which is the key signaling event to activate
the FA pathway for DNA repair.11−14 Modulation of DNA
repair pathways is an emerging strategy for the development of
inhibitors of tumor cell growth, as it can either potentiate the
effects of radiotherapy and conventional genotoxins or exploit
synthetic lethal interactions.15−17 The latter approach relies on
genetic defects in DNA repair pathways in certain tumor cells,
which lead to hypersensitivity toward inhibitors of compensa-
tory pathways.

Ube2T has recently been found to be overexpressed in
several tumors,18−21 including breast18 and prostate cancer,20

and therefore it represents an attractive therapeutic target. Here
we unveil an allosteric pocket on Ube2T that is ligandable to
small molecules as identified via fragment screening using
biophysical methods. Fragment-based drug discovery is now an
established approach for the development of lead com-
pounds.22−25 “Fragments” are low molecular weight com-
pounds (typically <250−300 Da), which bind to the target
protein with weak affinities (high micromolar to low millimolar
range). Fragments represent synthetically tractable starting
points for medicinal chemistry to aid their elaboration into high
affinity small molecules.26,27 The weak affinities typically
observed for fragments make it challenging to reliably detect
and validate their binding. However, direct binding methods
can aid detection of novel, secondary, and potentially allosteric
sites on protein surfaces.28 One way to enhance success rates is
to deploy a combination or cascade of biophysical methods in
order to complement the different detection and sensitivity
capabilities of the single techniques.29,30

■ RESULTS AND DISCUSSION

Our biophysical cascade consisted of a first screen of a library of
approximately 1200 fragments using two orthogonal techni-
ques: differential scanning fluorimetry (DSF) and biolayer
interferometry (BLI). This was followed by a secondary screen
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using one-dimensional 1H NMR spectroscopy, binding site
identification through protein-observed NMR spectroscopy,
and X-ray crystallography.
DSF monitors the unfolding temperature of a protein using a

fluorescent dye. We screened our fragment library measuring
the effect of fragments as singletons on the melting temperature

of Ube2T (ΔTm = Tm Ube2T+fragment − Tm Ube2T; Supporting
Information (SI) Figure S1). We selected as primary hits nine
fragments that induced stabilization of the protein (ΔTm ≥ +
0.5 °C) as well as 33 fragments that generated significant
negative shifts (ΔTm ≤ −2.5 °C). Previous work has indeed
demonstrated that several destabilizers can be confirmed as real

Figure 1. Chemical shift perturbations observed upon addition of 3 mM fragment* to 80 μM Ube2T1−154. Weighted Δδs ≥ average + SD are
indicated by a yellow line. Weighted Δδs ≥ average + 2 × SD are indicated by an orange line. Equivalent colors are used to highlight corresponding
residues on the Ube2T surface. As a reference, the catalytic cysteine (C86) is colored in green. Chemical structures for individual fragments are
shown. For HSQC spectra and weighted Δδs formula, see SI. *Concentration accuracy is limited by solubility issues for several fragments.
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binders.31 In parallel, we screened the fragment library using
BLI, an optical technique that requires immobilization of the
target protein on a biosensor surface. Biotin-labeled Ube2T was
attached to streptavidin-coated biosensors and screened against
the fragment library at a concentration of 200 μM. A total of 90
fragments gave a statistically significant response in BLI (above
a threshold value calculated as the sum of the robust standard
deviation multiplied by three and the median). Interestingly,
most of these 90 BLI hits caused negative ΔTm in the DSF
screening (SI, Figure S2). We then repeated the BLI
experiment with the 90 fragments using a six-point concen-
tration series, and 37 hits were selected after visual inspection
of the individual binding sensograms. As a result of this first
screen, we obtained 42 DSF hits (nine stabilizers and 33
destabilizers) and 37 BLI hits, out of which 10 were in common
between the two screens (SI, Figure S3A), making a total of 69
unique hits (5.5% overall hit rate).
Of these initial hits, 34 fragments were chosen based on

chemical diversity and commercial availability and submitted to
a series of one-dimensional 1H NMR spectroscopy binding
experiments: water ligand observed gradient spectroscopy
(WaterLOGSY),32 saturation transfer difference (STD),33 and
Carr−Purcell−Meiboom−Gill (CPMG)34,35 relaxation-edited
sequences. Binding was assessed by comparing the proton
signals of the fragments in the presence and in the absence of
the protein. This secondary screen validated 13 of the 34 hits
identified in the primary screen (61.8% attrition rate).
The next goal was the identification of fragments’ binding

sites on the Ube2T surface. X-ray crystallography is normally
the method of choice for investigating the molecular details of
protein−ligand interactions. Protein−fragment complexes are
frequently obtained by soaking high-concentration solutions of
fragments into apo protein crystals, however, this method has
some limitations. Poor solubility and weak affinities of
fragments can hamper the obtainment of cocrystal structures
with high bound fragment occupancy. Furthermore, targeted
pockets may be occluded by crystal packing contacts and
limited structural rearrangement can occur without damaging
the apo protein crystals, often preventing the identification of
cryptic pockets. For the above reasons, we first used protein-
observed NMR spectroscopy in solution to map the binding
sites.

We expressed a truncated form of Ube2T (Ube2T1−154,
lacking the C-terminal flexible tail),36 assigned the backbone
amide protons of the HSQC spectrum (BMRB entry 27035),
and performed chemical shift perturbation (CSP) analysis with
each individual fragment. Out of the 13 fragments, six induced
detectable shifts at 2 mM concentration after visual inspection
of the spectra (the six validated binders were equally distributed
between BLI and DSF hits; a summary of the confirmed hits is
shown in SI, Figure S3, together with some representative
data). CSPs shown by the six fragments were concentration-
dependent, as demonstrated by a four-point titration of
fragment into protein (SI, Figure S4).
Shifts mapped onto the X-ray structures of Ube2T (PDB

1YH2,6 4CCG36) were primarily clustered around a pocket
adjacent to the catalytic cysteine (Cys86), formed by the loop
between strand β4 and the 310 helix of the E2 fold (Figures 1
and 2A). A slightly different behavior was observed for EM02
and EM17 (to a lesser extent), which also shifted several amino
acids located between strands β1 and β2 (Figure 1A,E).
To elucidate the fragments binding modes, we next obtained

well-diffracting protein crystals (1.7 Å for the apo form) that we
found to tolerate relatively high concentrations of organic
solvents that are needed for fragment soaking. The binding site
identified by protein NMR was found to be solvent-accessible
in our crystal form, suggesting that it would be suitable for
soaking experiments. We could confirm this by solving the
crystal structure of Ube2T in complex with EM04 at 2.4 Å
resolution (PDB 5NGZ, Figure 2 and SI, Figure S5). The newly
discovered pocket is distinct from the small molecules binding
sites identified on the E2s Cdc34 and Ubc9 (SI, Figure S6).
EM04 binds Ube2T with a KD = 1.3 mM (LE = 0.36 kcal

mol−1), as measured by isothermal titration calorimetry (ITC)
(SI, Figure S7A). As shown in Figure 2B, the binding mode is
driven by several hydrophobic contacts and by a hydrogen
bond between the amino group of EM04 and the carbonyl
group of Phe70 on Ube2T. An −NH2 (hydrogen bond donor)
appears to be a common structural feature between the
identified fragments, as it is also present in EM02, EM11,
EM17, and EM29, potentially suggesting a conserved
interaction. A second hydrogen bond is formed between the
backbone NH of Ile74 and the sulfur atom of the benzothiazole
ring. These data are in agreement with the CSP experiments,

Figure 2. Crystal structure of EM04 in complex with Ube2T. (A) EM04-bound Ube2T structure (PDB 5NGZ) showing 2Fo − Fc electron density
map contoured at 0.9σ level for fragment EM04. Amino acid side chains in the EM04 binding site are shown as ball and sticks and colored in orange
and yellow consistent with the results of the CSP experiments, as described in Figure 1. (B) Zoom-in of the fragment’s binding pocket. Hydrogen
bonds are represented as dotted yellow lines.
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where major shifts were observed for Ile74 backbone NH upon
fragment addition (Figure 1B and SI, Figure S4).
Fragments are typically thought as too weak binders to

warrant testing in functional assays. However, fragments
binding to secondary pockets have been found to exert
allosteric effects on their targets.37,38 To address this, we next
investigated whether the validated fragments could impact
Ube2T enzymatic activity using a biochemical assay, which
measures the conjugation of fluorescently labeled ubiquitin to
the substrate protein FANCD2.39 A significant reduction of
substrate ubiquitination was observed upon addition of
fragments EM02, EM04, and EM17 (Figure 3A), suggesting
that binding of small molecules to this pocket can lead to
inhibition of Ube2T’s biochemical activity. The assay was
repeated in the presence of detergent as a control for
aggregation (SI, Figure S8). None of the fragments affected
the formation of the Ube2T−ubiquitin thioester (as demon-
strated by an E2-charging assay, SI, Figure S9), suggesting that
such inhibition involves the catalytic transfer of the thioester-
linked ubiquitin molecule from Ube2T to the substrate protein
FANCD2. The effect of EM02, EM04, and EM17 on FANCD2
ubiquitination was concentration-dependent (Figure 3B) as
shown by a four-point titration series. Additionally, the three
fragments did not show detectable inhibitory effect when tested
in a similar biochemical assay set up using UbcH5c as ubiquitin-
conjugating enzyme (SI, Figure S10), suggesting that selectivity
toward Ube2T can be achieved.
To further confirm that the observed reduction in substrate

ubiquitination is due to binding to the newly identified pocket,
we introduced a point mutation on Ube2T (P73K), disrupting
EM04 binding as measured by ITC (SI, Figure S7B). Such
mutation abolished the effect of fragments EM04 and EM17,
while EM02 still retained its inhibitory activity (Figure 3C).
These results validate EM04 binding site as responsible for
Ube2T inhibition. It is worth noting that Ube2T P73K was less
active compared to the wild-type protein (Figure 3C), further
suggesting the importance of this site for Ube2T function. Our
data suggests a different mechanism of action for EM02, which

exhibited a different pattern in CSPs (Figure 1A) and is the
subject of current investigation in our laboratories.

■ CONCLUSIONS
In summary, using fragment screening, we discovered a new
allosteric pocket on Ube2T, the E2 ubiquitin-conjugating
enzyme of the FA pathway. Small molecules binding to this site
can inhibit substrate ubiquitination in vitro, suggesting an
allosteric modulation of Ube2T enzymatic activity, although we
cannot rule out potential direct inhibition of specific protein−
protein interactions. A cascade of biophysical methods was
successfully implemented to screen and validate the binding of
fragment-like small molecules and to elucidate their binding
mode. Such fragments represent attractive starting points for
further elaboration into high affinity inhibitors. A potent
Ube2T inhibitor could find application in sensitizing cancer
cells to cross-linking agents (such as cysplatin and mitomycin
C) or be used to exploit specific synthetic lethal interactions.
Very few E2 inhibitors are known to date, and targeting this
newly discovered allosteric pocket could represent a successful
strategy to develop high-affinity small molecules to effectively
drug this class of enzymes.

■ ASSOCIATED CONTENT
*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.jmed-
chem.7b00147.

Experimental section: protein expression and purifica-
tion, DSF, BLI, ligand-observed NMR spectroscopy,
Ube2T backbone resonance assignment, CSP experi-
ments, ITC, crystallization and structure determination,
ubiquitination assays (PDF)
Molecular formula strings (CSV)

Accession Codes
Atomic coordinates can be accessed using PDB code 5NGZ.
Authors will release the atomic coordinates and experimental

Figure 3. Fragments inhibit substrate ubiquitination by Ube2T. (A) Effect of the six fragments at 2.5 mM on Ube2T-mediated FANCD2
ubiquitination. A representative fluorescence scan shows the levels of monoubiquitinated FANCD2 using fluorescently labeled ubiquitin. The
additional assays components (E1, Ube2T, FANCL) are not shown. The bar chart shows the integrated intensities of monoubiquitinated FANCD2
from three independent experiments normalized to DMSO reactions and plotted as mean ± SEM. (B) Concentration-dependent effect of fragments
EM02, EM04, and EM17 in a four-point titration series. Representative fluorescence scans are shown and integrated intensities from three
independent experiments are normalized to DMSO reactions and plotted as mean ± range. (C) Effect of 2.5 mM EM02, EM04, and EM17 on
FANCD2 ubiquitination using Ube2T P73K mutant in the assay. A representative fluorescence scan is shown, and integrated intensities from four
independent experiments are normalized to wild type Ube2T-DMSO reactions and plotted as mean ± SEM. Statistical significance was determined
by one-way analysis of variance with Dunnett’s multiple-comparison test. (n = 3 or 4, ****P ≤ 0.0001, ***P ≤ 0.001, **P ≤ 0.01, *P ≤ 0.05, ns P >
0.05).
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data upon article publication. Backbone assignment of human
Ube2T(1−154) can be accessed using BMRB accession
number 27035.
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